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Multiscale relevance of natural 
images
Samy Lakhal 1,2,3, Alexandre Darmon 4, Iacopo Mastromatteo 1,5, Matteo Marsili 6 & 
Michael Benzaquen 1,2,5*

We use an agnostic information-theoretic approach to investigate the statistical properties of natural 
images. We introduce the Multiscale Relevance (MSR) measure to assess the robustness of images to 
compression at all scales. Starting in a controlled environment, we characterize the MSR of synthetic 
random textures as function of image roughness H and other relevant parameters. We then extend the 
analysis to natural images and find striking similarities with critical ( H ≈ 0 ) random textures. We show 
that the MSR is more robust and informative of image content than classical methods such as power 
spectrum analysis. Finally, we confront the MSR to classical measures for the calibration of common 
procedures such as color mapping and denoising. Overall, the MSR approach appears to be a good 
candidate for advanced image analysis and image processing, while providing a good level of physical 
interpretability.

Recent advances in image processing have benefited from the emergence of powerful learning frameworks 
combining efficient architectures1–3 with large high-quality databases4,5. In particular, neural networks, layering 
simple linear and non-linear operators such as convolution matrices or activation functions, have proven to be 
very efficient to classify or generate high dimensional data. They are now able to capture similarities between 
images with unprecedented success. However, while their performance increases with the depth of the architec-
ture, it is generally at the cost of physical interpretation in terms of informational content or maximisation of 
meaningful measures. Understanding the learning dynamics and the statistical features of the resulting images 
remains a challenge for the community6,7.

Before the advent of machine learning algorithms, tasks such as compression8,9, denoising10 or edge detection 
were (and in some cases still are) performed using signal processing methods. Among the classical approaches, 
the first kind is based on specific measures, such as the widely used Peak Signal-to-Noise Ratio (PSNR)11, that are 
built upon common signal processing metrics (Euclidian distance, power spectrum, etc.). The second family uses 
vision based experiments to construct semi-empirical measures of similarities, such as the Structural Similarity 
Index (SSI)12. As such, in both cases the approach relies on strong underlying assumptions.

In the context of statistical physics, the problem of high dimensional data inference has recently been 
addressed using a novel, fully agnostic, approach. Developed to measure specific properties of finite size 
samples13, the approach consists in assessing the influence of a prescribed compression procedure over sim-
ple entropy measures. Applications in biological inference14, finance15, language models13 or optimal machine 
learning16,17 have already shown exciting results. In this paper, we adapt the latter formalism to image analysis 
and image processing, focusing specifically on the case of natural images. Natural scenes or landscapes have long 
been studied as they display distinguishable statistical features such as scale invariance18–20, non-Gaussianity21, 
or patch criticality22.

The outline of the paper is as follows. In Section I, we introduce the Resolution/Relevance formalism using 
an illustrative example, and adapt it to the purpose of image analysis. In Section II, we analyse a class of param-
eterizable images, that is random 1/f α Gaussian fields, and introduce the Multiscale Relevance (MSR). In Sec-
tion III, we extend the analysis to natural images and their gradient magnitudes. We discuss meaningful statistical 
similarities with the synthetic Gaussian fields. In Section IV, we show how the MSR approach can be used in the 
context of common image processing tasks.
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The resolution/relevance framework
Here we present the information-theoretic framework that was recently built by one us13 for agnostic analysis of 
high-dimensional data samples and their behaviour under compression procedures. Relevant metrics are derived 
from simple statistics of the compressed samples.

Tradeoff between precision and interpretability.  Let us consider the problem of binning, namely 
clustering samples of a random variable X into groups characterized by a similar value of X. If the sampled data 
points S = {x1, . . . , xN } all take different states (e.g. when the distribution of X is continuous) the empirical dis-
tribution is a Dirac comb. In order to gain insight into the sampled variable, one can visualize the data by using 
histograms with well chosen bins/boxes. Indeed, this procedure enforces the emergence of structure by reducing 
data resolution through compression, allowing for more interpretability. One can then make assumptions on the 
underlying process and find the optimal parameters to best describe the data.

We illustrate this intuition by sampling N = 100 realizations of a Gaussian variable X ∼ N (0, 1) in Fig. 1. The 
data are binned into n identical boxes between −4 and 4, for three different values of n = 5 , 23 and 400. We also 
define the bin width ℓ as a compression parameter transforming the original sample S into a compressed sample 
Sℓ . The compression step consists in replacing each data point by its corresponding histogram bar index. Fig-
ure 1a1 (large ℓ ) displays a situation of oversampling. With only five bins a considerable amount of data resolution 
is lost. On the contrary, Fig. 1a3 (small ℓ ) corresponds to an undersampling regime, with very narrow bins (mostly 
containing only one data point) and a resulting distribution close to a Dirac comb. Figure 1a2 (intermediate ℓ ) 
appears as a reasonable compromise in which the histogram is visually close to the generator density, indicating 
we might be close to the optimal level of data compression. From the latter observation, one is tempted to go for 
a Gaussian model, with suitable estimators for the mean and variance. However such decision solely relies on a 
specific compression level, and thus does not make full use of the sample at play.

The formalism that we introduce in the next section provides a principled framework to connect the choice 
of the compression level with an optimality criterion that is agnostic to the nature of the generative model from 
which the data is sampled.

Resolution and relevance.  Previous work from Marsili et al.15 addressed the issue of the overampling/
undersampling transition by introducing observables that allow one to monitor changes in a reduced sample 
Sℓ = {sℓ1, . . . , s

ℓ
N } obtained by compressing S with a parameter ℓ . First, let us consider kℓs  the number of data points 

of identical state s and mℓ
k the number of states appearing k times in Sℓ . It follows that 

∑

s k
ℓ
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∑
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k = N . For 

example, in the compressed sample displayed in Fig. 1a1, values taken by kℓs  are {2, 26, 49, 23, 0} , and since each 
bar in the histogram has a different height, one has m2 = m26 = m49 = m23 = m0 = 1 and mk = 0 otherwise.

One can then define the Resolution Ĥℓ[s] and Relevance Ĥℓ[k] as:
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Figure 1.   Relevance analysis of a Gaussian distribution sample ( N = 100 ). (a) Influence of the number of 
bins n on the normalized histogram (black bars), for (a1) n = 5 , (a2) n = 23 and (a3) n = 400 . The red curve 
corresponds to the underlying distribution. The bottom markers ( + ) represent the initial sample data points 
with color indicating local data density. (b) Resolution/Relevance curve.
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The Resolution is the entropy of the empirical distribution {pℓs = kℓs /N}s and describes the average amount of 
bits needed to code a state probability in Sℓ . The compression clusters data points together hence reducing the 
average coding cost. The Resolution is maximal for raw data and monotonically decreases with ℓ , until it reaches 
the minimally entropic fully compressed sample. The Relevance is the entropy of the distribution {qℓk = kmℓ

k/N}k , 
that is the probability that a data point sampled from Sℓ appears k times in the sample. This is a compressed 
version of pℓs , where identical frequency states are clustered, dropping their label s in the process. Knowing qℓk is 
then sufficient to build a histogram without labels, and is equivalent to assuming indistinguishability of states 
sampled the same number of times. Sorting them in decreasing frequency values would yield the famous Zipf 
plot. In the end, the Relevance encodes the height of each bar and is maximal when {kmℓ

k/N}k is uniformly dis-
tributed, leading to mk ∝ k−1 . We reported in Table 1 the typical sampling situations and their corresponding 
value in Resolution/Relevance.

Coming back to the Gaussian sampling example, Fig. 1b displays Ĥℓ[k] as function of Ĥℓ[s] , obtained by 
varying ℓ . Corresponding values for n = 5 (a1), n = 23 (a2) and n = 400 (a3) are highlighted. Note that (a2) 
maximizes Relevance while (a1) and (a3) respectively correspond to oversampling and undersampling. Let us 
emphasize at this point, that, despite the visual impression in this specific example, the sample (a2) does not 
necessarily minimize the distance between the underlying and empirical distributions. Interestingly, the Resolu-
tion/Relevance properties are only dependent on the raw sample S and the compression parameter ℓ , making 
the overall approach agnostic to the generating process. What is most interesting is thus the way in which the 
sample evolves with compression, while transitioning from undersampling to oversampling. As a result, one 
must choose a compression procedure that allows to crossover between these two regimes.

Application to images.  Images are usually described as fields h(r) where r ∈ {1, . . . ,NX} × {1, . . . ,NY } . 
This is equivalent to a sample made of S = {(r, h(r)} of size N = NXNY , describing the position and color of 
each pixel. Naturally, S lies in the full undersampling regime as each data point is unique.

To compress grayscale images, we therefore propose a simple procedure consisting in two steps: (i) segmenta-
tion, and (ii) spatial compression, as illustrated in Fig. 2. Segmentation means grayscale levels are transformed 

Table 1.   Typical sampling situations.

Situation Sampled states {mk}k Ĥ[s] Ĥ[k]

Full oversampling Identical mN = 1
mk = 0

0 0

Full undersampling Distinct m1 = N

mk = 0
logN 0

Intermediate sampling Intermediate mk ∝ k
−1

Ĥ0 max Ĥ[k]

(a) (b)

(c) (d)

Figure 2.   Illustration of the segmentation/compression procedure on a classic benchmark image. (a) Original 
Image. (b) Thresholded image at a given quantile value a. (c) Thresholded image with reduced grid. (d) 
Reconstructed image from the reduced sample Sℓ

a where each grid cell is replaced by the average pixel color.
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into black (b) and white (w) pixels using a threshold level a (fraction of black pixels), leading to the binary image 
ha(r) (Fig. 2b). This lowers the amount of possible color states in the sample, a necessary condition to reach the 
full oversampling regime. Note that one can reconstruct the original image by averaging over all segmentations. 
This step is generalisable for colors, for example by using a triplet (aR, aG, aB) in the RGB space. The second 
step consists in the compression of pixel positions (Fig. 2c). One replaces each coordinate r by the index rℓ of its 
position on a grid of stepsize ℓ . One ends up with a compressed sample:

A visualization of Sℓ
a is displayed in Fig. 2d where each cell is given the grayscale level corresponding to its pro-

portion of black and white pixels. Finally, kℓ
(rℓ ,b)

 and kℓ(rℓ ,w) would be defined as the number of black and white 
pixels in cell rℓ , and mℓ

k as the number of cells with k black or white pixels at scale ℓ . Using Eqs. (1), one can 
compute the values of Ĥℓ[s] and Ĥℓ[k] that will be used in the sequel.

One can make a direct analogy between this compression procedure and image processing architectures such 
as Convolution Neural Networks (CNN)1. First, their constitutive layers usually combine a spatial compression 
procedure, that is a first linear convolution, with a trainable or prescribed layer. Then, a segmentation step is 
performed using a nonlinear transformation on pixel values called activation function. In a similar fashion, our 
procedure consists in a one layer network, taking S as input and giving Sℓ

a . Interestingly, we do not need to 
specify a particular convolution matrix as an input to the algorithm, but only a size parameter, by that making 
our approach more agnostic. Ultimately, note that any compression procedure allowing the undersampling/
oversampling transition could have been selected. For example, one could use Discrete Fourier or Wavelet coeffi-
cients, classically used in JPEG or JPEG 2000 compression algorithms8,9. Another approach would consist in using 
intermediate representations of trained or untrained networks with binary activation functions (perceptron-like) 
and tunable layer size, as in the Resolution/Relevance trade-offs of deep neural architectures16.

Relevance of random textures
In this section we illustrate the use of the metrics ( Ĥℓ[s] , Ĥℓ[k] ) on a simple yet widely encountered class of 
processes: two-dimensional 1/f α random Gaussian fields. These are notably found in the spectral analysis of 
turbulence23, water waves24,25, and fracture mechanics26,27. We first recall the properties of such fields and then 
study the influence of α on Resolution and Relevance.

On 1/f α Gaussian fields.  1/f α Gaussian fields consist in the linear filtering of an initially uncorrelated 
2D white noise (Supplementary Material). The latter presents a flat Fourier spectrum that is then multiplied 
by 1/f α , therefore leading to a power spectrum scaling as 1/f 2α . This leads to the forcing of spatial correla-
tions in the direct space. Such power law filter introduces scaling properties that are usually described by 
the roughness Hurst exponent H := α − d/2 where d is the field dimension (here d = 2 ). Depending on the 

(2)S
ℓ
a = {(rℓ, ha(r))}.
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Figure 3.   1/f α textures generated from the same white Gaussian noise seed. (a–c) Quantile representations over 
255 levels of 1/f α random fields with respective roughness H = −0.5, 0, 0.5 and spatial resolution 512× 512 . (d) 
Azimuthally averaged power spectrum 〈S(f , θ)〉θ . Black dashed lines indicate the theoretical power spectrum 
decay 1/f 2α with α = 1+H.
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sign of H , one can recover two types of processes. When H < 0 the random field is stationary, that is with 
fixed mean and correlations C(δr) ∝ δr2H at lag distance δr . The specific case H = −d/2 corresponds to an 
unmodified spectrum (white noise). When H > 0 , the process is no longer stationary but possesses stationary 
increments with scaling �[h(r + δr)− h(r)]2� ∝ δr2H . We generate three samples of distinct roughness values 
H ∈ {−0.5, 0, 0.5} , shown in Fig. 3a–c respectively, see e.g.28. The Hurst exponent influences the visual aspect of 
roughness, with images getting smoother as H increases. Figure 3d shows the azimuthally averaged power spec-
trum �S(f , θ)�θ = �|h̃(f , θ)|2�θ allowing to check that the generating method is robust as the expected scaling 
behavior and exponents are recovered.

Multiscale relevance of random textures.  We now perform the segmentation described above on the 
fields presented in Fig. 3. The resulting textures for threshold value a = 0.5 are displayed in Fig. 4a–c and the 
corresponding Resolution/Relevance curves (Ĥℓ[s], Ĥℓ[k])ℓ∈{1,...,N} are plotted in Fig. 4d.

One can see that while the patterns remain quasi-identical for H = −0.5 (Fig. 4a) and H = 0 (Fig. 4b), this is 
not the case for H = 0.5 (Fig. 4c) where large areas of uniform tint are created by the segmentation procedure. 
This is due to the presence of stronger spatial correlations, inducing more persistence of patterns and less fluc-
tuations around the average. Further, one can see that the H = 0 texture displays interesting visual features at 
all scales, as reported in visual quality assessment experiments29, while they appear limited to small scales for 
H = −0.5 . It is not straightforward to connect these observations with the Relevance curves in Fig. 4d, as the 
relative Relevance varies with Resolution. It thus seems more natural to consider the Relevance across all levels 
of compression.

To do so, we introduce a measure that quantifies the overall robustness of a sample to compression called 
Multiscale Relevance (MSR) and defined as:

which is nothing other than the area under the Resolution/Relevance curve. This measure was introduced 
in Reference14 as an order parameter characterizing neuronal activity time series, and was successful at dis-
tinguishing useful information from ambient noise, as expected from a complexity measure30. Note that while 
several measures of complexity based on multi-scale entropy contributions have already been introduced in the 
literature31,32, the MSR differs in that the contribution of each scale is naturally weighted by the Resolution. Other 
measures generally give identical weights to each compression level.

For the images in Fig. 4, one obtains MSR(H = 0.5) < MSR(H = −0.5) < MSR(H = 0) . This is consistent 
with our previous visual impression that the texture in Fig. 3b seems to contain more information at different 
scales.

Most relevant segmentation(s).  One naturally expects the segmentation threshold a to influence the 
Relevance. Indeed, at given H < 0 , most relevant representations do not seem to correspond to a = 0.5 . This 
is confirmed in Fig. 5a where the Relevance curve for H = −0.8 is higher for a = 0.66 than a = 0.5 . Figure 5b 
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Figure 4.   (a–c) Segmented versions of the textures of Fig. 3, with H = −0.5, 0, 0.5 respectively, and threshold 
value a = 0.5 . (d) Resolution/Relevance curves normalized by the maximum entropy log2 N.
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displays the MSR as function of a for three values of H. For H = −0.8 (dashed curve) one observes two symmet-
ric maxima at ac = 0.5± .13 , consistent with Fig. 5a. Interestingly, breaking the symmetry in the distribution of 
pixels by choosing a “background canvas” leads to more interesting samples in terms of Resolution/Relevance. 
As one can see in Fig. 5c, there is a bifurcation at H ≈ 0 below which two maxima of MSR coexist. The obtained 
values of ac for H < −1/2 fall close to the classic percolation threshold a∗ = 0.59 on the 2D square lattice33. 
Indeed, our segmented images are equivalent to samples of the correlated percolation site problem. In particu-
lar, Prakash et al.34 observed, as we do here, that when H → 0 from below both maxima continuously meet at 
ac = 0.5 while flattening the MSR(a) curve around such value (see Fig. 5b). At this critical point, the information 
content of images becomes less sensitive to the segmentation process.

When H � 0 , MSR(a) displays one unique maximum at ac = 0.5 . However, as H increases further, so does 
the range of correlations, leading to finite-size effects. The resulting ac becomes very noise dependent as different 
samples lead to different critical thresholds. Interestingly, such behavior was also reported in the percolation of 
2D Fractional Brownian Motion35.

Relevance of natural images
We now focus on natural images, namely pictures of natural scenes and landscapes. These have long been studied 
in the literature18–21,36, as they display robust statistical features, such as scale invariance and criticality.

On the grayscale field h(r).  Figure 6a shows the photograph from Tkacik et al.37 in the Okavango Delta 
in Botswana, described as a “[...] tropical savanna habitat similar to where the human eye is thought to have 
evolved”. The image is subdivided into fifteen patches of size 512× 512 pixels. One can observe a wide variety of 
patterns, ranging from uniform shades of light gray in the sky to strong discontinuities with tree branches and 
noisy vegetation textures.

A power spectrum analysis for all patches is shown in Fig. 6b. The shape in the high frequency limit is due to 
camera calibration, optical blurring, or post-processing procedures, which are independent of the patch content. 
At low frequency we observe a decaying power law with exponent −2.0± 0.1 . Note that, although there are small 
fluctuations that may be related to patch features36, the power spectrum analysis seems rather unable to capture 
the visual heterogeneity from one patch to another mentioned above.

This being said, S(f ) ∼ 1/f 2 translates to H = 0.0± 0.1 in terms of roughness exponents, which is precisely 
the range in which the MSR displayed critical and nontrivial behaviour for random textures in Sec. II.

We thus expect that the MSR approach may allow for a finer characterization of each patch. Another issue 
with classical spectral analysis is that the power spectrum of the image is expected to be extremely sensitive to 
non-linear transformations of its color histogram, even monotonous, that keep the visuals identical. With the 
MSR method, there is no such issue as the segmentation parameter a defines the proportion of black and white 
pixels, regardless of the shape of the color histogram.

Figure 6c shows the MSR curves for all patches. First observation is that the range of MSR values is similar in 
magnitude to that of H ≈ 0 textures in Sec. II. Then, one clearly sees significant differences between the MSRs 
of each patch. Patches containing mainly bushy textures with no abrupt changes in patterns display a unique 
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Figure 5.   Influence of the segmentation value a. (a) Relevance curves for H = −0.8 for two values of a. (b) 
MSR as function of a for H = −0.8 (black dashed line), H = −0.1 (red dashed dotted line) and H = 0.5 (black 
dotted line). (c) Density plot MSR(H, a) . The maxima are signified with black markers.
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maximum in the MSR(a) curve. Note that the irregularities that appear in some cases are due to specific colors 
being disproportionate in the histogram (uniform sky). Patches containing heterogeneous shades, or physical 
objects of different sizes combining tree trunks, branches and bush (e.g. bottom left in 6a) tend to display two 
maxima, similarly to H < 0 (see Sec. II).

Figure 7 focuses on the bottom-left patch of Fig. 6a. This sub-image seems to display two distinct dominant 
color levels. Such levels actually correspond to the maxima of the MSR curve in Fig. 7b. This is visually confirmed 
from the segmentations Fig. 7c,d which capture best the fluctuations at the top and bottom of the image respec-
tively. We emphasize that the latter representations together constitute the most informative segmentations of (a). 
Superimposing them (Fig. 7e) indeed leads to a good approximation of the original image with only three color 
levels {0,127,255}. The MSR method thus seems to account well for the diversity of content of natural images, 
inaccessible through classical power spectrum analysis.

On the gradient magnitude |∇h|.  To understand further the architecture of natural images, we now 
focus on the gradient magnitude field intended to capture strong spatial irregularities such as contours or bor-
ders. In addition, taking the gradient has the advantage of stationarizing the initial field. The gradient analysis 
is a fundamental block of various image processing procedures, from classic edge detection38, to supervised39 or 
unsupervised1 classification architectures in machine learning. From a more perception-based psychophysical 
perspective, it has been shown that essential information such as orientations, geometries and positions could 
be directly inferred from the visual assessment of the gradient field40–42. We compute the gradients |∇h| from 
wavelet convolutions. This method is now extensively used as it shows excellent robustness for signal processing 
tasks43–47. One has:

where ψ j := (ψj,x ,ψj,y) is a wavelet gradient filter of characteristic dyadic size 2j . This wavelet consists in mixing 
gradient and Gaussian windows, the latter being of standard deviation σj = 2j pixels. The procedure with j = 0 
yields the image in Fig. 8a. As expected, one obtains a strong signal (bright shades) for fluctuating textures of veg-
etation or sharp contours like branches, and low values (dark shades) for smooth and uniform regions like the sky.

We then conduct the MSR analysis on these new patches (Fig. 8b), and observe that most patches give flat 
MSR curves. This is tantamount to the critical H ≈ 0 case with logarithmic correlations described in Section II 
(see Fig. 5). One may indeed think of natural images as a patchwork of objects of various sizes; such superposition 
of patterns is reminiscent of additive cascades processes48 that also display logarithmic correlations.

We now explore the effect of changing the wavelet size (see Fig. 9). We chose the top middle patch in Fig. 8a 
as it contains large objects and small scale details. As one can see in Fig. 9c,d, increasing j has the effect of coarse-
graining small fluctuations to only leave larger ones. This translates into smaller Relevance at low compression, 
which in turn reduces the overall MSR (Fig. 9b). Finally, the segmented gradient fields at critical threshold values 
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Figure 6.   (a) Natural grayscale image from Reference37, segmented in patches of size 512× 512. (b) Power 
spectrum for each patch. Dotted line is a decaying power law with exponent −2 . (c) MSR as function of a for 
each patch.
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Figure 7.   (a) Bottom-left patch of Fig. 6a. (b) MSR as function of a with highlighted critical thresholds 
(a1, a2) = (0.42, 0.73) . (c,d) Corresponding segmented patches. (e) Image obtained by adding (c,d), with three 
color levels {0,127,255}.
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Figure 8.   (a) Quantile representation over 255 levels of the Gradient Magnitude field of Fig. 6a, with j = 0 , 
divided in 512× 512 patches. (b) MSR as function of a for the different patches.
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(Fig. 9e,f) remain visually close to initial fields (Fig. 9c,d). This is indeed expected as gradient magnitudes already 
show a large proportion of black and white pixels at the contours of physical objects.

Application to image processing
Here we illustrate the potential of MSR in the context of common digital image processing tasks, namely color 
mapping and denoising.

Color mapping.  Consider the color mapping problem consisting in projecting pixel values onto a reduced 
palette. For the sake of simplicity, let us consider the case of an initial grayscale palette projected on binary 
values {0, 255} (b&w). We implement a stochastic mapping procedure using the Boltzmann distribution 
P(c|hij) ∝ e−(hij−c)2/T , where hij is the original color of pixel with coordinates ij, c ∈ {0, 255} the color in the 
reduced palette, and T a temperature parameter, see49. Note that this probability density is obtained from the 
maximal entropy distribution related to the minimization of the Mean-Squared Error (MSE) between the orig-
inal and mapped images. T = 0 corresponds to the choice of the closest color in the reduced palette, while 
T → ∞ leads to uniform noise.

Optimizing the procedure consists in calibrating T to maximize some advanced similarity measure between 
the original and reduced images, in the hope that it will capture more interesting properties than a simple 
pixel-pixel Euclidean distance minimization. Here we propose an alternative approach consisting in maximiz-
ing an information measure, the MSR, and compare it to classical metrics, namely the Peak Signal-to-Noise 
Ratio (PSNR)11 and the Structural Similarity Index (SSI)12. PSNR is directly related to the Mean Squarred Error 
(MSE) between original and mapped images through PSNR = 10 log10

(

�2/MSE
)

 where � is the range of the 
signal, that is 255 for typical grayscale encoding. SSI is based on the comparison of patches between two images 
and takes into account properties such as luminance and contrast. Both are widely used in the digital image 
processing community.

Figure 10a displays the original patch extracted from Fig. 6a. Figure 10b shows the evolution of each metrics 
with temperature T. One sees that the PSNR between the original and mapped images is maximized at T = 0 . This 
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M
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(c) (d)
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Figure 9.   Influence of the Gradient Wavelet size. (a) Original patch from Fig. 6a. (b) MSR as function of a for 
gradient wavelets of dyadic size (2j), j ∈ {0, 1, 2, 3} . (c,d) Gradient magnitudes for j = 0 and j = 2 respectively. 
(e,f) Segmented gradient magnitudes at critical threshold values ac for j = 0 and j = 2 respectively.
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is not surprising as the PSNR is monotonously related to the MSE by definition. The corresponding mapping in 
Fig. 10c appears too sharp and contrasted, clearly separating vegetation from sky while introducing thresholding 
artifacts. Optimization of the SSI yields a non-zero yet small temperature T = 0.1 , barely improving the resulting 
image (see Fig. 10d). We then compute the MSR for both direct and gradient fields. The maximization of MSR(T) 
leads to the image shown in Fig. 10e, which contains more faithful visual features and a decent similarity to the 
original image at large scales, at the cost of artificial small scale features.

Now recall that conducting the MSR analysis on the gradient magnitude of natural images provided better 
results (consistency between different patches in Fig. 8b). Here, we introduce the Gradient Magnitude MSR, 
henceforth denoted MSR∇ , computed by segmenting the grayscale images obtained from the gradient proce-
dure, and averaging over a. The maximization of MSR∇ is shown in Fig. 10f. This seems like a good compromise 
between (c),(d) and (e) as it also displays medium scale features (tree trunk details) without blurring finer ones 
(small branches). Note however that MSR brings more noise than PSNR or SSI which might make it less desir-
able if noiselessness is a strong constraint.

Hence, for strong color reduction, a Multiscale Relevance approach can bring better visuals than classical 
metrics such as the Structural Similarity Index which, in addition, requires an a priori semantic knowledge of 
the original image. Note that the analysis could be extended to more elaborate color mapping procedure such as 
error diffusion50,51 or Monte-Carlo based algorithms52.

Denoising with Rudin–Osher–Fatemi algorithm.  We now focus on a denoising procedure which con-
sists in correcting unwanted noise caused by signal processing or camera artefacts. To tackle this problem, a 
classic algorithm is the Rudin-Osher-Fatemi (ROF)10 which minimizes the following functional:

where h is the original noisy image, f the target denoised image and � a regularization/penalty term preventing 
gradient explosion and allowing for smooth solutions. Note that the first term in the RHS of Eq. (5) comprises 

(5)L[f ] = ��∇f �2,1 + �h− f �22,
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Figure 10.   Color mapping. (a) Original patch from Fig. 6a. (b) Rescaled scores as function of temperature 
for different performance measures: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSI), 
direct Multiscale Relevance (MSR), and MSR over the gradient field MSR∇ . (c–f) Color mapping at optimal 
temperatures T∗ for PSNR, SSI, MSR and MSR∇ respectively.
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a mixed norm, consisting in the L2 norm of each gradient vector integrated over the image domain, classically 
called Total Variation10. The free parameter � is generally chosen by the operator through visual assessment.

Here we propose to calibrate such a model using again the PSNR, SSI and MSR∇ metrics. We consider the 
image in Fig. 11a obtained by adding a Gaussian white noise to the patch in Fig. 6a. We intentionally choose a 
high noise value to make the denoising procedure difficult, such that some details from the original image may 
never be recovered. Our goal is to seek the optimal �∗ leading to the best visual. The scores obtained for each 
method as function of � are displayed in Fig. 11b. Optimally denoised images using PSNR, SSI and MSR∇ are 
shown in Fig. 11c–e respectively. With PSNR, one is left with a rather high level of noise, while details on the 
trunk surface or in the branches are conserved. In contrast, SSI removes a significant part of the noise, but at the 
cost of blurring small scale details. One might argue that optimal denoising with MSR∇ seems like a good com-
promise between a too noisy PSNR image and an overly smoothed SSI image. But again, as argued in the colour 
mapping section above, assessing which result is “best” clearly depends on the context and target constraints.

Conclusion
Let us summarize what we have achieved. We first introduced the Resolution/Relevance framework through 
a simple illustrative example. We showed how such formalism can be applied to image analysis. With the aim 
of investigating the framework in a controlled environment, we started by studying random textures. We then 
defined the Multiscale Relevance (MSR) which measures the entropy contribution at all compression scales, and 
obtained statistical features reminiscent of the correlated percolation problem. In particular, we highlighted the 
existence of a critical roughness parameter Hc ≈ 0 , corresponding to logarithmic correlations, and discussed 
optimal segmentation. We then extended the analysis to natural images and drew a successful comparison with 
random textures; we observed strong similarities with critical random Gaussian fields. Looking at gradient 
magnitude fields revealed an even stronger similarity to roughness criticality. Finally, we confronted the MSR 
procedure to classical signal processing measures in the context of simple image processing tasks: color map-
ping and denoising. We obtained interesting results thereby demonstrating the potential of the agnostic MSR 
approach for image processing.
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Figure 11.   Denoising. (a) Noisy patch obtained from adding a Gaussian noise ( σ = 100 ) to the same patch 
from Fig. 10a. (b) Rescaled scores as function of � for different performance measures: Peak Signal-to-Noise 
Ratio (PSNR), Structural Similarity Index (SSI) and MSR over the gradient field MSR∇ . (c–e) Denoising at 
optimal regularization parameter �∗ for PSNR, SSI and MSR∇ respectively.
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This last section would benefit from an extension to more elaborate image processing techniques, beyond the 
scope of the present paper. Future research should also focus on analytically tractable developments of Relevance 
and Resolution in simple cases, e.g. Gaussian white noise with well chosen cascading processes. Also note that 
we considered a straightforward compression procedure on the direct space but equivalent representations, for 
example Discrete Cosine8 or Wavelet harmonics9, could be used to define the reduced sample S . Finally, we 
have seen that the MSR is able to capture the most relevant segmentation values, which may be used as a pre-
processing method for learning frameworks.

Data availability
The datasets generated and/or analysed during the current study are available in the Lakhal2023 repository:
https://​github.​com/​SamyL2/​Lakha​l2023. The image used in Fig. 2 has been taken from the scikit-image Python 
library. It has no copyright restrictions and is under the CC0 licence by the photographer (Rachel Michetti). The 
image used in Fig. 6, and subsequently used in Figs. 7, 9, 10 and 11, has been taken from the database article37 
and is distributed under a Creative Commons Attribution-Noncommercial Unported licence to facilitate research 
in computer vision, psychophysics of perception, and visual neuroscience.
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