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Integrating glycolysis, citric acid 
cycle, pentose phosphate pathway, 
and fatty acid beta‑oxidation 
into a single computational model
Sylwester M. Kloska 1*, Krzysztof Pałczyński 2, Tomasz Marciniak 2, Tomasz Talaśka 2, 
Beata J. Wysocki 3, Paul Davis 3 & Tadeusz A. Wysocki 2,4

The metabolic network of a living cell is highly intricate and involves complex interactions between 
various pathways. In this study, we propose a computational model that integrates glycolysis, the 
pentose phosphate pathway (PPP), the fatty acids beta-oxidation, and the tricarboxylic acid cycle 
(TCA cycle) using queueing theory. The model utilizes literature data on metabolite concentrations 
and enzyme kinetic constants to calculate the probabilities of individual reactions occurring on a 
microscopic scale, which can be viewed as the reaction rates on a macroscopic scale. However, it 
should be noted that the model has some limitations, including not accounting for all the reactions 
in which the metabolites are involved. Therefore, a genetic algorithm (GA) was used to estimate the 
impact of these external processes. Despite these limitations, our model achieved high accuracy 
and stability, providing real-time observation of changes in metabolite concentrations. This type 
of model can help in better understanding the mechanisms of biochemical reactions in cells, which 
can ultimately contribute to the prevention and treatment of aging, cancer, metabolic diseases, and 
neurodegenerative disorders.

Cellular metabolism modeling is an important but difficult task1,2. The difficulty arises from the fact that com-
pounds, which act as substrates and products in the cell’s metabolic reactions, are like a system of interconnected 
vessels. Any change in the concentration of a compound in a cell indirectly affects other, seemingly unrelated 
compounds, and thus the reactions in which they participate. Many external as well as internal factors affect 
the course of reactions taking place in the cell, possibly accelerating, inhibiting, or blocking them. Due to 
the complexity of metabolism during computational modeling, it is necessary to adopt certain start and end 
points. Therefore, the best target for modeling seems to be those thoroughly studied metabolic pathways that are 
described in the scientific literature3. Nevertheless, it is necessary to determine certain simplifications that make 
such modeling possible. These simplifications may include the flow of metabolites between the cytoplasm and 
mitochondrion depending on the cell’s momentary demand, or the flow between different metabolic reactions, 
since the vast majority of metabolites are used in several different metabolic pathways.

Metabolic models can serve scientists in better planning of experiments. They allow predicting the effects of 
specific conditions on cell metabolism. Thanks to the ongoing development of metabolomics and computational 
biology, modeling can speed up the processes of diagnosing metabolic diseases and contribute to development 
of effective treatment methods4. In addition, suitably adapted models can map what happens in a cell under 
inhibition induced by a specific molecule or gene knockdown. It has long been known that cancer cells repro-
gram their metabolism and alter activity in pathways that are major sources of energy5. However, issues related 
to metabolism and cancer are still in the orbit of researchers’ interest6,7. In cancer, it has been found that many 
cancer cells have altered metabolism, often characterized by an increased reliance on glucose and a decreased 
reliance on oxygen for energy production. This metabolic reprogramming allows cancer cells to proliferate 
and survive in a hostile environment. Targeting the metabolic pathways of cancer cells is becoming a promis-
ing new avenue for cancer therapy. Recent research has shown that metabolism plays a key role in many fields 
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that were previously not considered to be related to metabolism, such as aging8, and neurodegeneration9,10. In 
aging and neurodegeneration, it is becoming increasingly clear that metabolic dysfunction plays a key role in 
the development of these conditions. For example, research has shown that aging is associated with a decline 
in the function of the mitochondria, the cell’s power plants, which can lead to metabolic dysfunction. Similarly, 
many neurodegenerative diseases, such as Alzheimer’s disease, are associated with metabolic dysfunction in 
the brain. Targeting these metabolic pathways may be a promising new approach for treating these conditions. 
Overall, the emerging role of metabolism in these fields highlights the importance of understanding the com-
plex interactions between metabolism and disease. Therefore, metabolic modeling and analysis can be used in 
cancer therapy, as it will contribute to testing the effects of specific molecules as early as at the planning stage of 
experiments. Another of the advantages of using metabolic models is that they reduce the number of laboratory 
animals used in research. Many times this type of research can lead to long-term damage to the health of these 
animals or even their death11–13.

The modeling method used in this work is based on queueing theory. Queueing theory is mainly used in 
issues related to engineering and telecommunications. However, there is evidence that it can be successfully 
used to model stochastic biological processes. Examples of applications of queueing theory to model biological 
processes include studies of signal transduction cascade in the cell14, insulin-related disorders and diseases15, 
glycolysis model16, tricarboxylic acid cycle (TCA cycle) model17, and the pentose phosphate pathway model18. The 
departure from deterministic models and the incorporation of fluctuations in metabolic simulations represent 
a significant advancement in our understanding of biological systems. Traditionally, deterministic models have 
been extensively used to study metabolic processes, assuming precise and predictable behavior. However, it is 
increasingly recognized that biological systems exhibit inherent stochasticity, where random fluctuations play a 
fundamental role in shaping cellular behavior. By implementing a flavor of the Kinetic Monte Carlo method19, 
similar to the Gillespie algorithm20, in our simulations, we have taken a crucial step towards capturing the 
effects of these fluctuations. Incorporating fluctuations in metabolic simulations is of utmost importance as it 
allows us to bridge the gap between the deterministic models and the real-world dynamics of biological systems. 
Fluctuations arise from various sources such as the discreteness of molecular species, spatial heterogeneity, and 
the inherent randomness of molecular interactions. Ignoring these fluctuations can lead to an incomplete and 
biased understanding of cellular processes.

By considering the inherent stochasticity in our model, we gain valuable insights into the behavior of meta-
bolic networks that deterministic models fail to capture. Fluctuations have been shown to influence key aspects 
of cellular metabolism, including reaction rates, pathway efficiency, and robustness21–23. They can drive cellular 
decision-making, affect cellular responses to perturbations, and contribute to the emergence of complex phe-
nomena at the system level.

Incorporating fluctuations in metabolic simulations also provides a more accurate representation of biological 
reality. By acknowledging the stochastic nature of cellular processes, we can better understand and reproduce 
experimental observations. Fluctuations play a role in generating the observed biological variability, and their 
inclusion in simulations allows us to better match experimental data and validate the model’s predictions. Moreo-
ver, by simulating fluctuations, we can explore the effects of different sources of variability, such as noise in gene 
expression or environmental fluctuations, on metabolic behavior. This information is crucial for understanding 
how cells respond and adapt to changing conditions and for unraveling the underlying principles governing 
cellular decision-making24.

It is important to note that incorporating fluctuations in metabolic simulations is not without challenges. 
Stochastic simulations can be computationally demanding, requiring specialized algorithms and efficient simula-
tion techniques. However, advancements in computational power and the development of efficient algorithms, 
such as the Kinetic Monte Carlo method19, have made it increasingly feasible to simulate stochastic models at 
reasonable timescales. The departure from deterministic models and the incorporation of fluctuations in meta-
bolic simulations represent a significant advancement in computational biology. By embracing the inherent 
stochasticity of biological systems, we gain deeper insights into the dynamics and behavior of metabolic networks, 
which would otherwise be overlooked by deterministic models16. Incorporating fluctuations allows us to better 
match experimental observations, understand biological variability, and explore the impact of stochasticity on 
cellular processes. These advancements pave the way for more accurate and comprehensive models of cellular 
metabolism and contribute to our overall understanding of complex biological systems.

The purpose of the present study was to develop an integrated computational model of the cell’s energy 
metabolism. This model consists of reactions included in important metabolic pathways and cycles, i.e. glycolysis, 
the pentose-phosphate pathway (PPP), the TCA cycle, and beta-oxidation. These are the pathways that play an 
important role in energy metabolism of the cell. Glycolysis is a simple metabolic pathway that regulates meta-
bolic functions of various cells25, PPP is a pathway parallel to glycolysis, in which NADPH and 5-carbon sugars 
are generated26. Beta-oxidation is a series of reactions that break down long carbon chain fatty acids in order to 
generate acetyl-CoA and co-enzymes used in the electron transport chain, such as FADH2 and NADH27. TCA 
cycle is an important metabolic pathway which uses acetyl-CoA produced in catabolic reactions of carbohydrate, 
fat, and protein metabolism, to generate energy28. TCA cycle is a source of various important biochemical com-
pounds used in many other metabolic reactions in the cell. The presented model enables tracking of changes in 
the concentrations of individual metabolites of the aforementioned pathways. The innovation of this study is 
that the model has been based on queueing theory, compared to ODE-based models, which are commonly used 
for this kind of research. Another innovation is its nature that integrates pathways related to the formation and 
utilization of acetyl-CoA. In addition, it was showed that artificial intelligence algorithms can be successfully 
used to tune coefficients of the enzyme equations.
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Results
The TCA metabolites’ concentration values reported in the literature were either single-number measurements 
or ranges (Table 1). As a result, it was necessary to select not only the mean and standard deviation of the distri-
bution but also the measurement values from ranges that maximize maximum log-likelihood estimation. This 
optimization problem was solved using GA.

The last column in the table presents the Z-score of modeled substrates’ concentration values regarding the 
estimated mean and standard deviation of the corresponding Gaussian distribution. All values of substrates, 
except for α-ketoglutarate, have a Z-score between – 2 and 2. As a result, they are within two sigma distance 
from the estimated mean. Despite not being within the range of two sigmas for α-ketoglutarate, our data still 
falls within the range of three sigmas.

During the experiment, glucose consumption in the cell was simulated. At the start of the model, the glucose 
concentration was fixed at 5 mM. This is a value in the range of normal blood glucose concentration39. In the 
initial phase of the simulation, the course of glycolysis, PPP, and TCA cycle reactions were modeled. The product 
of glycolysis, pyruvate, underwent reactions that converted pyruvate to oxaloacetate or acetyl-CoA, which are 
metabolites of the TCA cycle. Over the course of the simulation, the glucose concentration decreased. As the 
glucose concentration decreased, the reactions of the glycolysis pathway were extinguished. This was due to a 
decrease in the probability of occurrence of glycolysis reactions and, consequently, a decrease in the speed of 
these reactions. As a consequence of the decrease in glycolysis activity, the probability of occurrence of reactions 
entering the fatty acid beta-oxidation pathway increased, which, after glucose utilization, became the main source 
of acetyl-CoA used in the TCA cycle. The use of GA allowed combining the reaction of enzymatic kinetics of 
several energetically important biochemical pathways. Due to the large differences in numerical values between 
consecutive reactions, as well as influence of the reactions not included in the model on reaction rates, it was 
necessary to tune the model. GA proved to be an effective tool in this process.

Table 1.   Statistical analysis of concentration values from literature. SD standard deviation.

Metabolite
Reported concentration
[mmol/L] Estimated mean Estimated SD

Model conc. 
during
glycolysis Z-score

Acetyl-CoA

0.028829

0.3022 0.2561 0.071 – 0.9028
0.6130

0.072

0.531

Oxaloacetate

0.0020129

0.0036 0.0010 0.005 1.40.002–0.00632

0.0052

Citrate

0.58429

0.6576 0.7103 0.184 – 0.8581

230

0.11433

0.42

0.1934

Isocitrate cis-aconitate

0.032129

0.02604 0.0060 0.017 – 1.50670.002–0.00635

0.0231

α-ketoglutarate

0.79729

0.5067 0.1973 0.031 – 2.411

0.4430

0.252

0.5436

0.004–0.01337

Succinyl-CoA succinate

0.2330

0.2989 0.2710 0.720 1.5538
0.006829

0.6636

0.36–0.9138

Fumarate

0.48529

0.6672 0.7496 0.488 – 0.2391
0.1230

0.12429

1.9436

Malate

1.730

1.1137 0.4642 0.495 – 1.3328
1.3929

0.49536

0.8734
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In order to check the validity of the results generated by the computational model, they were compared to 
concentration values measured under experimental conditions. For this purpose, the metabolites concentration 
values presented in scientific publications (Table 2) on the TCA cycle were used. The TCA cycle was chosen 
as a reference point due to the fact that it is a well-studied metabolic cycle and represents the final stage of the 
presented model. Table 2 presents the averaged results for 50 calculated cycles, mimicking 50 liver cells. The 
simulations covered a time interval of almost three hours (10,000 seconds). Each second, 5 measurements were 
taken, and their results were averaged and recorded. Changes in metabolite concentrations during the course 
of the simulations are presented in Fig. 1. The course of changes in the concentration of individual metabolites 
over time is stable. Compounds whose concentrations change the most over the course of the computational 
simulation, such as glucose and pyruvate, were expected to behave this way, since the model does not take into 
account glucose external replenishment over the course of the simulation.

The results presented in Table 2 indicate the high accuracy of the computed results with respect to the con-
centration values measured under laboratory conditions. The “SD over mean” column shown in Table 2 refers 
to the 90th percentile SD instead of the maximum SD due to the occurrence of outliers in the time series (e.g. 
sudden changes). In the case of oxaloacetate, the ”SD over mean” value is relatively high, due to the change in 
the inflow of this compound in the TCA cycle. Oxaloacetate in the initial phase of the simulation is supplied 
from two sources: (1) it is formed from pyruvate obtained in the glycolysis pathway and (2) it is formed from 
the acetyl-CoA conversion reaction. In the case of a longer simulation, as in the presented example, the first 
source related to glycolysis is extinguished, as the glucose concentration decreases, which is not kept constant 
in the presented model. In this model, the concentration of oxaloacetate in the long-term simulation is kept 
constant only by acetyl-CoA obtained by beta-oxidation of fatty acids. For the other TCA metabolites, the ”SD 
over mean” value is relatively low, relative to the value of the calculated concentration of these metabolites at 
specific time points. On this basis, it can be concluded that the model is stable, and the calculated concentration 
is not subject to sudden, high changes.

The observed discrepancies in the metabolite ranges compared to laboratory data are a significant aspect 
to address in our research. In order to develop our model, we relied on data obtained from diverse literature 
sources. It is important to acknowledge that the measurements reported in the literature exhibit considerable 
variability across different studies and sources. This variability arises from factors such as variations in labora-
tory setups, measurement techniques, experimental conditions, and potential inter-individual differences. It 
is crucial to recognize that the data we employed from the literature may not necessarily represent dynamic 
or steady-state biological measurements. Rather, these measurements often represent snapshots of metabolite 
concentrations taken under specific experimental conditions that may not precisely align with the steady-state 
conditions assumed in our model. Consequently, inherent discrepancies can arise between the measured values 
and the simulated results due to these variations in experimental setups. These factors highlight the need to 
carefully consider and address the limitations and sources of variability when interpreting and comparing our 
model outputs with laboratory data.

The results of the sensitivity analysis are presented in Table 3. The impact of the variance of acetyl-CoA and 
α-ketoglutarate starting concentrations on substrates values at the end of each simulation was measured. It was 
decided to use these two metabolites as examples due to the fact that there are many various data on concentra-
tions of these metabolites. In order to present sensitivity scores from dozens of different substrates obtained for 
various starting values of substances above, aggregation was used. Sensitivity scores from different substrates 
were concatenated into distributions and described by the distribution’s minimum, 5th percentile, median, 95th 
percentile, and maximum.

The change in activity of individual pathways, clearly depends on changes in glucose concentration. During 
the simulation run, the model strives to achieve the concentration values presented in the literature, while taking 
care to maintain the stability of the obtained results. We realize that the concentration of glucose in the cell under 
real conditions is maintained at a relatively constant level, such as through glycogenolysis or gluconeogenesis. 
However, due to the complexity and number of connections between biologically active molecules, the presented 
model does not take into account the maintenance of glucose at a constant level. By designing the model in 

Table 2.   Comparison of concentration data between literature and model (mmol/L) at different time points 
of the simulation. Comparison of concentration data between literature and model (mmol/L) at different 
time points of the simulation (20th second during glycolysis and 9000th second during beta-oxidation). SD 
standard deviation.

Metabolite
Conc. (literature)
[mmol/L]

Model conc.
at starting point

Model conc. 
during
glycolysis

Model conc. 
during
β-oxidation

Model conc. 
at the end
of simulation SD over mean

Acetyl-CoA 0.072 0.070 0.071 0.060 0.060 0.002

Oxaloacetate 0.002–0.00632 0.006 0.005 0.001 0.001 0.126

Citrate 0.11433 0.190 0.184 0.115 0.110 0.031

Isocitrate cis-aconitate 0.002–0.00635 0.020 0.017 0.010 0.009 0.091

α-ketoglutarate 0.004–0.01337 0.030 0.031 0.023 0.022 0.085

Succinyl-CoA succinate 0.36–0.9138 0.730 0.720 0.691 0.690 0.011

Fumarate 0.48529 0.485 0.488 0.490 0.490 0.012

Malate 0.49536 0.495 0.495 0.489 0.488 0.010
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this way, a change in the activity of the pathways is highlighted, changing the source of acetyl-CoA used in the 
TCA cycle. The presented results indicate the stability of the system, which is dependent on the concentration 
of glucose in the cell. It is also reflected in the sensitivity analysis. For each measured substrate, 90 percent of 
scores landed in close proximity to 1.0, thus implying the model’s robustness on changes in the starting values.

Discussion
This paper introduces a comprehensive model of interconnected metabolic pathways, utilizing queueing theory, 
with the added benefit of being able to conduct real-time calculations that are not excessively complex. The 
experiment can be run on a regular desktop computer, as it does not require significant computing power. By 
examining glucose as a case study, the study illustrated that following carbohydrate depletion, the cell shifts 
its metabolic activity towards alternative sources of cellular energy, such as beta-oxidation of fatty acids (and 
potentially protein catabolism). These sources provide the necessary acetyl-CoA for energy conversion in the 
TCA cycle.

In our analysis, it is important to acknowledge that while the majority of TCA metabolites exhibited Z-scores 
within two standard deviations of the estimated mean, α-ketoglutarate deviated slightly from this trend. This 
deviation may be attributed to biological variability or measurement uncertainties associated with α-ketoglutarate 
in specific experimental conditions. Future research could delve deeper into understanding the factors contribut-
ing to this observation and explore potential biological implications. Additionally, our study demonstrates the 

Table 3.   Sensitivity analysis of impact generated by varying starting values of Acetyl-CoA and α-ketoglutarate 
on end values of the substrates of each simulation. The sensitivity scores were concatenated into the sensitivity 
distributions and described by their minimum, 5th percentile, median, 95th percentile, and maximum.

Metabolite Minimum
5th
percentile Median

95th
percentile Maximum

Acetyl-CoA 0.02 0.51 1.0 1.51 2.32

α-ketoglutarate 0.24 0.66 1.0 1.64 13.23

Figure 1.   Visualization of the concentration change over the course of simulation in each of the modeled 
pathways: (a) TCA cycle, (b) Glycolysis, (c) pentose phosphate pathway, (d) beta-oxidation. The X-axis displays 
number of measurements. During 10,000 seconds of simulation, concentration was measured 50,000 times. The 
Y-axis displays the concentration of a given metabolite.
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effectiveness of the GA approach in optimizing the selection of data from ranges and underscores its utility in 
handling complex datasets with non-uniform measurement representations. This methodology can be readily 
applied to similar challenges in metabolomics and bioinformatics to improve the precision and reliability of 
data analysis, facilitating more accurate interpretations of metabolic pathways and their regulatory mechanisms.

Metabolic modeling plays a crucial role in bridging the gap between theoretical understanding and practical 
implementations in the field of biology. The ultimate aim of metabolic modeling is to provide insights that can 
guide the development of effective therapeutic approaches for metabolic disorders. By simulating and analyzing 
the intricate metabolic pathways within cells, we can unravel the underlying mechanisms and identify potential 
targets for intervention.

In this context, the queueing methodology utilized in our study offers distinct advantages over traditional 
methods such as ODEs and FBA. While ODEs assume continuous and deterministic behavior, the queueing 
methodology embraces the discrete and stochastic nature of biochemical reactions, providing a more realistic 
representation of cellular processes. By capturing the inherent variability and fluctuations in metabolic net-
works, the queueing methodology allows for a deeper understanding of the dynamic behavior and robustness 
of biological systems.

One key advantage of the queueing methodology is its ability to account for queueing delays and waiting 
times, which are essential factors in cellular processes. These delays reflect the finite capacity of cellular resources 
and the time required for reactants to interact and traverse various metabolic steps. By considering queueing 
phenomena, our methodology enables the investigation of how delays impact metabolic fluxes, reaction rates, and 
overall system behavior. Additionally, the queueing methodology offers unique insights into emergent proper-
ties and system-level behaviors that are challenging to capture using other methods. The inherent stochasticity 
and variability incorporated through the queueing approach allow for the exploration of rare events, transient 
behaviors, and non-equilibrium phenomena. This capability is particularly relevant in studying metabolic dis-
eases, where small perturbations or rare events can have significant consequences for cellular function and overall 
health. Furthermore, the queueing methodology facilitates real-time tracking of metabolite concentrations, 
enabling dynamic simulations that closely mirror the temporal aspects of cellular metabolism. This temporal 
resolution provides a more comprehensive understanding of metabolic changes and their implications for cel-
lular function.

By highlighting these distinctive features of the queueing methodology, we emphasize its potential in gen-
erating insights that cannot be obtained through traditional approaches like ODEs and FBA. The utilization of 
queueing theory enriches the toolbox of metabolic modeling, expanding the possibilities for practical applica-
tions in therapeutic development, personalized medicine, and precision interventions for metabolic disorders.

Metabolic changes are observed in various diseases, including metabolic disorders such as diabetes and 
obesity, as well as in the aging process40. These conditions have garnered significant attention from researchers 
due to the rising prevalence of metabolic disorders and their impact on health41,42. While regulatory pathways 
typically maintain metabolite concentrations within narrow bounds43, individual metabolite levels can vary 
among individuals and deviate from established norms. An example of altered metabolism is found in cancer44, 
where a process known as metabolic reprogramming occurs. Cancer cells exhibit a shift in energy utilization, 
bypassing the citric acid cycle in mitochondria and relying heavily on glycolysis, followed by lactate fermenta-
tion in the cytosol45.

In neurodegenerative diseases like Alzheimer’s and Parkinson’s disease, mounting evidence suggests that 
mitochondrial dysfunction plays a pivotal role in disease development and progression9. Studies have demon-
strated reduced activity of the citric acid cycle in the brains of affected individuals46. One potential therapeutic 
approach for neurodegenerative diseases involves targeting the mitochondria and the citric acid cycle to improve 
their function. This can be achieved through various strategies, including increasing the levels of citric acid cycle 
enzymes such as citrate synthase or utilizing drugs that target specific enzymes within the cycle. Conversely, 
another approach involves reducing citric acid cycle activity by inhibiting enzymes, such as isocitrate dehy-
drogenase, which can help mitigate the production of reactive oxygen species (ROS) within mitochondria and 
reduce associated cellular damage47. Although these approaches are experimental, they hold promise for slow-
ing disease progression and potentially ameliorating symptoms of neurodegenerative diseases. It is important 
to note that further research is needed to fully comprehend the therapeutic benefits of targeting the citric acid 
cycle in these conditions.

To date, most scientific publications have focused on modeling macronutrient balance. These studies were 
focused on different dietary states, so-called intermediate fasting or semi-starvation48, or the impact of an unbal-
anced diet on the development of metabolism-related diseases49. The information they contain is extremely 
valuable and provides a better understanding of metabolic disorders. The purpose of our work, however, was 
to focus on the changes in metabolism in relation to glucose concentration at the cellular level. By combining 
these different types of studies, a more comprehensive understanding of metabolism and related processes such 
as aging can be achieved. Computational modeling of metabolic pathways also holds the potential to expedite 
the development of effective therapeutic approaches for alleviating metabolic disorders.

There are several limitations to the presented model. Although it is a complex model that includes 68 reac-
tions, it does not take into account numerous other reactions in which the metabolites are involved. The impact 
of these unaccounted reactions was evaluated using GA (see "Materials and methods"). Another limitation is that 
the accuracy of the model is dependent on the literature concentrations of metabolites and the kinetic parameters 
utilized in the model. Therefore, the model is subject to errors that may have arisen during the determination of 
concentrations and other parameters, such as K M , K i  , and V max under laboratory conditions. We acknowledged 
this issue early on in the experiment and recognized that previously published data is something researchers must 
rely on and trust for the honesty of published outcomes. Consequently, we decided to use literature concentration 
values as initial values and compare simulation results to these values to evaluate the model’s accuracy. It should 
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also be noted that, while the model results are consistent with literature values, we only observe the end results. 
This approach has the potential to accumulate errors in the middle phase of the experiment, leading to incorrect 
outcomes. However, the model’s stability, as illustrated in the results section, is in agreement with prior studies 
on the different pathways incorporated in the model16–18, thus reducing the likelihood of the aforementioned 
scenario. The presented outcomes demonstrate that the model is useful and appropriate for simulations of altera-
tions in metabolite concentrations with high precision. In the future, we plan to refine the model and continue 
this research with the objective of creating an application that allows users to input their measured parameters 
and receive simulation outcomes for the entered values.

Our model is intentionally designed to be generic, incorporating data from various sources, tissues, and 
organisms due to the limitations in obtaining comprehensive and tissue-specific data from a single organism. 
However, we recognize the importance of tissue or cell type-specific applications in addressing specific biological 
questions. The modularity and flexibility of our model allow for the integration of tissue or cell type-specific data 
in future studies, which can enhance the relevance and applicability of our model to specific biological systems. 
By leveraging the power of queueing theory in conjunction with more precise and targeted data, we can achieve 
improved accuracy and gain deeper insights into tissue-specific metabolic dynamics. While our current study 
focuses on the broader implications of metabolic modeling and the advantages of queueing theory, we appreciate 
the reviewer’s comment as it highlights an important direction for future research, which can further enhance 
the biological relevance and applicability of our model.

Methods
Queueing theory
While ordinary differential equations (ODEs) have been widely used in computational modeling of biological 
processes, there are several factors to consider that suggest they may not be the ideal method for biological 
simulations. One important limitation is that ODEs are deterministic in nature, failing to accurately capture the 
inherent stochasticity often observed in biological systems. These systems exhibit discrete and random molecular 
interactions, which are better represented by stochastic simulation methods such as the Gillespie algorithm or 
agent-based modeling. In addition, negative results can occur in the course of calculations, requiring the use 
of non-negative ODE solvers50 such as in MATLAB. Furthermore, ODE models assume well-mixed conditions 
and neglect the spatial organization and heterogeneity commonly found in biological systems. However, spatial 
effects can significantly impact the dynamics of biochemical reactions. Alternative simulation methods, such 
as partial differential equations (PDEs) or spatial stochastic simulations, take into account the spatial aspects 
and may yield more accurate results for certain biological phenomena. In addition, ODE models heavily rely on 
precise knowledge of model parameters, including reaction rate constants and initial conditions. Yet, in many 
biological systems, these parameters are uncertain and can vary across individuals or experimental conditions. 
The presence of parameter uncertainty introduces variability and can affect the accuracy of ODE simulations. 
Alternative approaches like Bayesian inference or sensitivity analysis can help address parameter uncertainty 
and provide more robust predictions. Another consideration is the computational efficiency of ODE simula-
tions. As mentioned earlier, ODEs can accumulate errors and become computationally demanding, especially 
for large-scale models or long simulation times. This computational burden restricts the exploration of complex 
biological systems or extensive parameter sweeps. To overcome these limitations, approximate or alternative 
simulation methods such as network-free methods or reduced-order modeling can offer more computationally 
efficient alternatives while still capturing essential dynamics. Moreover, certain biological systems exhibit emer-
gent phenomena, which arise from collective interactions at the system level rather than being solely determined 
by individual molecular components. ODE models, focusing on the behavior of individual components, may fail 
to accurately capture these emergent properties. Other modeling techniques such as network models, agent-based 
modeling, or machine learning approaches can better capture these emergent behaviors and complex system-
level dynamics. Considering these factors can provide researchers with a more comprehensive understanding 
of the limitations of ODEs in biological simulations. Exploring alternative modeling approaches that better suit 
the specific characteristics of the biological system under investigation will contribute to more accurate and 
insightful simulations.

Another approach used in the computational biology studies is flux balance analysis (FBA). FBA is a compu-
tational method used to study and analyze the metabolic capabilities of biological systems, particularly metabolic 
networks51,52. By assuming a steady-state condition, where the rates of production and consumption of metabo-
lites within the network are balanced, FBA optimizes an objective function, typically biomass production, while 
considering mass balance and reaction constraints.

FBA offers several advantages in computational biology studies. Firstly, it demonstrates predictive power by 
computing the optimal flux distribution that maximizes the production of a specific metabolite or biomass. This 
enables researchers to make inferences about the metabolic capabilities of an organism under different conditions. 
Furthermore, FBA is suitable for high-throughput analysis, as it can handle large-scale metabolic networks. It 
can explore the behavior of thousands of reactions simultaneously, providing a comprehensive understanding of 
cellular metabolism. This makes it particularly useful for analyzing genome-scale metabolic models and conduct-
ing extensive studies. The constraint-based framework utilized by FBA simplifies the representation of complex 
biochemical networks. By relying on stoichiometric constraints, thermodynamic constraints, and steady-state 
assumptions, FBA becomes computationally efficient and mathematically tractable. This allows researchers to 
model and analyze metabolic networks in a practical manner53. However, FBA does have certain limitations. It 
assumes a steady-state condition, disregarding the temporal dynamics of metabolic networks. This means it can-
not capture transient behavior or time-dependent responses of biochemical reactions, limiting its applicability 
in certain biological processes.
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Moreover, FBA relies on several simplifying assumptions that may not hold true in all biological contexts. 
For instance, it assumes the absence of regulatory mechanisms and optimality of growth. These assumptions 
can limit the ability of FBA to capture the full complexity of cellular processes and may lead to deviations from 
real-world observations. Additionally, the accuracy of FBA predictions heavily relies on the completeness and 
accuracy of the metabolic network model used. Our knowledge of metabolic networks is still incomplete, and 
the absence of certain reactions or pathways in the model can affect the accuracy of FBA predictions.

In summary, FBA is a powerful computational tool for analyzing metabolic networks. It offers predictive 
capabilities, high-throughput analysis, and integration with experimental data. However, researchers should 
consider FBA’s assumptions about steady-state conditions, simplified representations of cellular processes, and 
its inability to capture temporal dynamics. FBA finds extensive application in metabolic engineering, drug target 
identification, and understanding disease metabolism in computational biology studies.

However, it is important to acknowledge that the methods mentioned above are not without limitations, 
which prompted us to explore the application of a queueing theory-based approach. Biochemical reactions 
occur in living organisms in an orderly fashion, and for this reason queueing theory seems well suited for use 
in such simulation-computing studies. The optimized model has low computational complexity and it is pos-
sible to track changes in metabolite concentrations in real time. In addition, using queueing theory, the nature 
of the simulation is closer to reality, because there is no possibility for negative results to occur, just as in a cell, 
metabolites cannot reach negative concentrations. Thus, there is no need for artificially forcing non-negative 
solutions as is the case with ODEs.

The scheme of using queueing theory to model metabolite concentrations is shown in Fig. 2. The concentra-
tion of individual metabolites can be seen as a queue. Reactions affecting the increase in concentration of given 
queue are its inputs, while the reactions that consume the metabolite are its outputs. Processes affecting the 
concentration of a given metabolite that were not included in the enzyme kinetics equation were reduced to a 
factor determined using GA.

Various metabolic pathways, which are incorporated in the presented model can be mimicked by a composi-
tion of interconnected queues based on the Michaelis-Menten equations. The flow of metabolite concentration 
from one queue to another is sequential, so that a decrease in concentration in one queue will cause an increase 
in the next queue. Thus, a network of interrelated queues can be equivalent to a set of differential equations54.

The utilization of queueing theory as the foundation for our metabolic simulation model aims to capture the 
stochastic Markovian processes that represent variations in metabolite concentrations. To obtain the average 
change in concentration, we average the results from multiple simulation runs. At the core of this stochastic 
model are the Michaelis-Menten kinetic equations, which describe the relationship between substrate-product 
pairs and reaction velocities.

By representing a network of interconnected queues and digitizing the concentrations C1(t), ...,CN (t) , we can 
effectively simulate the system. Within this modeling framework, the arrival rates function as queues, while the 
service rates correspond to the reaction rates v(i,j(C1(t) ,...,CN(t)) ,t)) , normalized with respect to the simulation time 
step, �ti , and the concentration increment, �(Ci(t)) , reflecting the finite change of Ci(t) within �ti.

Figure 2.   Example queue, which represents concentration Ci(t) of the metabolite. Arrival rates are presented 
as inputs, while metabolite depleting rates are outputs. Due to the complexity of the metabolic network, some 
simplifications were adopted (see more details in the “Enzyme kinetics” section). The influence of processes not 
included in the model were calculated using a genetic algorithm (GA).
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It is important to note that we adopt a finite time increment, �ti , leading to a finite concentration increment, 
�(Ci(t)) . While this discretization introduces quantization error, adjusting the value of �(Ci(t)) to minimize 
the error may entail increased computational time due to a reduced time step, �ti , necessitating more simulation 
steps to reach the desired duration. Thus, striking a balance is essential, and we calculate the normalization of 
reaction rates to achieve arrival and service rates for the queues using the given formula (Eq. 1).

If the reaction rate υi,j(C1(t),...,CN (t),t) is positive, then its corresponding normalized rate, µi,j , functions as an 
arrival rate. Conversely, if υi,j(C1(t),...,CN (t),t) is negative, the corresponding normalized rate, µi,j , acts as a service 
rate. The instantaneous length of each queue embodies a potential realization of a stochastic Markovian process, 
capturing fluctuations in concentration for a specific metabolite. To obtain the average changes in concentration, 
we can compute the average of simulation results from multiple simulation runs.

To ensure the accuracy of the simulation, it is crucial to carefully select the simulation time step, �ti , and the 
concentration increment, �(Ci(t)) , such that all µi,j values are less than one. The arrival and service rates are 
representative of probabilities for the arrival and service of �(Ci(t)) within the given time interval. To guarantee 
that a single �(Ci(t)) is processed in each time interval, the following condition must hold (Eq. 2):

for j = 1, ...,Ki and i = 1, ...,N
However, it is not necessary for both the simulation time step, �ti , and the concentration increment, �(Ci(t)) , 

to be uniform across all i = 1, ...,N . Instead, they can be chosen in a manner that minimizes simulation time 
while ensuring satisfaction of condition described in Eq. (2). Although dynamic calculation of time increments 
is feasible within each step, for the present model, we have opted for constant time increments for all reactions. 
This decision arises from the fact that some reaction rates differ significantly in orders of magnitude, making it 
impractical to utilize the shortest time increment that satisfies condition described in Eq. (2) for each reaction. 
By employing cumulative reaction time that remains uniform for all reactions, we can uphold the conservation 
of molar masses.

In recognition of the stochastic nature of chemical reactions, wherein reaction rates can vary under different 
environmental conditions, it is possible to introduce randomness by adding Gaussian (or other) noise to the 
kinetic constants used for computing values of υi,j(C1(t),...,CN (t),t) . The same approach can be implemented at time 
instant, t0 , for the initial concentrations, C(1)(t0), ...,C(N)(t0) . This adaptation allows for a more realistic represen-
tation of the inherent fluctuations in chemical reactions, considering their sensitivity to environmental factors.

The reaction velocity serves as a macroscopic representation of numerous microscopic reactions, determin-
ing the frequency of reaction occurrence and its connection to the probabilities of increasing or decreasing 
specific substances. By utilizing these probabilities, we achieve a self-regulating and stochastic process that 
accurately simulates the behavior of biochemical pathways. The Michaelis-Menten kinetic equations calculate 
the probability of a reaction occurring based on substrate and product quantities, as well as kinetic constants 
and the duration of the time interval. These equations provide insights into the arrival and service rates in Pois-
son processes, where the arrival rate represents the probability of substance production, and the service rate 
represents the probability of substance consumption. The service time, which represents the interval between 
consecutive output events, is modeled using an exponential distribution. These assumptions align with classical 
queueing theory approaches, establishing a framework that integrates probabilities of increasing and decreasing 
substrates. This enables us to simulate biochemical pathways in a stochastic and self-regulating manner. In our 
model, the probability of a reaction occurring is determined by the Michaelis-Menten kinetic equations, where 
the concentration of metabolite-substrate and the kinetic constants play crucial roles. Each Michaelis-Menten 
equation is associated with a specific substrate and influences whether a reaction occurs at a given time point16. 
The reaction probability ranges from 0 to 1, and the reaction speed is considered a macroscopic representation 
of numerous microscopic reactions, resulting in the conversion of metabolites. The forward and reverse reaction 
velocities determine whether a metabolite increases or decreases. The probabilities of concentration gain and 
loss for each metabolite are correlated with the accumulation or increase in concentration of other metabolites. 
By adopting this approach, we have developed a self-regulating and stochastic model that integrates multiple 
metabolic pathways. The outcomes of the Michaelis-Menten equations can be interpreted as the arrival fre-
quency and service rate in Poisson processes, with service times modeled using an exponential distribution (the 
time gaps between two consecutive output events). These suppositions align with traditional queueing theory 
methods. As a result, the count of arrivals in a specific time period (t + τ) follows a Poisson distribution with a 
parameter µ(t)τ (Eq. 3):

where
P[(N(t + τ)− N(t)) = k, t] - probability of k arrivals in the interval ( t, t + τ

µ(t)τ - expected number of arrivals in a time interval duration of ( t, t + τ]
The queue processing time of metabolite increment (Eq. 4) is described by the exponential distribution of 

the random variable T in the terms of the rate parameter µ(t).

(1)µi,j =
|υi,j(C1(t),...,CN (t),t)|�ti

�(Ci(t))

(2)µi,j ≪ 1

(3)P[(N(t + τ)− N(t)) = k, t] = e−µ(t)τ (µ(t)τ )k

k!
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Consequently, the arrival process at the beginning of the next queue, which the output of the examined server 
is linked to, follows a Poisson distribution. This is a complex stochastic process involving multiple variables, 
which are all connected to each other. As per the Michaelis-Menten kinetic equations, the likelihood of each 
packet arriving at a metabolite’s queue is linked to the quantity of product and inversely related to the quantity 
of substrate, leading to a self-regulating system that adjusts to the discrepancies of metabolites and ensures bal-
ance between arrivals and departures in every queue. One of the advantages of basing the model on queueing 
theory is the possibility for its further development and addition of more reactions/metabolic pathways without 
interfering with the previously optimized reactions. This is particularly interesting because the model can be 
developed with further metabolomics discoveries or combined with pathways not included in this study.

Enzyme kinetics
The data used in the model for the values of metabolite concentrations and kinetic constants: K M (Michaelis con-
stant), K i  (inhibition constant), V max (maximum velocity), were obtained from scientific publications. It should 
be noted that these constants are not absolute values, but rely heavily on experimental conditions. In a seminal 
paper it was shown that modeling of yeast glycolysis requires actual redetermination of kinetic parameters under 
identical conditions for all enzymes55. However, the approach presented in this work aims to demonstrate a model 
that can be improved with further development of metabolomics, based on new, more accurate data supported 
by the application of GA. The collected data were used to describe metabolic reactions with Michaelis-Menten 
equations (Eq. 5) of enzyme kinetics. The model consisted of 68 enzymatic reactions of the form:

where
υ(t) - reaction speed,
Vf  - forward reaction speed,
Vr - reverse reaction speed,
S1(t), S2(t), ..., Sx(t) - substrate concentration in mmol/L,
P1(t),P2(t), ..., Px(t) - substrate concentration in mmol/L,
KS1 ,KS2 , ...,KSx - kinetic constant of substrate,
KP1 ,KP2 , ...,KPx - kinetic constant of product.
It is assumed that all concentration values are sampled from Gaussian distribution specific to the type of 

examined concentration. The distributions were estimated using maximum log likelihood estimation56, given 
by the following equations (Eqs. 6 and 7):

Based on the kinetic equations, the probability of occurrence of each reaction was inferred, as described in the 
Materials and methods section related to Queueing theory. If the probability indicated that a reaction occurred, 
there was a decrease in the concentration of the metabolite that acted as a substrate in that reaction, while increas-
ing the concentration of the metabolite that acted as a product. This is how the various reactions of the metabolic 
pathways included in the model gradually occurred, which were glycolysis, the pentose-phosphate pathway, 
the TCA cycle, and beta-oxidation. In case of missing literature data on reverse reaction speed, we applied the 
assumption of57 which describes a reverse reaction as 100x slower than the forward reaction. In few cases where 
the literature review did not provide enzyme kinetic data, the concentrations of two adjacent metabolites were 
summed and combined into a single metabolite (queue). In such a case, enzyme kinetics data on the second 
metabolite of the pair were used17. In the study presented here, such a situation occurred twice, when describ-
ing kinetic reactions involving isocitrate and cis-aconitate as well as succinyl-CoA and succinate, which are the 
metabolites of TCA cycle. To model such a complex metabolic network, it was necessary to establish a specific, 
rigid framework and scope of model coverage. The influence of cellular processes that are not directly included 
in the kinetic equations, such as the flow of a metabolite between compartments of a cell, was finetuned using 
a genetic algorithm (GA)17.

Genetic algorithm
The equations were supplemented with coefficients selected using a GA. The choice of the algorithm was made 
arbitrarily, due to its effectiveness in previous similar studies that have been conducted17,18. This procedure was 
intended to allow combining the reactions of pathways whose computational values of individual reactions can 
differ markedly. The GA plays a crucial role in our study by optimizing the parameter values within the ranges 
reported in the literature. It is important to note that these parameter values can vary significantly between 

(4)f (T;µ(t)) =
{

µ(t)e−µ(t)T T ≥ 0
0 T < 0
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different studies and cell types. In order to achieve system stability and ensure consistency with experimental 
values, the GA searches for parameter values that allow the model to approximate the observed behavior. By 
employing the GA, we aim to find parameter values that not only make the system stable but also provide results 
that are consistent or approximate to experimental values. The algorithm iteratively explores the parameter space, 
evaluating different combinations of parameter values, and selecting those that best align with the experimental 
data.

The loss function was calculated with the use of ‘chromosomes’ that consist of two parameters: (1) metabolite’s 
concentration described in the literature and (2) a current optimization stage of the simulations. There are one 
hundred ’chromosomes’ in the population, each of which is a potential solution for the table of kinetic constants. 
Evaluation of the ‘chromosome’ involves using its ‘genes’ as the values of constants parametrizing Michaelis-
Menten equations. In this process, the simulation time series is generated.

The resulting time series is sampled at fixed time stamps in order to compare simulated results with real-life 
experiments results registered in the literature. The loss function quantifying fitness of the ‘chromosomes’ is the 
sum of squares of the distances of the sampled points from simulation time series to the literature results (Eq. 8).

where
gp - subfunction that penalizes the difference between two vectors in relation to second vector,
X - vector of substrate concentrations described by a literature,
X̂ - vector of substrate concentrations obtained by evaluation.
The loss function is designed to guide the GA to identify a ‘chromosome’ with a table of kinetic constants 

that leads to stable concentrations of products and minimizes the distance between initial values and stable 
points, which generates computational results that are closest to those obtained in laboratory measurements. 
Evaluating one ’chromosome’ entails running a simulation using its set of genes as the table of kinetic constants. 
The simulation function returns the values of substrate concentrations at each second. This table is used by 
the equation to determine the ’chromosome’s’ score. The function calculates the average vector of the last 100 
recordings and computes the absolute difference with the initial simulation concentrations. In the final step, the 
average of the differences is calculated. The ’chromosome’ that minimizes this function is selected as the optimal 
table of kinetic constant values. The evaluation of each ’chromosome’ is done by simulating the model for the 
first hour. There are 100 ’chromosomes’ in the population at each step of optimization, and only the 10 sets of 
constants that minimize the fitness function are selected for reproduction. The reproductive algorithm is a vari-
ation of the standard crossover with an additional mechanism to prevent finding a trivial solution to minimize 
the loss function problem, which is to zero the probability of every reaction. The main disadvantage of the fitness 
function described above is the existence of a trivial solution for its minimization problem. If the ’chromosome’ 
contains only zeros, then no reaction would occur, so the settling points of concentrations of products in the 
model would have the same values as initial concentrations, thus finding a global minimum. To prevent the GA 
from converging to this solution, the reproduction mechanism requires that each reaction at t = 0 has a prob-
ability of being performed between 1% and 10%. Reaction and balancing flow rates have ranges from 1 to 10% 
at the beginning of the simulation, which starts from substrate concentration values described in the literature. 
Applying these constraints to the reaction rates prevents them from being zeroed at the start and also prevents 
saturation of reactions. The reproduction algorithm has a 10% chance to perform a mutation with the mutation 
amplitude equal to 1.0. The optimization performed with GA was based on experimental measurements. The 
relative square error between subsequent values of the obtained vector and reference vector were used to calculate 
the penalty subfunction. To enforce equal contributions of all substrates in the optimization process, division by 
the value from the reference vector was performed.

Sensitivity analysis
The resulting simulations of the trained model were subjected to the variance-based sensitivity analysis. It is 
used to analyze the sensitivity of a model’s output to changes in the input variables. It is based on the idea that 
the variance of the output of a model can be used to measure the model’s sensitivity to changes in the input 
variables (Eq. 9):

where
EY - expected value of the signal Y,
V(Y) - variance of signal Y,
V(EY |µj) - a variance of signal Y generated using input value j.
In this paper, Y represents a set of values of one substrate at the end of each simulation. Each value is a result 

of a simulation conducted using specific starting values denoted as j. The sensitivity analysis was conducted for 
each substrate making the cell’s measurable state.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files. The datasets generated and/or analysed during the current study are available in the GitHub 
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repository, https://​github.​com/​UTP-​WTIiE/​CellE​nergy​Metab​olism​Model, DOI:10.5281/zenodo.7585089, imple-
mented in C# supported in Linux or MS Windows.
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