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Wrist trauma is common in children and generally requires radiography for exclusion of fractures,
subjecting children to radiation and long wait times in the emergency department. Ultrasound (US)
has potential to be a safer, faster diagnostic tool. This study aimed to determine how reliably US could
detect distal radius fractures in children, to contrast the accuracy of 2DUS to 3DUS, and to assess the
utility of artificial intelligence for image interpretation. 127 children were scanned with 2DUS and
3DUS on the affected wrist. US scans were then read by 7 blinded human readers and an Al model.
With radiographs used as the gold standard, expert human readers obtained a mean sensitivity of
0.97 and 0.98 for 2DUS and 3DUS respectively. The Al model sensitivity was 0.91 and 1.00 for 2DUS
and 3DUS respectively. Study data suggests that 2DUS is comparable to 3DUS and Al diagnosis is
comparable to human experts.

Distal radius fractures (DRF) are typically characterized as a low-energy fractures, usually due to a fall onto an
outstretched hand (FOOSH), that occur approximately 2 cm proximal to the articular surface of the radius'.
This area is particularly high risk for fractures as it is the point at which cortical bone becomes thinner and is
reinforced by trabecular bone'. The high incidence of DRF in children can be explained by the increase in corti-
cal porosity that results from increased bone turnover during periods of maximal longitudinal bone growth'.
In children, males have a higher risk of DRF than females®. Currently, radiographs are the standard of care for
diagnosis and characterization of DRF in children. Radiography of the wrist is a sensitive and clinically useful test,
but it does subject children to about 1uSv of radiation per study’. Although 1uSv is a very small dose of radiation
in comparison to average annual environmental radiation exposure (443uSv in Canada), children have a 10-15%
relative risk increase of radiation induced carcinogenesis because of their increased growth rate and ongoing cel-
lular differentiation, so care should be taken to avoid radiation exposure when possible**. Importantly, in an era
of overcrowded hospitals, radiography also increases wait times in the ED. Although there is significant variety
in the workflow of EDs, obtaining radiographs often requires patients and their families to move from the ED
to the diagnostic imaging department. Typically, the patient must then wait for an available medical radiation
technologist and await interpretation of the images before they either receive treatment for a fracture or are sent
home without treatment in the absence of pathology. Fractures are usually present in only half of all children
sent for radiographs with suspected DRF, meaning that half of these children could be subjected to radiation
and long wait times even when no intervention is required®.

The use of point-of-care ultrasound (POCUS) in the ED is becoming more widespread, notably in the evalu-
ation of patients presenting with musculoskeletal pain”. POCUS allows physicians to rapidly evaluate the symp-
tomatic limb at the bedside and is quite sensitive in detecting cortical disruption, periosteal fluid, and joint effu-
sions, all of which raise suspicion of fracture”®. It has also recently been shown that physicians can detect DRF
with as little as 1-2 h of hands on training’. As an added benefit, POCUS also allows the physician to perform
dynamic assessment of muscles, tendons, and ligaments simultaneously and can easily compare the anatomy
in question to the asymptomatic contralateral side’. US provides multiple advantages when compared to other
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imaging modalities which include, absence of radiation, improved patient safety, real-time image acquisition,
and relatively low cost of imaging’. In a recent pilot study of 30 children, Zhang et al. found that 3DUS was
capable of diagnosing DRF with nearly 100% sensitivity when read by a radiologist, a radiology fellow, and a
medical student®. The findings of this pilot study are promising, however, the ultrasound (US) machines used in
their study were bulky, costly and are not in wide general use which limits the clinical utility of 3DUS for DRF
detection. Recently, high quality, lightweight and relatively inexpensive 2D transducers have been developed that
can be used with a tablet or smartphone. These transducers have the potential to increase the utility of POCUS
because they increase and are compatible with devices that most people already own'’. They also increase acces-
sibility to US due to their reduced cost'".

Even the most portable and affordable US transducer still has one key limitation, however: dedicated train-
ing with repeated exposure to both normal and abnormal anatomy is required for a user to be able to reliably
and accurately acquire and interpret US images. A potential solution to this is automatic interpretation of US
images with artificial intelligence (AI) which could decrease both intra-observer diagnostic variability and the
training required to perform US studies for wrist injuries. Training requirements would decrease because users
would only need to learn how to hold the probe and move it over the area of pain and there would be no need for
training on identification of anatomy or image interpretation. The decreased need for training could increase the
number of users capable of performing US scans for DRF which, coupled with the increased portability of new
2D transducers, could create new point-of-care opportunities. In the future, with a robust expanded, Al assisted
protocol, it could be possible for screening for DRF or associated fractures at to be done at triage, in ambulances,
or even by remote first-responders such as ski-patrol. Recent improvements in data availability and computing
power have allowed deep learning models to become more widely applied in computer vision tasks, including
classification, object detection, segmentation, and image synthesis. Convolutional neural networks (CNN) are a
class of deep learning models that are particularly useful for imaging processing tasks'2. In a CNN, input images
are passed through several hidden layers which extract feature maps, which are then passed through output layers
to generate final predictions'. The hidden layers involve kernels which are convolved with inputs and allow the
model to extract image features at a pixel level'%. Previous studies have demonstrated that CNN models have great
potential in the field of automatic disease diagnosis and differentiation in multiple areas of medical imaging!>-1°.
ResNet34'!7 and DenseNet121® are specific types of CNN models that have unique residual blocks that reduce
information loss. These models have proven to be successful in disease diagnosis related tasks such as colorectal
cancer detection'?, skin lesion analysis?’, and pneumonia detection?!.

Opverall, we had three aims in this study: (1) to confirm the feasibility, accuracy, and reliability of US in detect-
ing DRF in a diverse group of children, (2) to determine the human reader accuracy achievable with images from
portable 2D transducers vs. traditional costly hardware with 3D transducers, and (3) to determine the feasibility
of using artificial intelligence to recognize both normal wrist anatomy and fractures for the user.

Materials and methods

Study design. This was a prospective diagnostic study performed at the Stollery Children’s Hospital in
Edmonton, Alberta. The study was approved by University of Alberta Health Research Ethics Board—Bio-
medical Panel (Pro00077093) and all methods were performed in accordance with the relevant guidelines and
regulations.

Study protocol. Children aged 0-17 years presenting to the Stollery Children’s Hospital ED with wrist
trauma were identified at triage. Inclusion criteria were tenderness over the wrist or distal radius following
trauma such as a FOOSH injury. Exclusion criteria were open fractures, lacerations in the scan area, existing
cast over the scan area and the child’s inability to tolerate the exam for any reason. Written informed consent
was obtained from each child’s legal guardian. Both 2D and 3D US scans were then performed in the ED wait-
ing room immediately following triage and before the child was seen by a physician. The child was then seen
separately by a blinded emergency physician for routine clinical assessment and management, of which usually
included radiographs of the symptomatic wrist. All radiographs were obtained from the picture archiving and
communication system (PACS) at which point children who did not receive radiographs were also excluded
from the study.

2DUS and 3DUS images were randomized, anonymized and distributed to blinded volunteer readers which
included 3 novice, 2 intermediate, and 2 expert readers. The corresponding radiographs were also randomized
and anonymized, then centrally re-reviewed by a pediatric MSK radiologist who had been blinded to any clinical
or US data associated with each patient. The radiographs were then compared to original reports done by the
radiologist in the ED at the time of presentation and used as the gold standard for determining accuracy of 2D
and 3D US interpretation provided by readers of novice, intermediate, and expert skill levels.

To compare accuracy of DRF diagnosis via 2DUS vs 3DUS the readers assessed each wrist data set as a
whole (5 sweeps per exam), provided their diagnosis as either fractured or normal, and rated their confidence
in diagnosis from -3 to + 3 (-3 = very confident no fracture; 1 = unsure but favor fracture; 3 =very confident there
is a fracture).

Training. The operators who collected the 2DUS and 3DUS scans, selected to provide a diverse range of
expertise, included a medical student with 10 years of experience as a sonographer, but no prior experience
in using US to screen for fractures, and an undergraduate student with no previous experience with US. Both
students received a 1-h hands-on training session from a pediatric MSK radiologist and a pediatric emergency
physician. Training consisted of a discussion of normal anatomy, the expected appearance of DRE, direction on
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how to operate both of the US machines and supervised practice performing a mock scan that followed this
study’s protocol.

Novice readers were graduate students with no medical education or experience in reading or collecting US
images. Intermediate readers consisted of 1 family medicine/emergency medicine physician with limited POCUS
experience and the undergraduate student who helped to acquire US images for this study in the ED. The expert
readers were a pediatric radiology fellow and a dual fellowship trained pediatric musculoskeletal staff radiologist
with 15 years imaging experience. Novice and intermediate readers received 30 min of training which consisted
of a discussion of normal anatomy of the wrist, a discussion on what constitutes an angulated and/or displaced
fracture, 3 examples of a normal study and 3 examples of a DRF. The expert readers did not receive any training.

Imaging technique. Ultrasound. During each US examination, the child was seated, and the affected
wrist was placed in front of them on a table in a neutral position. 3DUS images of the symptomatic wrist were
then acquired with a Philips IU22 machine using a 13 MHz VL13-5 probe (Philips, Amsterdam, NL). Next,
2DUS images of the same wrist were acquired with a Philips Lumify L5-12 MHz probe (Philips, Amsterdam,
NL) and a tablet computer using Android OS (Alphabet Inc, Mountain View, CA).

Images acquired with each machine included (1) the dorsal aspect of the distal radius with metaphysis, epi-
physis, and first row of carpal bones visible, (2) a more proximal portion of the dorsal aspect of the distal radius
with metaphysis and epiphysis visible, (3) the radial aspect of the distal radius with metaphysis, epiphysis, and
first row of carpal bones visible, (4) the volar aspect of the distal radius with metaphysis, epiphysis, and first row
of carpal bones visible and (5) a more proximal portion of the volar aspect of the distal radius with metaphysis
and epiphysis visible (Fig. 1). Upon completion of this imaging protocol we were left with 5 3DUS sweeps and
5 2DUS sweeps for a total of 10 US sweeps for each symptomatic wrist.

Radiographs. Each child included in this study also had radiographs of the symptomatic wrist and/or forearm
obtained as part of routine clinical care at the same ER visit. We recorded the diagnosis (DRF vs no DRF) for
these images based on the initial radiologist report at the time of presentation, then compared the initial diagno-
ses to those produced by a blinded re-read of all radiographs done by our expert pediatric MSK radiologist. We
also reviewed patient charts for a 30-day period following the ER visit to determine whether any had an initially
occult fracture that was detected on follow-up imaging. Diagnosis from our blinded re-review of radiographs
was then treated as the gold-standard for this study as it limited intra-observer variability and was blinded to
clinical data unlike the initial radiologist reports.

Artificial intelligence. Image labeling. ~An experienced sonographer manually labeled each US image that
was contained within the US sweeps (Fig. 1). Labeling was done using ITK-Snap (version 3.8.0) and included
radial metaphysis (red), radial epiphysis (green), carpal bones (blue) and fractures (yellow). Images with a yel-
low label were categorized as positive for fracture, and those without a yellow label were categorized as negative.
Individual fracture labels were compared with gold standard radiographs. Only individuals with the same label
generated by manual segmentation and radiographs were used for AI model training and evaluation.

Al training.  Each image was cropped to contain only the US data. Only images that contained the radial meta-
physis were used for model training, validation and testing. The dataset was split randomly into training, valida-
tion and tests set based on anonymized study ID. As most study IDs had 2D and 3D data, each patient’s train/
validation/test set was kept consistent between 2 and 3D datasets to avoid data leakage (Table 1).

Before being fed into the model, images were first processed by zero-padding to squares and then resized
to 364*364 and normalized. Stochastic gradient descent (SGD) was used as the optimizer, with a learning rate
of 0.002 and momentum of 0.9 for all of the models. Cross-entropy loss was used as the loss function. We did
experiments on: hyperparameter tuning on optimizer weight decay, data augmentation with random horizontal
flip, training set data distribution rebalance using Imbalanced Data Sampler. ResNet34 and DenseNet121 were
trained with default model architecture for fracture detection based on single US images. The final fully con-
nected layer output was set to be 2 for binary classification. Softmax was used to scale the prediction between 0
and 1. All the models were trained for 100 epochs with 16 as batch size. Models were trained on Compute Canada
using a V100 GPU. Training details of each model with the highest validation AUROC can be found in Table 2.

Statistical analysis. Sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive
value (NPV), positive likelihood ratio (LR +) and negative likelihood radio (LR-) were calculated for human
readers and AT using our gold-standard radiographs for diagnosis of DRE Accuracy and area under the receiver
operating characteristic curve (AUROC) were also calculated for AI. The model with the highest AUROC on
the validation set was then used on the test set. Interrater reliability was calculated via, Fleiss’ Kappa and Cohen’s
Kappa using Microsoft Excel?*-*. Differences between human US interpretation and gold standard radiograph
re-reviews were evaluated for statistical significance with McNemar’s test using Microsoft Excel®.

Informed consent. Written informed consent was obtained from all subjects and legal guardians involved
in this study.
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Figure 1. Images with corresponding manual labels of DRF including 3D dorsal (a,b), 2D dorsal (¢,d), 3D
proximal dorsal (e,f), 2D proximal dorsal (g,h), 3D radial (i,j) 2D radial (k,1), 3D volar (m,n), 2D volar (o,p), 3D
proximal volar (q,r) and 2D proximal volar (s,t) views. Labels include radial metaphysis (red), epiphysis (green),
carpal bones (blue) and fracture (yellow).

2D training 2D validation | 2D test 3D training 3D validation | 3D test
If\r]:é?f;rd‘)’f images (% 16,865 (24.81%) | 4215 (20.90%) | 3822 (22.42%) | 15,882 (32.33%) | 3787 (33.25%) | 4034 (28.04%)
g:cr?l?;rd‘)’fpaﬁems % 76 (56.58%) | 17 (58.82%) 18 (61.11%) 71 (57.75%) | 15 (66.67%) 18 (61.11%)
g;ﬁ;ﬂi‘)’f Sweeps (% 370 (3324%) | 84(27.38%) | 89 (31.46%) 349 (39.54%) | 75 (4133%) | 89 (39.33%)

Table 1. 2DUS image distribution between training, validation and tests sets.

Results

Clinical data. This study enrolled 127 children, with 122 children receiving both US and radiographs, result-
ing in 1165 individual US sweeps of symptomatic wrists. Each sweep produced a DICOM file composed of a
minimum of 90 individual sequential US images. Due to technical issues, time constraints or a child’s request
to stop the examination 8 children received a 2DUS scan only and 3 children received a 3DUS scan only. The
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ResNet34 with 2DUS Densenet121 with 2DUS ResNet34 with 3DUS Densenet121 with 3DUS
SGD optimizer weight decay 0.001 0.001 0.005 0.001
Random horizontal flip No No Yes No
dTraining data rebalance with imbalanced Yes Yes No Yes
ata sampler

Table 2. Training details of models with highest validation AUROC with 2DUS and 3DUS.

5 children who did not receive radiographs and therefore could not be compared to the gold standard were
excluded from the study.

Blinded, asynchronous novice, intermediate and expert reader impressions of 2D and 3D US images showed
improving SN with increasing experience of the reader when impressions were compared to the initial radiologist
radiograph reports (Tables 3 and 4). Since the radiographs collected in this study were read by many different
radiologists depending on the date and time of presentation, a blinded central re-review of all radiographs was
done by a pediatric MSK radiologist in an effort to eliminate inter-observer variability. This interpretation was
used as our gold standard classification. The reader impressions from 2 and 3DUS were compared to our gold
standard radiograph interpretations and again showed improving SN with increasing experience of the reader
(Tables 3 and 4). Discrepancies between initial radiologist report diagnosis and blinded re-review diagnosis were
minimal, with all discrepant scans having subtle or questionable findings for which there would be expected
disagreement between readers (Fig. 2, Table 5). Inter-rater reliability was fair to moderate overall, but very good
between experts (Table 6).

Once the blinded multi-reader trial was complete, all gold standard radiograph findings and their correspond-
ing US images were reviewed for discrepancies. It was noted that multiple patients had upper extremity fractures
that were seen on the radiographs but were outside the distal portion of the radius that was assessed with US.
There were 38 patients with fractures elsewhere in their upper extremity, with 35 of these patients having ulna
fractures and 3 patients with radial diaphysis fractures that were proximal to the scan area. There was also one
wrist that was read by both experts as normal on ultrasound but was in fact fractured. This false negative wrist
was a near anatomical, non-displaced Salter Harris 2 fracture and was the only fracture involving the physis
found in our study data (Fig. 3).

Artificial intelligence data. Single image fracture detection. 'The first step in testing the models’ classifi-
cation capability was to test them on single images. The threshold for fracture prediction was set to 0.5, which
meant that if the fracture prediction probability was equal to or higher than 0.5 it was classified as positive for
DRF and was otherwise negative. The model performed well with both ResNet34 and Densenet121 achieving an
AUROC of 0.93 and 0.91 for 2DUS and 3DUS respectively.

3D

Novice value (range) (p= <0.0001)

Intermediate value (range) (p=0.044)

Expert value (range) (p=0.182)

Sensitivity (gold standard)

0.63 (0.32-0.84)

0.88 (0.78-0.98)

0.98 (0.98-0.98)

Specificity (gold standard)

0.91 (0.88-0.96)

0.95 (0.93-0.96)

0.93 (0.92-0.94)

PPV (gold standard) 0.90 (0.89-0.92) 0.96 (0.96-0.96) 0.95 (0.95-0.96)

NPV (gold standard) 0.67 (0.51-0.81) 0.87 (0.77-0.98) 0.97 (0.96-0.98)

+LR (gold standard) 7.05 (5.75-8.10) 17.25 (15.75-18.75) 13.78 (11.81-15.75)

~ LR (gold standard) 0.40 (0.17-0.71) 0.13 (0.02-0.23) 0.02 (0.02-0.02)
Table 3. 3DUS DRF detection by novice, intermediate and expert human readers when compared to gold
standard re-reviewed radiographs.

2D Novice value (range) (p= <0.0001) Intermediate value (range) (p=0.055) Expert value (range) (p=0.181)

Sensitivity (gold standard)

0.62 (0.41-0.80)

0.88 (0.80-0.95)

0.97 (0.95-0.99)

Specificity (gold standard)

0.82 (0.69-0.90)

0.94 (0.90-0.98)

0.90 (0.90-0.90)

PPV (gold standard) 0.82 (0.74-0.91) 0.95 (0.91-0.98) 0.93 (0.93-0.93)
NPV (gold standard) 0.64 (0.54-0.77) 0.86 (0.77-0.94) 0.96 (0.94-0.98)
+LR (gold standard) 441 (2.11-7.84) 27.29 (7.84-46.74) 9.50 (9.35-9.65)
~LR (gold standard) 0.47 (0.22-0.68) 0.14 (0.05-0.22) 0.04 (0.02-0.05)

Table 4. 2DUS DRF detection by novice, intermediate and expert human readers when compared to gold

standard re-reviewed radiographs.
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Figure 2. Examples of clearly normal (a) and clearly fractured (b) distal radius and examples of a subtle, but
detectable fracture near the edge of the field of view (c) and an artifact (d). Fractures are labeled with a red
arrow and the artifact is labelled with a green arrow.

Study ID | Initial Gold standard | Gold standard re-review c t
29 Normal Fractured Very subtle and quite distal

38 Fractured | Normal Suspicion of non-displaced salter 2
130 Normal Fractured Quite distal

160 Normal Fractured Slight ripple volar only

165 Normal Fractured Slight ripple volar only

Table 5. Discrepancies between initial radiologist radiograph report and gold standard re-reviewed
radiograph diagnosis.

Reliability (kappa) 2DUS | 3DUS | Overall
All 7 readers 0.48 0.55 0.30
Novice readers 0.15 0.31 0.24
Intermediate readers | 0.72 0.69 0.70
Expert readers 0.86 0.91 0.84

Table 6. Inter-rater variability using Cohen’s and Fleiss’ Kappa for 2DUS, 3DUS and 2D/3DUS combined.
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d

Figure 3. AP (a) and lateral (b) radiographs of a false negative US case, found to be a near anatomical, non-
displaced Salter Harris 2 fracture, compared to radial (c) and volar (d) views of the corresponding area on 2D
US. In hindsight there is a disruption in the physis cortex visible on 2DUS, though this was not appreciated at
the time of the blinded expert read. This highlights the difficulty identifying a fracture when it is non-displaced
and involves an open physis, which is already a discontinuity in cortex.

Patient level fracture detection. Once it was determined that the models could classify single images as positive
or negative for DRF, we evaluated their performance on the patient level, where the classification of all images
belonging to the same patient were used to come to a conclusion about the patient’s diagnosis of either having a
DRE or not. For this process 2D and 3D images were kept separate and treated as a separate study.

For 3DUS, patients were classified as having a DRF if there were 15 or more consecutive single image positive
predictions by the model. For 2DUS patients were classified as having a DRF if there were 11 or more consecutive
single image positive predictions. The thresholds for consecutive positive predictions were determined based
on the validation set ground truth label distribution. For each patient, we counted the number of images with
fracture for each video and found the smallest number among those videos. We set 0.5 (the smallest number) as
the threshold to determine if there was a positive prediction on video level. Any individual with at least 1 positive
video prediction was considered a patient with positive prediction. Densenet121 was the most sensitive network
for detecting DRF in both 2DUS and 3DUS (Table 7).

Discussion

The data from this study suggests that US is already an accurate and reliable tool for DRF diagnosis in the
hands of experienced readers and that it is feasible to perform US on children presenting to the ED with wrist
injuries as early as at triage. The data also agrees with our hypothesis that 2DUS and 3DUS image quality were
comparable and they can both be used by expert human readers to detect DRF with sensitivity and specificity as
high as 97% and 98% respectively. The AI networks used in this study also demonstrate that AI can interpret US
images with accuracy similar to human experts, producing sensitivities of 91% and 100% for 2DUS and 3DUS
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Densenet121 with Human Expert with Densenet121 with
ResNet34 with 2DUS | 2DUS 2DUS ResNet34 with 3DUS | 3DUS
Accuracy 0.89 0.94 1.00 0.94
SN 0.82 0.91 0.89 1.00 1.00
SP 1.00 1.00 0.85 1.00 0.86
PPV 1.00 1.00 0.90 1.00 0.92
NPV 0.78 0.88 0.83 1.00 1.00
LR+ Infinite Infinite 5.82 Infinite 7.00
LR- 0.18 0.09 0.14 0.00 0.00

Table 7. ResNet34 and DenseNet121 model performance on patients as a whole using 2DUS and 3DUS
images.

respectively. While interpretation of US images by novice and intermediate readers showed overall moderate
agreement with expert interpretation, the interobserver variability within these two groups puts the reliability
of an inexperienced user’s diagnosis into question. The variability between readers further highlights the utility
that our AI model could have in increasing the accuracy and reproducibility of DRF US diagnosis in the hands
of inexperienced users.

Since 2DUS has been found to be comparable to 3DUS in fracture detection by human readers, the issues
of cost and portability that would likely impede clinical use of US for DRF diagnosis have been diminished
significantly. To further improve the clinical utility of using US for DRF detection, next steps could include app
development for automated Al interpretation of 2D images on smartphones and tablets for use with low cost,
portable transducers. However, more work needs to be done in order to create an Al network that is capable
of detecting DRF with 100% SN using 2DUS, as we have done with 3DUS in this study. The use of app-based
AT US interpretation would decrease the need for extensive in-person training US which is one of the most
important limiting factors for the use of POCUS of any kind?. Increased accessibility coupled with automatic,
real-time Al interpretation of US images has the potential to make US for DRF detection a valuable and readily
available decision-making tool for clinicians, and even for first responders or healthcare professionals in remote
areas. Importantly, if used at triage as was done in this study, Al assisted US for DRF could identify wrists that
are normal with high confidence and prevent children without fractures from having to wait in the ED at all.
Decreasing the number of children without DRF requiring radiographs or physician assessment could improve
timely access to treatment for the children who do have DRF. In a recent study by Korup et al. it was estimated
that children aged 0-17 years suffer DRF at a rate of approximately 738.1 per100,000 every year, which means
using US for DRF diagnosis has the potential to decrease ED wait times for approximately 630,000 children every
year in North America alone?”~*. Decreasing the number of children sitting unnecessarily in ED waiting rooms
would also help to address problems with over-crowding and would allow for improved physical distancing and
isolation of sick patients also awaiting treatment.

There were limitations to our study. Although we compiled data from 122 children, this was still a single-
institution trial and results should be confirmed in a future multicenter study. Statistical power could be increased
by recruiting more readers of novice, intermediate and expert skill level. Recruiting readers was difficult because
assessment of images was time-consuming and secure transfer of large data sets was cumbersome. In addition,
radiographs were used as our gold standard and they are only 95% sensitive in detecting radius fractures when
compared to CT?!. We were unable to use more sensitive modalities like MRI and CT for logistical and ethical
reasons. We also found that, while expert US readers had 100% sensitivity in detecting all metaphyseal fractures
(displaced and non-displaced), they can miss non-displaced physis fractures. Since there was only one non-
displaced physis fracture included in our study, further investigation is required to determine the true detection
rate of these more subtle fractures. Lastly, as with most AI networks, ours are not fully explainable. However,
our model does not just generate a binary classification of ’fractured’ vs ‘normal; it also provides a segmentation
mask, i.e., a color-coded model showing the user the labelled bones and directly highlighting any fractures. This
model output improves the explainability of the AI and could help increase uptake and trust among clinicians
compared to a pure classification network.

The presence of 38 forearm fractures not involving the distal radius in our patient group suggests that screen-
ing the entire forearm in children presenting with upper extremity trauma should be investigated in future studies
to reduce false negatives due to non-imaged pathology. Now that we have created a model that can accurately
detect DRE, with adjustments to the ultrasound scan protocol and investigation into the sensitivity of US for
detecting other upper extremity fractures, the AI tool could be extended to detect DRF in adults, radial diaphy-
seal fractures, ulnar fractures and potentially even scaphoid fractures. An additional area of future exploration
would be to determine whether or not Al vs novice, intermediate or expert users can accurately classify a DRF
as displaced or angulated. Information about displacement and angulation could further increase clinical util-
ity of US diagnosis as these are valuable parameters in determining if reduction will be required for treatment.

Conclusions

We found that both 3DUS and portable 2DUS are reliable tools for diagnosing pediatric DRF when compared
to radiographs. Accuracy and reproducibility of US diagnosis increases with reader experience with experts
achieving sensitivities as high as 98%. AI diagnosis with our model is comparable to that of expert human
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readers. Real-time app-based automated Al diagnosis of 2DUS images has the potential to increase accessibility
and reliability of US for DRF diagnosis in the hands of inexperienced users and could help to decrease ED wait
times if used upon triage.

Data availability
The data presented in this study are available upon request from the corresponding author. The data are not
publicly available due to patient privacy requirements of clinical data.
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