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2D/3D ultrasound diagnosis 
of pediatric distal radius fractures 
by human readers vs artificial 
intelligence
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Wrist trauma is common in children and generally requires radiography for exclusion of fractures, 
subjecting children to radiation and long wait times in the emergency department. Ultrasound (US) 
has potential to be a safer, faster diagnostic tool. This study aimed to determine how reliably US could 
detect distal radius fractures in children, to contrast the accuracy of 2DUS to 3DUS, and to assess the 
utility of artificial intelligence for image interpretation. 127 children were scanned with 2DUS and 
3DUS on the affected wrist. US scans were then read by 7 blinded human readers and an AI model. 
With radiographs used as the gold standard, expert human readers obtained a mean sensitivity of 
0.97 and 0.98 for 2DUS and 3DUS respectively. The AI model sensitivity was 0.91 and 1.00 for 2DUS 
and 3DUS respectively. Study data suggests that 2DUS is comparable to 3DUS and AI diagnosis is 
comparable to human experts.

Distal radius fractures (DRF) are typically characterized as a low-energy fractures, usually due to a fall onto an 
outstretched hand (FOOSH), that occur approximately 2 cm proximal to the articular surface of the  radius1. 
This area is particularly high risk for fractures as it is the point at which cortical bone becomes thinner and is 
reinforced by trabecular  bone1. The high incidence of DRF in children can be explained by the increase in corti-
cal porosity that results from increased bone turnover during periods of maximal longitudinal bone  growth1. 
In children, males have a higher risk of DRF than  females2. Currently, radiographs are the standard of care for 
diagnosis and characterization of DRF in children. Radiography of the wrist is a sensitive and clinically useful test, 
but it does subject children to about 1uSv of radiation per  study3. Although 1uSv is a very small dose of radiation 
in comparison to average annual environmental radiation exposure (443uSv in Canada), children have a 10–15% 
relative risk increase of radiation induced carcinogenesis because of their increased growth rate and ongoing cel-
lular differentiation, so care should be taken to avoid radiation exposure when  possible4,5. Importantly, in an era 
of overcrowded hospitals, radiography also increases wait times in the ED. Although there is significant variety 
in the workflow of EDs, obtaining radiographs often requires patients and their families to move from the ED 
to the diagnostic imaging department. Typically, the patient must then wait for an available medical radiation 
technologist and await interpretation of the images before they either receive treatment for a fracture or are sent 
home without treatment in the absence of pathology. Fractures are usually present in only half of all children 
sent for radiographs with suspected DRF, meaning that half of these children could be subjected to radiation 
and long wait times even when no intervention is  required6.

The use of point-of-care ultrasound (POCUS) in the ED is becoming more widespread, notably in the evalu-
ation of patients presenting with musculoskeletal  pain7. POCUS allows physicians to rapidly evaluate the symp-
tomatic limb at the bedside and is quite sensitive in detecting cortical disruption, periosteal fluid, and joint effu-
sions, all of which raise suspicion of  fracture7,8. It has also recently been shown that physicians can detect DRF 
with as little as 1–2 h of hands on  training9. As an added benefit, POCUS also allows the physician to perform 
dynamic assessment of muscles, tendons, and ligaments simultaneously and can easily compare the anatomy 
in question to the asymptomatic contralateral  side7. US provides multiple advantages when compared to other 
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imaging modalities which include, absence of radiation, improved patient safety, real-time image acquisition, 
and relatively low cost of  imaging7. In a recent pilot study of 30 children, Zhang et al. found that 3DUS was 
capable of diagnosing DRF with nearly 100% sensitivity when read by a radiologist, a radiology fellow, and a 
medical  student8. The findings of this pilot study are promising, however, the ultrasound (US) machines used in 
their study were bulky, costly and are not in wide general use which limits the clinical utility of 3DUS for DRF 
detection. Recently, high quality, lightweight and relatively inexpensive 2D transducers have been developed that 
can be used with a tablet or smartphone. These transducers have the potential to increase the utility of POCUS 
because they increase and are compatible with devices that most people already  own10. They also increase acces-
sibility to US due to their reduced  cost11.

Even the most portable and affordable US transducer still has one key limitation, however: dedicated train-
ing with repeated exposure to both normal and abnormal anatomy is required for a user to be able to reliably 
and accurately acquire and interpret US images. A potential solution to this is automatic interpretation of US 
images with artificial intelligence (AI) which could decrease both intra-observer diagnostic variability and the 
training required to perform US studies for wrist injuries. Training requirements would decrease because users 
would only need to learn how to hold the probe and move it over the area of pain and there would be no need for 
training on identification of anatomy or image interpretation. The decreased need for training could increase the 
number of users capable of performing US scans for DRF which, coupled with the increased portability of new 
2D transducers, could create new point-of-care opportunities. In the future, with a robust expanded, AI assisted 
protocol, it could be possible for screening for DRF or associated fractures at to be done at triage, in ambulances, 
or even by remote first-responders such as ski-patrol. Recent improvements in data availability and computing 
power have allowed deep learning models to become more widely applied in computer vision tasks, including 
classification, object detection, segmentation, and image synthesis. Convolutional neural networks (CNN) are a 
class of deep learning models that are particularly useful for imaging processing  tasks12. In a CNN, input images 
are passed through several hidden layers which extract feature maps, which are then passed through output layers 
to generate final  predictions12. The hidden layers involve kernels which are convolved with inputs and allow the 
model to extract image features at a pixel  level12. Previous studies have demonstrated that CNN models have great 
potential in the field of automatic disease diagnosis and differentiation in multiple areas of medical  imaging13–15. 
 ResNet3416,17 and  DenseNet12118 are specific types of CNN models that have unique residual blocks that reduce 
information loss. These models have proven to be successful in disease diagnosis related tasks such as colorectal 
cancer  detection19, skin lesion  analysis20, and pneumonia  detection21.

Overall, we had three aims in this study: (1) to confirm the feasibility, accuracy, and reliability of US in detect-
ing DRF in a diverse group of children, (2) to determine the human reader accuracy achievable with images from 
portable 2D transducers vs. traditional costly hardware with 3D transducers, and (3) to determine the feasibility 
of using artificial intelligence to recognize both normal wrist anatomy and fractures for the user.

Materials and methods
Study design. This was a prospective diagnostic study performed at the Stollery Children’s Hospital in 
Edmonton, Alberta. The study was approved by University of Alberta Health Research Ethics Board—Bio-
medical Panel (Pro00077093) and all methods were performed in accordance with the relevant guidelines and 
regulations.

Study protocol. Children aged 0–17  years presenting to the Stollery Children’s Hospital ED with wrist 
trauma were identified at triage. Inclusion criteria were tenderness over the wrist or distal radius following 
trauma such as a FOOSH injury. Exclusion criteria were open fractures, lacerations in the scan area, existing 
cast over the scan area and the child’s inability to tolerate the exam for any reason. Written informed consent 
was obtained from each child’s legal guardian. Both 2D and 3D US scans were then performed in the ED wait-
ing room immediately following triage and before the child was seen by a physician. The child was then seen 
separately by a blinded emergency physician for routine clinical assessment and management, of which usually 
included radiographs of the symptomatic wrist. All radiographs were obtained from the picture archiving and 
communication system (PACS) at which point children who did not receive radiographs were also excluded 
from the study.

2DUS and 3DUS images were randomized, anonymized and distributed to blinded volunteer readers which 
included 3 novice, 2 intermediate, and 2 expert readers. The corresponding radiographs were also randomized 
and anonymized, then centrally re-reviewed by a pediatric MSK radiologist who had been blinded to any clinical 
or US data associated with each patient. The radiographs were then compared to original reports done by the 
radiologist in the ED at the time of presentation and used as the gold standard for determining accuracy of 2D 
and 3D US interpretation provided by readers of novice, intermediate, and expert skill levels.

To compare accuracy of DRF diagnosis via 2DUS vs 3DUS the readers assessed each wrist data set as a 
whole (5 sweeps per exam), provided their diagnosis as either fractured or normal, and rated their confidence 
in diagnosis from -3 to + 3 (-3 = very confident no fracture; 1 = unsure but favor fracture; 3 = very confident there 
is a fracture).

Training. The operators who collected the 2DUS and 3DUS scans, selected to provide a diverse range of 
expertise, included a medical student with 10 years of experience as a sonographer, but no prior experience 
in using US to screen for fractures, and an undergraduate student with no previous experience with US. Both 
students received a 1-h hands-on training session from a pediatric MSK radiologist and a pediatric emergency 
physician. Training consisted of a discussion of normal anatomy, the expected appearance of DRF, direction on 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14535  | https://doi.org/10.1038/s41598-023-41807-w

www.nature.com/scientificreports/

how to operate both of the US machines and supervised practice performing a mock scan that followed this 
study’s protocol.

Novice readers were graduate students with no medical education or experience in reading or collecting US 
images. Intermediate readers consisted of 1 family medicine/emergency medicine physician with limited POCUS 
experience and the undergraduate student who helped to acquire US images for this study in the ED. The expert 
readers were a pediatric radiology fellow and a dual fellowship trained pediatric musculoskeletal staff radiologist 
with 15 years imaging experience. Novice and intermediate readers received 30 min of training which consisted 
of a discussion of normal anatomy of the wrist, a discussion on what constitutes an angulated and/or displaced 
fracture, 3 examples of a normal study and 3 examples of a DRF. The expert readers did not receive any training.

Imaging technique. Ultrasound. During each US examination, the child was seated, and the affected 
wrist was placed in front of them on a table in a neutral position. 3DUS images of the symptomatic wrist were 
then acquired with a Philips IU22 machine using a 13 MHz VL13-5 probe (Philips, Amsterdam, NL). Next, 
2DUS images of the same wrist were acquired with a Philips Lumify L5-12 MHz probe (Philips, Amsterdam, 
NL) and a tablet computer using Android OS (Alphabet Inc, Mountain View, CA).

Images acquired with each machine included (1) the dorsal aspect of the distal radius with metaphysis, epi-
physis, and first row of carpal bones visible, (2) a more proximal portion of the dorsal aspect of the distal radius 
with metaphysis and epiphysis visible, (3) the radial aspect of the distal radius with metaphysis, epiphysis, and 
first row of carpal bones visible, (4) the volar aspect of the distal radius with metaphysis, epiphysis, and first row 
of carpal bones visible and (5) a more proximal portion of the volar aspect of the distal radius with metaphysis 
and epiphysis visible (Fig. 1). Upon completion of this imaging protocol we were left with 5 3DUS sweeps and 
5 2DUS sweeps for a total of 10 US sweeps for each symptomatic wrist.

Radiographs. Each child included in this study also had radiographs of the symptomatic wrist and/or forearm 
obtained as part of routine clinical care at the same ER visit. We recorded the diagnosis (DRF vs no DRF) for 
these images based on the initial radiologist report at the time of presentation, then compared the initial diagno-
ses to those produced by a blinded re-read of all radiographs done by our expert pediatric MSK radiologist. We 
also reviewed patient charts for a 30-day period following the ER visit to determine whether any had an initially 
occult fracture that was detected on follow-up imaging. Diagnosis from our blinded re-review of radiographs 
was then treated as the gold-standard for this study as it limited intra-observer variability and was blinded to 
clinical data unlike the initial radiologist reports.

Artificial intelligence. Image labeling. An experienced sonographer manually labeled each US image that 
was contained within the US sweeps (Fig. 1). Labeling was done using ITK-Snap (version 3.8.0) and included 
radial metaphysis (red), radial epiphysis (green), carpal bones (blue) and fractures (yellow). Images with a yel-
low label were categorized as positive for fracture, and those without a yellow label were categorized as negative. 
Individual fracture labels were compared with gold standard radiographs. Only individuals with the same label 
generated by manual segmentation and radiographs were used for AI model training and evaluation.

AI training. Each image was cropped to contain only the US data. Only images that contained the radial meta-
physis were used for model training, validation and testing. The dataset was split randomly into training, valida-
tion and tests set based on anonymized study ID. As most study IDs had 2D and 3D data, each patient’s train/
validation/test set was kept consistent between 2 and 3D datasets to avoid data leakage (Table 1).

Before being fed into the model, images were first processed by zero-padding to squares and then resized 
to 364*364 and normalized. Stochastic gradient descent (SGD) was used as the optimizer, with a learning rate 
of 0.002 and momentum of 0.9 for all of the models. Cross-entropy loss was used as the loss function. We did 
experiments on: hyperparameter tuning on optimizer weight decay, data augmentation with random horizontal 
flip, training set data distribution rebalance using Imbalanced Data Sampler. ResNet34 and DenseNet121 were 
trained with default model architecture for fracture detection based on single US images. The final fully con-
nected layer output was set to be 2 for binary classification. Softmax was used to scale the prediction between 0 
and 1. All the models were trained for 100 epochs with 16 as batch size. Models were trained on Compute Canada 
using a V100 GPU. Training details of each model with the highest validation AUROC can be found in Table 2.

Statistical analysis. Sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive 
value (NPV), positive likelihood ratio (LR +) and negative likelihood radio (LR-) were calculated for human 
readers and AI using our gold-standard radiographs for diagnosis of DRF. Accuracy and area under the receiver 
operating characteristic curve (AUROC) were also calculated for AI. The model with the highest AUROC on 
the validation set was then used on the test set. Interrater reliability was calculated via, Fleiss’ Kappa and Cohen’s 
Kappa using Microsoft  Excel22–24. Differences between human US interpretation and gold standard radiograph 
re-reviews were evaluated for statistical significance with McNemar’s test using Microsoft  Excel25.

Informed consent. Written informed consent was obtained from all subjects and legal guardians involved 
in this study.
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Results
Clinical data. This study enrolled 127 children, with 122 children receiving both US and radiographs, result-
ing in 1165 individual US sweeps of symptomatic wrists. Each sweep produced a DICOM file composed of a 
minimum of 90 individual sequential US images. Due to technical issues, time constraints or a child’s request 
to stop the examination 8 children received a 2DUS scan only and 3 children received a 3DUS scan only. The 

Figure 1.  Images with corresponding manual labels of DRF including 3D dorsal (a,b), 2D dorsal (c,d), 3D 
proximal dorsal (e,f), 2D proximal dorsal (g,h), 3D radial (i,j) 2D radial (k,l), 3D volar (m,n), 2D volar (o,p), 3D 
proximal volar (q,r) and 2D proximal volar (s,t) views. Labels include radial metaphysis (red), epiphysis (green), 
carpal bones (blue) and fracture (yellow).

Table 1.  2DUS image distribution between training, validation and tests sets.

2D training 2D validation 2D test 3D training 3D validation 3D test

Number of images (% 
fractured) 16,865 (24.81%) 4215 (20.90%) 3822 (22.42%) 15,882 (32.33%) 3787 (33.25%) 4034 (28.04%)

Number of patients (% 
fractured) 76 (56.58%) 17 (58.82%) 18 (61.11%) 71 (57.75%) 15 (66.67%) 18 (61.11%)

Number of Sweeps (% 
fractured) 370 (33.24%) 84 (27.38%) 89 (31.46%) 349 (39.54%) 75 (41.33%) 89 (39.33%)
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5 children who did not receive radiographs and therefore could not be compared to the gold standard were 
excluded from the study.

Blinded, asynchronous novice, intermediate and expert reader impressions of 2D and 3D US images showed 
improving SN with increasing experience of the reader when impressions were compared to the initial radiologist 
radiograph reports (Tables 3 and 4). Since the radiographs collected in this study were read by many different 
radiologists depending on the date and time of presentation, a blinded central re-review of all radiographs was 
done by a pediatric MSK radiologist in an effort to eliminate inter-observer variability. This interpretation was 
used as our gold standard classification. The reader impressions from 2 and 3DUS were compared to our gold 
standard radiograph interpretations and again showed improving SN with increasing experience of the reader 
(Tables 3 and 4). Discrepancies between initial radiologist report diagnosis and blinded re-review diagnosis were 
minimal, with all discrepant scans having subtle or questionable findings for which there would be expected 
disagreement between readers (Fig. 2, Table 5). Inter-rater reliability was fair to moderate overall, but very good 
between experts (Table 6).

Once the blinded multi-reader trial was complete, all gold standard radiograph findings and their correspond-
ing US images were reviewed for discrepancies. It was noted that multiple patients had upper extremity fractures 
that were seen on the radiographs but were outside the distal portion of the radius that was assessed with US. 
There were 38 patients with fractures elsewhere in their upper extremity, with 35 of these patients having ulna 
fractures and 3 patients with radial diaphysis fractures that were proximal to the scan area. There was also one 
wrist that was read by both experts as normal on ultrasound but was in fact fractured. This false negative wrist 
was a near anatomical, non-displaced Salter Harris 2 fracture and was the only fracture involving the physis 
found in our study data (Fig. 3).

Artificial intelligence data. Single image fracture detection. The first step in testing the models’ classifi-
cation capability was to test them on single images. The threshold for fracture prediction was set to 0.5, which 
meant that if the fracture prediction probability was equal to or higher than 0.5 it was classified as positive for 
DRF and was otherwise negative. The model performed well with both ResNet34 and Densenet121 achieving an 
AUROC of 0.93 and 0.91 for 2DUS and 3DUS respectively.

Table 2.  Training details of models with highest validation AUROC with 2DUS and 3DUS.

ResNet34 with 2DUS Densenet121 with 2DUS ResNet34 with 3DUS Densenet121 with 3DUS

SGD optimizer weight decay 0.001 0.001 0.005 0.001

Random horizontal flip No No Yes No

Training data rebalance with imbalanced 
data sampler Yes Yes No Yes

Table 3.  3DUS DRF detection by novice, intermediate and expert human readers when compared to gold 
standard re-reviewed radiographs.

3D Novice value (range) (p =  < 0.0001) Intermediate value (range) (p = 0.044) Expert value (range) (p = 0.182)

Sensitivity (gold standard) 0.63 (0.32–0.84) 0.88 (0.78–0.98) 0.98 (0.98–0.98)

Specificity (gold standard) 0.91 (0.88–0.96) 0.95 (0.93–0.96) 0.93 (0.92–0.94)

PPV (gold standard) 0.90 (0.89–0.92) 0.96 (0.96–0.96) 0.95 (0.95–0.96)

NPV (gold standard) 0.67 (0.51–0.81) 0.87 (0.77–0.98) 0.97 (0.96–0.98)

 + LR (gold standard) 7.05 (5.75–8.10) 17.25 (15.75–18.75) 13.78 (11.81–15.75)

 − LR (gold standard) 0.40 (0.17–0.71) 0.13 (0.02–0.23) 0.02 (0.02–0.02)

Table 4.  2DUS DRF detection by novice, intermediate and expert human readers when compared to gold 
standard re-reviewed radiographs.

2D Novice value (range) (p =  < 0.0001) Intermediate value (range) (p = 0.055) Expert value (range) (p = 0.181)

Sensitivity (gold standard) 0.62 (0.41–0.80) 0.88 (0.80–0.95) 0.97 (0.95–0.99)

Specificity (gold standard) 0.82 (0.69–0.90) 0.94 (0.90–0.98) 0.90 (0.90–0.90)

PPV (gold standard) 0.82 (0.74–0.91) 0.95 (0.91–0.98) 0.93 (0.93–0.93)

NPV (gold standard) 0.64 (0.54–0.77) 0.86 (0.77–0.94) 0.96 (0.94–0.98)

 + LR (gold standard) 4.41 (2.11–7.84) 27.29 (7.84–46.74) 9.50 (9.35–9.65)

 − LR (gold standard) 0.47 (0.22–0.68) 0.14 (0.05–0.22) 0.04 (0.02–0.05)
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Figure 2.  Examples of clearly normal (a) and clearly fractured (b) distal radius and examples of a subtle, but 
detectable fracture near the edge of the field of view (c) and an artifact (d). Fractures are labeled with a red 
arrow and the artifact is labelled with a green arrow.

Table 5.  Discrepancies between initial radiologist radiograph report and gold standard re-reviewed 
radiograph diagnosis.

Study ID Initial Gold standard Gold standard re-review comment

29 Normal Fractured Very subtle and quite distal

38 Fractured Normal Suspicion of non-displaced salter 2

130 Normal Fractured Quite distal

160 Normal Fractured Slight ripple volar only

165 Normal Fractured Slight ripple volar only

Table 6.  Inter-rater variability using Cohen’s and Fleiss’ Kappa for 2DUS, 3DUS and 2D/3DUS combined.

Reliability (kappa) 2DUS 3DUS Overall

All 7 readers 0.48 0.55 0.30

Novice readers 0.15 0.31 0.24

Intermediate readers 0.72 0.69 0.70

Expert readers 0.86 0.91 0.84
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Patient level fracture detection. Once it was determined that the models could classify single images as positive 
or negative for DRF, we evaluated their performance on the patient level, where the classification of all images 
belonging to the same patient were used to come to a conclusion about the patient’s diagnosis of either having a 
DRF or not. For this process 2D and 3D images were kept separate and treated as a separate study.

For 3DUS, patients were classified as having a DRF if there were 15 or more consecutive single image positive 
predictions by the model. For 2DUS patients were classified as having a DRF if there were 11 or more consecutive 
single image positive predictions. The thresholds for consecutive positive predictions were determined based 
on the validation set ground truth label distribution. For each patient, we counted the number of images with 
fracture for each video and found the smallest number among those videos. We set 0.5 (the smallest number) as 
the threshold to determine if there was a positive prediction on video level. Any individual with at least 1 positive 
video prediction was considered a patient with positive prediction. Densenet121 was the most sensitive network 
for detecting DRF in both 2DUS and 3DUS (Table 7).

Discussion
The data from this study suggests that US is already an accurate and reliable tool for DRF diagnosis in the 
hands of experienced readers and that it is feasible to perform US on children presenting to the ED with wrist 
injuries as early as at triage. The data also agrees with our hypothesis that 2DUS and 3DUS image quality were 
comparable and they can both be used by expert human readers to detect DRF with sensitivity and specificity as 
high as 97% and 98% respectively. The AI networks used in this study also demonstrate that AI can interpret US 
images with accuracy similar to human experts, producing sensitivities of 91% and 100% for 2DUS and 3DUS 

Figure 3.  AP (a) and lateral (b) radiographs of a false negative US case, found to be a near anatomical, non-
displaced Salter Harris 2 fracture, compared to radial (c) and volar (d) views of the corresponding area on 2D 
US. In hindsight there is a disruption in the physis cortex visible on 2DUS, though this was not appreciated at 
the time of the blinded expert read. This highlights the difficulty identifying a fracture when it is non-displaced 
and involves an open physis, which is already a discontinuity in cortex.
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respectively. While interpretation of US images by novice and intermediate readers showed overall moderate 
agreement with expert interpretation, the interobserver variability within these two groups puts the reliability 
of an inexperienced user’s diagnosis into question. The variability between readers further highlights the utility 
that our AI model could have in increasing the accuracy and reproducibility of DRF US diagnosis in the hands 
of inexperienced users.

Since 2DUS has been found to be comparable to 3DUS in fracture detection by human readers, the issues 
of cost and portability that would likely impede clinical use of US for DRF diagnosis have been diminished 
significantly. To further improve the clinical utility of using US for DRF detection, next steps could include app 
development for automated AI interpretation of 2D images on smartphones and tablets for use with low cost, 
portable transducers. However, more work needs to be done in order to create an AI network that is capable 
of detecting DRF with 100% SN using 2DUS, as we have done with 3DUS in this study. The use of app-based 
AI US interpretation would decrease the need for extensive in-person training US which is one of the most 
important limiting factors for the use of POCUS of any  kind26. Increased accessibility coupled with automatic, 
real-time AI interpretation of US images has the potential to make US for DRF detection a valuable and readily 
available decision-making tool for clinicians, and even for first responders or healthcare professionals in remote 
areas. Importantly, if used at triage as was done in this study, AI assisted US for DRF could identify wrists that 
are normal with high confidence and prevent children without fractures from having to wait in the ED at all. 
Decreasing the number of children without DRF requiring radiographs or physician assessment could improve 
timely access to treatment for the children who do have DRF. In a recent study by Korup et al. it was estimated 
that children aged 0–17 years suffer DRF at a rate of approximately 738.1 per100,000 every year, which means 
using US for DRF diagnosis has the potential to decrease ED wait times for approximately 630,000 children every 
year in North America  alone27–30. Decreasing the number of children sitting unnecessarily in ED waiting rooms 
would also help to address problems with over-crowding and would allow for improved physical distancing and 
isolation of sick patients also awaiting treatment.

There were limitations to our study. Although we compiled data from 122 children, this was still a single-
institution trial and results should be confirmed in a future multicenter study. Statistical power could be increased 
by recruiting more readers of novice, intermediate and expert skill level. Recruiting readers was difficult because 
assessment of images was time-consuming and secure transfer of large data sets was cumbersome. In addition, 
radiographs were used as our gold standard and they are only 95% sensitive in detecting radius fractures when 
compared to  CT31. We were unable to use more sensitive modalities like MRI and CT for logistical and ethical 
reasons. We also found that, while expert US readers had 100% sensitivity in detecting all metaphyseal fractures 
(displaced and non-displaced), they can miss non-displaced physis fractures. Since there was only one non-
displaced physis fracture included in our study, further investigation is required to determine the true detection 
rate of these more subtle fractures. Lastly, as with most AI networks, ours are not fully explainable. However, 
our model does not just generate a binary classification of ’fractured’ vs ‘normal’, it also provides a segmentation 
mask, i.e., a color-coded model showing the user the labelled bones and directly highlighting any fractures. This 
model output improves the explainability of the AI and could help increase uptake and trust among clinicians 
compared to a pure classification network.

The presence of 38 forearm fractures not involving the distal radius in our patient group suggests that screen-
ing the entire forearm in children presenting with upper extremity trauma should be investigated in future studies 
to reduce false negatives due to non-imaged pathology. Now that we have created a model that can accurately 
detect DRF, with adjustments to the ultrasound scan protocol and investigation into the sensitivity of US for 
detecting other upper extremity fractures, the AI tool could be extended to detect DRF in adults, radial diaphy-
seal fractures, ulnar fractures and potentially even scaphoid fractures. An additional area of future exploration 
would be to determine whether or not AI vs novice, intermediate or expert users can accurately classify a DRF 
as displaced or angulated. Information about displacement and angulation could further increase clinical util-
ity of US diagnosis as these are valuable parameters in determining if reduction will be required for treatment.

Conclusions
We found that both 3DUS and portable 2DUS are reliable tools for diagnosing pediatric DRF when compared 
to radiographs. Accuracy and reproducibility of US diagnosis increases with reader experience with experts 
achieving sensitivities as high as 98%. AI diagnosis with our model is comparable to that of expert human 

Table 7.  ResNet34 and DenseNet121 model performance on patients as a whole using 2DUS and 3DUS 
images.

ResNet34 with 2DUS
Densenet121 with 
2DUS

Human Expert with 
2DUS ResNet34 with 3DUS

Densenet121 with 
3DUS

Accuracy 0.89 0.94 1.00 0.94

SN 0.82 0.91 0.89 1.00 1.00

SP 1.00 1.00 0.85 1.00 0.86

PPV 1.00 1.00 0.90 1.00 0.92

NPV 0.78 0.88 0.83 1.00 1.00

LR + Infinite Infinite 5.82 Infinite 7.00

LR − 0.18 0.09 0.14 0.00 0.00
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readers. Real-time app-based automated AI diagnosis of 2DUS images has the potential to increase accessibility 
and reliability of US for DRF diagnosis in the hands of inexperienced users and could help to decrease ED wait 
times if used upon triage.

Data availability
The data presented in this study are available upon request from the corresponding author. The data are not 
publicly available due to patient privacy requirements of clinical data.
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