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Intestinal parasitic infections (IPIs) caused by protozoan and helminth parasites are among the 
most common infections in humans in low-and-middle-income countries. IPIs affect not only the 
health status of a country, but also the economic sector. Over the last decade, pattern recognition 
and image processing techniques have been developed to automatically identify parasitic eggs in 
microscopic images. Existing identification techniques are still suffering from diagnosis errors and 
low sensitivity. Therefore, more accurate and faster solution is still required to recognize parasitic 
eggs and classify them into several categories. A novel Chula-ParasiteEgg dataset including 11,000 
microscopic images proposed in ICIP2022 was utilized to train various methods such as convolutional 
neural network (CNN) based models and convolution and attention (CoAtNet) based models. The 
experiments conducted show high recognition performance of the proposed CoAtNet that was tuned 
with microscopic images of parasitic eggs. The CoAtNet produced an average accuracy of 93%, and 
an average F1 score of 93%. The finding opens door to integrate the proposed solution in automated 
parasitological diagnosis.

Parasitic infections are among the main public health problems worldwide, especially in tropical and subtropi-
cal  countries1,2. According to the World Health Organization’s Global Health Estimates in 2020, infectious and 
parasitic diseases are among Africa’s leading causes of  death3. There are three main classes of parasites that can 
cause disease in humans: protozoa, helminths, and  ectoparasites2. Helminth infection has threatened over 800 
million individuals throughout the world (CDC). Humans in developing countries, such as Sub-Saharan Africa, 
South America, and East Asia, are infected with medically significant nematodes, trematodes, and  cestodes3. 
While these diseases manifest in a broad range of clinical manifestations, the elimination and early classification 
for the prevention of pathogenic helminths offers significant socio-economic benefits.

Microscopy is one of the most commonly used conventional methods in classifying and diagnosing parasitic 
diseases and is exclusively dependent on medical technicians for  examinations4,5. However, microscopy-based 
parasite identification and quantification pose a lot of  issues5. It is challenging, time-consuming, labor-intensive, 
error-prone and requires well-trained researchers for  identification5–7. Because of the variances and ambiguities 
in the parasites’ shape, density, and staining color, human experts find parasitic examination through microscopic 
photographs  difficult2,8. Furthermore, these conventional methods lack a data-sharing framework and historical 
records of diagnosis. Consequently, the development of an automated diagnostic system would be a major leap 
in assisting traditional diagnosis.

With technological advancements and the development of image processing techniques and computer 
vision, artificial intelligence has been successfully used in various applications, such as face recognition, natural 
language processing, and biomedical image  analysis2,9–11. Resulting in automated diagnosis systems becoming 
more attainable. Many studies have implemented systems to analyze the micrographs of the samples based on 
machine learning, e.g. support vector machine (SVM)12 and artificial neural networks (ANN)12,13. These tradi-
tional machine learning methods do not need complex structures, but they rely largely on selectively selected 
information. For this reason, fine-tuning the features in the feature extraction step will take a lot of time and 
effort. On the other hand, deep learning-based algorithms have been increasingly popular in the previous decade 
as computer performance and the number of available image datasets have both  improved14,15. Deep learning 
has demonstrated remarkable efficiency in a variety of disciplines, including text recognition, computer-assisted 
diagnosis, facial identification, and drug  development16. Deep learning, particularly the Convolutional Neural 
Network (CNN), stimulates novel parasite classification research in the parasite egg detection task because of its 
promising performance and speed in object  recognition4,5,8,13,17,18. By learning important features automatically 
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from a vast amount of data that represents the desired behavior of the data, CNNs offer an advantage over 
conventional feature  extraction18. CNNs have exhibited great accuracy in a variety of pathogen identification 
applications, including malaria, tuberculosis, and intestinal parasite  detection19. Furthermore, methods such as 
Single Shot MultiBox Detector (SSD), U-Net, and Faster Region-based Convolutional Neural Network (Faster-
CNN), which are methods based on object detection and segmentation also  flourished4,8. These superior deep 
learning approaches encouraged us to build a platform for identifying and quantifying helminth eggs that were 
faster and more automated.

Previous works
Machine learning is a field of artificial intelligence built upon the theory of statistics to provide predictive or 
descriptive information on given  data20. It is able to execute such tasks by making inferences from input sam-
ples or data without necessarily incorporating specific instructions into the algorithm. Applications of machine 
learning for microscopic analysis in parasitic identification have exhibited promising results for the fields. Con-
ventional methods involve image processing techniques for data extraction followed by analysis using machine 
learning.

To detect parasite eggs, Bruun et al.21 employed elliptic filters. These filters were created based on the average 
size of parasite eggs and hand-selected rotation angles. These handcrafted traits had a classification accuracy of 
over 93%. Delas Penas et al.17 explored the use of a convolutional neural network framework, You Only Look 
Once (YOLO) in detecting three helminth eggs of Schistosomiasis, Trichuriasis, and Ascariasis in stool samples. 
Avci and  Varol22 first proposed MC-SVM as a new method for classification of human parasitic eggs using 
micrographs. MC-SVM is composed of four stages. These are the pre-processing stage, feature extraction stage, 
classification stage, and testing  stage22. Yang et al.23 uses an ANN in helminth egg classification, achieving 90.3% 
validation accuracy. Preprocessing involved median filtering, binary thresholding, segmentation, and feature 
(size, shape, eggshell) extraction.  While12, in a recent study, classified Ascaris eggs using ANN coupled with 
Multi-class Support Vector Machine (MC-SVM). The experimental findings indicated a 95% and 93% accuracy 
rate in identifying Ascaris eggs, respectively. Additionally, on a much recent study, Ray et al.24 explored different 
types of features examined using three different classifiers viz SVM, ANN and k-nearest neighbors (kNN), and 
utilized micrographs of three different types of parasitic eggs namely Ascaris Lumbricoides, Necator Americanus 
and Trichuris Trichiura. SVM using texture and shape-based features achieves the highest classification accuracy 
of 96.5%. Logistic regression was also used for multiclass parasitic  recognition25; in the study they used geometric 
and brightness features extracted through an extensive sequence of image processing methods. Overall, the pro-
posed process attained a specificity of 98%. For identification and classification of microscopic nematode eggs, 
Akintayo et al.26 used a deep convolutional selective Autoencoder architecture. According to their findings, the 
Autoencoder can detect 92% of less-clustered images and 96% of high-clustered images. They did note, however, 
that this method has a high computational cost that can be minimized by employing a more powerful computer.

In intestinal parasite detection and  classification1, distance regularized level set evolution (DRLSE) and circu-
lar hough transform (CHT) were selected for object recognition and segmentation. Histogram oriented gradient 
(HOG) was then applied for feature extraction. The proposed classifier was a combination of fuzzy classification 
techniques and artificial neural networks, its accuracy measuring 100%.

Deep learning is a recent advancement in machine learning that surpasses the limitations found in traditional 
methods. It is a neural network composed of multiple processing layers capable of gathering complex repre-
sentations of raw  data27. This eliminates the need for tedious preprocessing techniques for feature extraction 

Table 1.  Various classification methods with their drawbacks and advantages.

Method Pros Cons

Traditional human  examination5–7 Accurate with human experts
*Challenging
*Time-consuming, * labor-intensive
*Error-prone
*The need of well-trained researchers

Machine learning: support vector  machine12 and artificial 
neural  networks12,13 These methods do not need complex structures Fine-tuning the features will take a lot of time and effort

Deep learning-based  algorithms14,15 particularly CNN, 
Single Shot MultiBox Detector (SSD), U-Net, and Faster 
Region-based Convolutional Neural  Network4,8

*Promising performance and speed in recognition
*Learning important features automatically
*CNNs offer an advantage over conventional feature 
extraction

*It needs powerful computer
*Number of available image datasets is sensitive

CNN You Only Look Once (YOLO)17 Good detection and classification accuracy Recognizing only three categories

A deep convolutional selective Autoencoder  architecture26 Identification and classification of microscopic nematode 
eggs A high computational cost

CNN-based transfer learning model Two networks, 
AlexNet and ResNet50 were examined and a patch-based 
technique with a sliding window was utilized to search for 
the egg  location5

Improve the effectiveness of automated parasite classifica-
tion in low-resolution

More time required to slide the window across high resolu-
tion images

EfficientDet with EfficientNet-v2  backbone33 High accuracy with localization capability Complex architecture of two backbones used to extract 
features and fuse the decision produced in the output layers

EfficientNet-B7 with layers frozen and support vector 
machine (SVM)  tuned33 Less training time because no layers finetuning Trained with dataset that is not related to task studied
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and demonstrates high exceptional performance with abundant data. In a comparative study  by6, an image 
processing-SVM model and VGG-16, a pre-trained deep neural network, were used for parasite classification 
wherein VGG-16 outperforms SVM. Currently, convolutional neural networks (CNN) are most frequently used 
in vision tasks. Butploy et al.13 proposed a 3-layer CNN for A. lumbricoides. egg classification, measuring 93% in 
accuracy involving three classes. Since deep learning requires extensive data for training, challenges in limited 
datasets can be solved through transfer learning. This takes a neural network pre-trained on a large dataset and 
applies the architecture and learned weight on a new, but similar task. Examples of transfer learning for parasite 
classification include VGG-166, GoogleNet, AlexNet, and  Resnet505,28.

Akintayo et al.26 designed a novel end-to-end Convolutional Selective Autoencoder (CSAE) to identify a 
parasitic worm, soybean cyst nematode (SCN). CSAE has two parts—the encoder and the decoder. CSAE archi-
tecture was developed for this rare-object detection class of problems. The ‘selectivity’ feature of CSAE possess 
remarkable detection speed, and accuracy in identifying SCN eggs across a wide range of samples e.g., soil, debris 
as it is trained to only reconstruct an ’egg’ pattern while masking/rejecting all other patterns in the input image. 
Simon et al.29 introduced a new architecture consisting of a shallow CNN appended with a single recurrent layer. 
Results showed better performance in the proposed models than in the state-of-the-art models. Wiem et al.18 
proposed a fusion decision method to identify parasitic eggs and utilized CNN by feeding the outputs for the 
discrete transform as input.

Suwannaphong et al.5 presented a CNN-based transfer learning model to improve the effectiveness of auto-
mated parasite classification in low-resolution. Two networks, AlexNet and ResNet50 were examined and a 
patch-based technique with a sliding window was utilized to search for the egg location. Huo et al.30 proposed 
an automatic recognition algorithm based on YOLO for parasitic eggs and achieving an average accuracy of 
99.4%. On the other hand, Górriz et al.31 trained a U-net model for the classification of leishmania parasites into 
promastigotes, amastigotes and adhered parasites. Najgebauer et al.32 proposed a technique that uses a fully con-
volutional network (FCN) to analyze the complete sample space and give a class to each pixel in the image. The 
program was taught to identify parasite eggs and differentiate them from the adjacent or overlapping pollution. 
Roder et al.7 implemented Deep Belief networks (DBN) for automatic classification of intestinal parasites viz eggs, 
larvae and protozoa. Considering the impurities of the fecal samples and unbalanced classes used, the datasets 
nevertheless, garnered promising results. Lastly, Nkamgang et al.1 trained a neuro-fuzzy classifier according to 
a speeded up scaled conjugate gradient algorithm for recognition and classification of twenty human intestinal 
parasites. Achieving a recognition rate of 100%.

The objective of this paper is to propose a solution to classify parasitic eggs. This solution should meet spe-
cific requirements including ability to recognize various categories, high classification accuracy, low inference 
time, and memory efficiency. Table l demonstrates various methods used in the literature for parasitic egg clas-
sification. The existing methods showed several drawbacks such as complex structure, limitation of number of 
categories, high training time, low accuracy, computational cost and time, and uninformative features. In this 
work, we found that CoAtNet0 was able to address these drawbacks for parasitic egg classification task with 
simpler structure, higher accuracy, lower computational cost and time, better informative features, and capability 
to recognize various eggs categories.

This paper highlights an interesting challenge for the research community. It contributes to the body of 
knowledge as follows:

1. Various convolutional neural networks such as  DenseNet12134 and EfficientNet-B435 were explored. These 
pre-trained CNNs were fine-tuned with parasitic eggs dataset for classification purposes.

2. Vision  Transformer36 which uses self-attention mechanism was demonstrated. It was fine-tuned with parasitic 
eggs dataset for classification purposes.

3. A CoAtNet (Convolution and Attention Network) was  proposed37 for parasitic egg recognition in micro-
scopic images for classifying parasitic eggs. The pre-trained CoAtNet was fine-tuned with parasitic eggs 
dataset for classification purposes.

4. This work presents a novel attempt to utilize the concept of combining convolution and attention in medical 
applications such as parasitic egg recognition.

5. This work targets a novel dataset that was proposed in ICIP2022 challenge to recognize eleven types of 
parasitic eggs acquired under various complex conditions such as illuminations and resolutions.

This paper is organized as follows: “Materials and Methods” describes the parasitic eggs dataset. Addition-
ally, it discusses numerous convolutional neural networks and self-attention vision transformer. Additionally, 
we demonstrated convolution and attention network. In “Experiments and results”, the experiments conducted 
are described to analyze results in detail. We performed an evaluation and comparison between various deep 
learning models. Finally, "Conclusion and future work". summarizes the work presented in this paper by giving 
readers a glimpse into potential improvements in the future.

Materials and methods
This section demonstrates the dataset used in this work for parasitic egg classification. Additionally, it describes 
various CNN based models utilized as baseline methods. Furthermore, it explores the proposed solution of 
convolution and attention network to be compared with the baselines.

Dataset overview. A completely unique dataset called Chula-ParasiteEgg-11 was proposed for an ICIP 
2022  competition38–40. The dataset includes 11 categories of different types of parasite eggs from faecal smears, 
with an average diameter between 15 and 100 μm, all labeled in bounding boxes. The following are among the 
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categories: A. lumbricoides, Capillaria philippinensis, Enterobius vermicularis, Fasciolopsis buski, Hookworm egg, 
Hymenolepis diminuta, H. nana, Opisthorchis viverrine, Paragonimus spp., Taenia spp. egg, and T. trichiura38–40. 
With 1000 micrographs for the training set and 250 micrographs for the testing set for each category, the data-
set is the largest collection of its kind. Multiple devices such as a Canon EOS 70D camera body with Olympus 
BX53 microscopes, a DS-Fi2 Nikon camera body with Nikon Eclipse Ni microscopes, Samsung Galaxy J7 Prime 
phone, and iPhone 12 and 13 with either 10× eyepiece lenses of Nikon Eclipse Ni or Olympus BX53 devices were 
used to collect the micrographs of the samples. As a result, the resolution, illumination, and setting conditions of 
each image vary. And this variation could render the detection more  reliable38–40. Figure 1 shows several samples. 
Table 2 shows the number of samples for each category of parasitic eggs.

Parasite eggs vary between 20 and 80 μm dimensions, and they are usually seen under microscopes only. To 
detect eggs in microscopic images, long time of visual analyses is required by expert human. This task is very 

Figure 1.  several samples of microscopic images including various condition such as illuminations, resolutions, 
sizes of eggs, and  blurring38–40.

Table 2.  Chula-ParasiteEgg-11 dataset class distribution.

Number of samples

Ascaris lumbricoides 200

Capillaria philippinensis 200

Enterobius vermicularis 200

Fasciolopsis buski 200

Hookworm egg 200

Hymenolepis diminuta 200

Hymenolepis nana 200

Opisthorchis viverrine 200

Paragonimus spp. 200

Taenia spp. egg 200

Trichuris trichiura 200

Total 2200
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prone to human errors. Several characteristics used to identify parasite eggs including size, shape, shell thickness, 
surface structure and the presence of an operculum and polar plugs as shown in Fig. 1. The proposed solution 
of using CoAtNet0 was able to extract features from various eggs by extracting features of shape, shell thickness, 
surface structure, and operculum and polar plugs automatically without need of expert knowledge. The capability 
of model to extract these features outperform the human expert capability which is usually prone to mistakes.

Methods. This section discusses the methodology of this work including the stages required to learn the 
mapping between the images of parasitic eggs and their corresponding categories as shown in Fig. 2.

Convolutional neural networks (CNNs) have shown superior performance with high generalization com-
pared to previous hand-crafted features methods. Therefore, they were selected in the first set of experiments 
to train and evaluate them with parasitic egg dataset. After conducting experiments related to state-of-the art 
CNNs such as EfficientNet and DenseNet with various numbers of layers trained, we carried out another set of 
experiment to explore vision transformer as self-attention mechanism to study the potential improvement that 
this high capacity model may produce. Finally, we moved to demonstrate the superior performance of CoAtNet 
in various applications conveys behind the combination of two techniques including attention and convolution 
in one model. Therefore, we targeted to benefit from this combination in parasitic egg classification task. The 
details of each method are described in the following sections.

In this work, we considered real world implementation of the proposed methods to reduce the computation 
cost which has impact on the inference speed. There are numerous versions of EfficientNet such as EfficientNetB0, 
EfficientNetB4, and EfficientNetB7. In this study, EficieneNetB4 was selected because it has 19 million parameters 
compared to 5.3 million in EfficientNetB0 and 66 million in EfficientNetB7. In other words, EfficientNetB4 can 
balance between good performance and high speed. As known, fewer parameters leads to faster inference and 
more parameters lead to higher classification accuracy. Additionally, DenseNet121 was selected among other 
versions of DenseNet because it has 7 million parameters which can also balance between good performance 
and high speed. To move to self-attention network, vision  transformer36 base version with 16 × 16 patch size was 
selected due to lower parameters compared to large version. Furthermore, CoAtNet0 was chosen because it has 
25 million parameters which is smaller than other CoAtNet versions.

EfficientNet CNN. EfficientNet is a family of convolutional neural networks (CNN) which were built on 
using a newer approach for scaling up models, particularly designed for image recognition. Previous meth-
ods involve adding more layers or through image resolution. Scaling up one of the following: depth, width, or 
image size is a common practice. Tan and  Le35 introduced a method that scales all three in a uniform fashion 
following a fixed proportion. This was able to resolve several limitations found in older models and improve in 
accuracy on  ImageNet41. EfficientNet consists of models B0–B7, starting with the baseline (B0) with its succeed-
ing scaled up versions. In scaling dimensions, each feature held the ability to improve model accuracy but was 
met with restraints. It is presumed that more depth, or more layers would increase performance. However, this 
would require more training  data42 and computational power. Additionally, this method is not the only means of 
improving CNNs; Ba and  Caruna43 find that it is possible to train shallow neural networks to execute similarly 
to elaborate deeper CNNs. In a test assessing the scalability of each dimension,  authors35 observed that increase 
in width resulted in problems with analysing higher level features while in using very high resolutions, accuracy 
gain begins to stagnate. Overall, experimental results indicate that accuracy gain declines as models continue to 
expand when scaling only one dimension of the three.

In creating an improved model, it was important to ensure that all dimensions were balanced when scal-
ing CNN. This was made possible by a compound scaling method wherein the compound coefficient φ is used 
to uniformly scale the dimensions as determined by the user. In classifying ImageNet, EfficientNet achieved 
accuracy scores equivalent to other state-of-the-art models such as ResNet, Inception-v3, and DenseNet while 
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Figure 2.  The pipeline of egg classification task.
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using much fewer parameters and having reduced FLOPs (floating point operations). In contrast to other CNNs, 
EfficientNets also run much faster. When used for transfer learning on other datasets including CIFAR-100, 
Food-101, etc. EfficientNets also exhibited remarkable results.

Due its success on ImageNet and other extensive datasets, EfficientNet has been used over other applica-
tions in various domains. In medical imaging, EfficientNets were found to be superior in several classification 
of magnetic resonance imaging and X-ray imaging tasks. In chest abnormality identification featuring pneu-
monia, COVID-19, and normal lungs EfficientNetB0 performed higher than VGG16 and  InceptionV344. For 
MRI brain tumor recognition fine-tuned EfficientNetB0 also achieved the highest in  performance45. In another 
study, EfficientNetB2 was found to be most suitable for breast cancer histopathology classification against other 
 EfficientNets46. Ensemble methods also benefit EfficientNets; in a study for malaria diagnosis, infected cell 
micrographs were successfully  classified47. These findings along with transfer learning results on large benchmark 
datasets support the potential of using EfficientNets for more computer vision tasks.

DenseNet CNN. In the last few decades, deep CNN architecture has achieved many breakthroughs in image 
classification  tasks48,49. However, as the CNN gets deeper, when the input information goes through many lay-
ers, there is a possibility to ‘wash out’ or vanish by the time it reaches the end (or the beginning) of the network. 
While various designs have varied network topologies and training methods, they still have one thing in com-
mon: they consistently make shorter pathways from earlier layers to later layers. Accordingly, Huang et  al.34 
developed a new CNN architecture referred to as Dense Convolutional Network (DenseNet) which aims to 
increase the depth of deep learning networks while also improving training efficiency by using shorter connec-
tions between the layers.

In DenseNet architecture, each layer is connected to every other layer to ensure maximum information flow 
between the layers of the  network34. Each layer receives extra inputs from all earlier layers and transmits its own 
feature-maps to all later layers in order to maintain the feed-forward structure of the architecture. Contrary to 
Resnets, DenseNet concatenates the features rather than combining them through  summation50. Thus, instead 
of just the L, in traditional architectures, there are L(L+1)/2 direct connections in DenseNet. To successfully 
facilitate both down-sampling in the architecture and feature concatenation, the size of the feature maps should 
be uniform. This was made possible by dividing the network into multiple densely connected dense blocks where 
feature map size remains the same. Now, transition layers, the layers between blocks can perform the convolu-
tion and pooling operations outside the dense blocks, while inside the dense block is able to perform feature 
concatenation. As opposed to current network topologies, DenseNet may have very narrow layers, for example, 
k = 12. Where network growth rate is referred to as the hyper parameter k. As each layer produces concatenated 
k feature maps, the number of inputs is quite high and has huge computational requirements. To increase the 
efficacy, DenseNet utilizes Bottleneck layers. Four DenseBlocks with variable numbers of layers make up each 
architecture. For instance, while DenseNet-169 has (6, 12, 32, 32) layers, DenseNet-121 has (6, 12, 24, 16) layers 
in its four dense blocks. A Classification Layer follows the fourth dense block, accepting the feature maps from all 
network layers to carry out the classification. The ultimate goal of DenseNet is to utilize features from every layer 
to improve model performance and robustness using a standard dataset while requiring minimal computational 
labor and a much lower model size. However, it should also be noted that the increasingly massive number of 
layers can result in explosive growth during  training51.

Due to its dense connections between layers, and improved model performance, DenseNet has been preferred 
over any applications in a variety of fields. In medical image classification, DenseNet is the first one to successfully 
perform anatomical segmentation of the whole brain using MR  images52. In metastatic cancer image classifica-
tion, DenseNet achieved superior performance over the state-of-the-art  approaches53.

In another study, DenseNet was used in predicting COVID-19 patients from CT  images54. In another study, 
DenseNet was used for classification of COVID-19 cases in medical  imaging55. Furthermore, a sparsely connected 
DenseNet was used for malaria parasite  detection56.

Vision transformer. A vision transformer is a deep learning model that is used for image classification and 
was inspired by Dosovitskiy et al.36. In this paper, a parasitic egg image that has a sequence of patches encoded 
as a set of words was applied to the transformer encoder. The original image’s patches N = (H × W)/P2 were 
extracted with a fixed patch size (P, P) where P = 16, W is the image width, H is the image height, and N is the 
number of patches. The extracted patches were flattened and each patch  xp belonged to  RP2.C, where C is the 
number of channels. As a result, the 2D image was converted into a sequence of patches x∈RN×(P2.C). Each patch 
in the sequence x was mapped to a latent vector with hidden size D = 768. The architecture of transformer’s 
encoder with L blocks, each block containing alternating layers of multi-head self-attention (MSA) and multi-
layer perceptron (MLP) blocks. The layer normalization (LN) was applied before every block, while residual 
connections were applied after every block.

Convolution and attention. State-of-the-art (SOTA) Convolutional Neural Networks (ConvNets) (e.g., 
 ResNet5057) were the dominating deep architecture for performing computer vision tasks (e.g., object detection, 
semantic segmentation, image classification) due to their properties of proper inductive bias, efficiency, and 
generalization. However, Vision Transformer (ViT) and its  variants58 were explored in the benchmark dataset 
ImageNet-1k41 and yielded promising results, but the performance of ViT still falls behind ConvNets due to its 
property of higher capacity at scale than ConvNets, thus it needs a very large-scale dataset in order to achieve 
comparable results to SOTA ConvNets. Recently,  CoAtNet37 was explored in ImageNet and it outperformed ViT 
and its variants. Additionally, its performance nearly matched the SOTA ConvNets (e.g., EfficientNet-V259) on 
ImageNet-1k only. CoAtNet combines the properties of ConvNets (e.g., inductive bias, generalization, efficiency) 
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with the properties of Vision Transformers (e.g., capacity). CoAtNet was found to achieve high performances 
across different data sizes, and specifically, under the low-data system. CoAtNet inherited the generalization 
capability from Convolutional networks and superior scalability from transformer models. It was able to match 
huge version of Vision transformer-pre-trained on 23 × larger dataset. Given enough data, CoAtNet achieved 
faster convergence and improved efficiency with less computation to outperform Vision transformer.

Several techniques were embedded in CoAtNet including self-attention and transformers which have been 
widely adopted for neural language processing and recently for different vision tasks. Additionally, relative atten-
tion (rel-attenttion) in CoAtNet belongs to the input-independent version which is computationally cheaper 
than the input-dependent version. The idea of combining convolution and self-attention for vision recognition 
usually enhances the accuracy with extra computational cost. On the other hand, CoAtNet with relative atten-
tion is a mixture of depthwise convolution and content-based attention combined into a single computation 
unit with less  cost37.

MBConv block employs depthwise  convolution37 to capture the spatial interaction because it can be effectively 
merged into attention layers with simple relative attention. convolution depends on a fixed kernel to collect 
information from a local receptive field y.

where  xi,  yi ∈  RD are the input and output at position i respectively, and L(i) denotes a local neighborhood of i, 
e.g., a 3 × 3 grid centered at i in image processing.

Self-attention allows the receptive field to be the entire spatial locations and computes the weights based on 
the re-normalized pairwise similarity between the pair  (xi,  xj)37:

where g indicates the global spatial space.
When the multi-stage layout is used, we mimic ConvNets to construct a network of 5 stages (S0, S1, S2, S3 

and S4). The first stage S0 is a simple 2-layer convolutional Stem and S1 employs MBConv blocks with squeeze-
excitation due to large spatial size. Starting from S2 through S4, we consider either the MBConv or the Trans-
former block, but the convolution stages must appear before transformer stages to process the local patterns.

Considering generalization, model capacity, transferability and efficiency, simply stacking convolutional and 
attention layers, in a proper way. As a result, the C–C–T–T multi-stage layout was adapted for CoAtNet. where 
C and T denote Convolution and Transformer respectively. The CoAtNet architecture is shown in Fig. 3. Where 
 Li refers to number of blocks. The relative attention (rel-attenttion) is a result of unifying depthwise convolution 
and self-attention.

CoAtNet has several variants starting from CoAtNet-0 through CoAtNet-4. Conv layers, and MBConv blocks 
use kernel of size 3, while Transformer blocks use attention heads of size 32. As a result, 25 million of parameters 
have been trained in CoAtNet0.

Recently, CoAtNet has been used in numerous medical applications (e.g., medical image segmentation, image 
classification). Classification of skin cancer types using CoAtNet was  demonstrated60. Additionally, brain tumor 
image segmentation was proposed utilizing  CoAtNet61. Furthermore, CoAtNet was compared with EfficientNet-
V2, and ResNext50 which are SOTA ConvNets and it was found to outperform them for bone marrow cells 
 classification62.

Experiments and results
This section describes the experiments conducted for parasitic eggs recognition in microscopic images. The 
setup of each experiment of model implementation is demonstrated. Additionally, the performance results 
such as accuracy, recall, precision, and f1 score are discussed. Furthermore, the comparison between CNN 
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Figure 3.  CoAtNet  architecture37.
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based, self-attention based, and CoAtNet based models is highlighted to show the superior performance of the 
proposed solution.

Experimental setup. The experiments were conducted by training the CNN based models, self-attention 
vision transformer, and CoAtNet based model using a TensorFlow framework on a 1 or 2 NVIDIA Tesla V100 
GPUs. The hyperparameters such as batch size, number of epochs, optimizer, and input size have been tuned 
several times to find the optimal values that can produce the best validation accuracy using the validation data. 
As seen, different hyperparameters were found for each model including EfficientNet, DenseNet, vision trans-
former, and CoAtNet.

The microscopic images were resized to 380 × 380 pixels for EfficientNet as mentioned in original  paper35. In 
DenseNet, and CoAtNet, for image (input) size, 224 × 224 dimensions were used and applied to a network. After 
that, the 384 × 384 dimensions were applied. By comparing accuracy, it was found that increasing input size can 
improve classification accuracy remarkably.

The hyperparameters such as number of dense layers, and number of nodes in dense layer have been tuned 
several times to find the optimal values that can produce the best validation accuracy using the validation data. 

Table 3.  Architecture of DenseNet121.

InputLayer (shape = (384,384,3))

DenseNet121(backbone)

GlobalAveragePooling2D ()

Dense (300)

ReLU activation function

Dropout (0.5)

Dense (100)

ReLU activation function

Dropout (0.5)

Dense (11)

Softmax activation function

Table 4.  Hyperparameters of DenseNet121.

Mini_batch_size = 32

Number of GPU = 1

Epochs = 10

Optimizer = Adam

Table 5.  Architecture of EfficentNet-B4.

InputLayer (shape = (380,380,3))

EfficientNet-B4(backbone)

GlobalAveragePooling2D ()

BatchNormalization

Dropout (0.5)

Dense (1024)

ReLU activation function

Dense (512)

ReLU activation function

BatchNormalization

Dropout (0.5)

Dense (11)

Softmax activation function
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As seen, the optimal number of dense layers, and number of nodes in each are shown in Tables 3, 5, 7 and 9 for 
each model. As known, increasing number of dense layers and their nodes leads to increase in computation cost 
and may result in over fitting problem, and thus dropout layers were added to avoid this problem.

Additionally, the images were normalized using the mean and standard deviation of ImageNet. The details 
of architectures and hyperparameters for each model including EfficientNet, DenseNet, vision transformer, and 
CoatNet are demonstrated in Tables 3, 4, 5, 6, 7, 8, 9 and 10. The labeled microscopic dataset includes 11,000 
images. The dataset was divided into: training with 6600 images (60%), validation with 2200 images (20%), and 
testing with 2200 images (20%). Each of these subsets should have equal number of images belonging to eleven 
categories to avoid imbalance distribution.

Results discussion. This section discusses the results of three experiments carried out to classify parasitic 
eggs in microscopic images into 11 classes. The performance metrics including accuracy, recall, precision, and 

Table 6.  Hyperparameters of EfficentNet-B4.

Mini_batch_size = 64

Number of GPU = 1

Epochs = 20

Optimizer = Adam

Table 7.  Architecture of vision transformer.

InputLayer (shape = (224,224,3))

ViT-B_16 (backbone)

Dense (512)

ReLU

Dense (11)

Softmax activation function

Table 8.  Hyperparameters of vision transformer.

Mini_batch_size = 16

Gpu_num = 1

Epochs = 8

Optimizer = Adam

Table 9.  Architecture of CoAtNet0.

InputLayer (shape = (384,384,3))

CoatNet0(backbone)

GlobalAveragePooling2D ()

Dense (11)

Softmax activation function

Table 10.  Hyperparameters of CoAtNet0.

Mini_batch_size_per_gpu = 8

Gpu_num = 2

Epochs = 8

Optimizer = Adam

Reduce_on_plateau_settings = 
{factor = 0.1,min_lr = 0.00001,patience = 2}
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F1 scores were calculated in each experiment. The comparison between DenseNet121, EfficientNet-B4, vision 
transformer (vit-16 base), and CoAtNet0 was done to evaluate and highlight the capability of each method in 
parasitic egg recognition task.

The first experiment was done to evaluate the performance of EfficientNet-B4 CNN. The version B4 was 
selected because it can balance between high accuracy and high speed of training and inference. Various numbers 
of layers tuned were evaluated to find the best hyperparameters that were able to produce the highest performance 
in terms of accuracy, recall, precision, and F1 scores. Tables 11, 12, and 13 show the classification metrics for each 
category in each of three scenarios: tuning last 5 layers, tuning last 20 layers, and tuning last 40 layers, respectively.

Table 11.  Classification report of the EfficientNet-B4 after tuning last 5 layers.

Precision Recall f1-score

Ascaris lumbricoides 0.63 0.46 0.53

Capillaria philippinensis 0.62 0.86 0.73

Enterobius vermicularis 0.77 0.87 0.82

Fasciolopsis buski 0.89 0.69 0.78

Hookworm egg 0.94 0.97 0.96

Hymenolepis diminuta 0.69 0.79 0.73

Hymenolepis nana 0.85 0.80 0.82

Opisthorchis viverrine 0.81 0.64 0.71

Paragonimus spp. 0.83 0.59 0.69

Taenia spp. egg 0.69 0.78 0.73

Trichuris trichiura 0.64 0.81 0.71

Table 12.  Classification report of the EfficientNet-B4 after tuning last 20 layers.

Precision Recall f1-score

Ascaris lumbricoides 0.84 0.68 0.75

Capillaria philippinensis 0.54 0.98 0.69

Enterobius vermicularis 0.83 0.96 0.89

Fasciolopsis buski 0.93 0.84 0.88

Hookworm egg 0.96 0.98 0.97

Hymenolepis diminuta 0.66 0.79 0.72

Hymenolepis nana 0.94 0.81 0.87

Opisthorchis viverrine 0.95 0.62 0.75

Paragonimus spp. 0.81 0.65 0.72

Taenia spp. egg 0.94 0.74 0.83

Trichuris trichiura 0.85 0.82 0.84

Table 13.  Classification report of the EfficientNet-B4 after tuning last 40 layers.

Precision Recall f1-score

Ascaris lumbricoides 0.90 0.78 0.83

Capillaria philippinensis 0.87 0.89 0.88

Enterobius vermicularis 0.92 0.98 0.95

Fasciolopsis buski 0.95 0.95 0.95

Hookworm egg 0.99 0.99 0.99

Hymenolepis diminuta 0.74 0.93 0.82

Hymenolepis nana 0.97 0.94 0.96

Opisthorchis viverrine 0.90 0.84 0.87

Paragonimus spp. 0.93 0.69 0.80

Taenia spp. egg 0.91 0.96 0.93

Trichuris trichiura 0.90 0.95 0.93
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The recall, precision, and F1 scores were calculated for each class out of eleven classes as shown in Fig. 4. Then, 
the average of recall, precision, and F1 scores were found. Additionally, the average of accuracy was found. It is 
obvious that tuning last 40 layers of EfficientNet-B4 CNN was able to give the highest results in terms of average 
accuracy (90%), average recall (90%), average precision (91%), and average F1 score (90%). On the other hand, 
tuning only last 5 layers was not efficient and the metrics produced were low with average accuracy (75%), average 
recall (75%), average precision (76%), and average F1 score (75%). The EfficientNet was pre-trained with Ima-
geNet dataset which includes 1000 classes that are different from parasitic egg classes. The low metric of tuning 
only last 5 layers indicated that parameters of EfficientNet-B4 CNN were not able to extract informative features 
or presentations that were suitable for parasitic egg recognition. In other words, there was a need to tune more 
layers (last 40 layers scenario) to learn better parameters and more informative features that can differentiate 
between various types or categories of parasitic eggs. Additionally, the results of tuning last 40 layers show high 
F1 scores of recognizing Hookworm egg and Hymenolepis nana types of eggs. On the other hand, the results 
show low F1 scores for three classes of Paragonimus spp, Hymenolepis diminuta, and Ascaris lumbricoides which 
indicated inability of EfficientNet-B4 to distinguish between these types of eggs.

The confusion matrix of EfficientNet-B4 CNN after tuning the last 40 layers is shown in Fig. 5. The high 
values of elements in the main diagonal refer to a high accuracy of the model to recognize the parasitic eggs. 
The class 4 (Hookworm egg) was recognized perfectly with 199/200 correct predictions. On the other hand, the 
class 8 (Paragonimus spp.) was misclassified largely compared to other classes with 139/200 correct predictions. 
The majority of misclassified samples in class 8 were classified wrongly as class 5 (Hymenolepis diminuta) which 
indicated the similarity between features extracted by EfficientNet-B4 from microscopic images that belong to 
classes 5 and 8.

Figure 4.  Finetuning EfficientNet-B4 in three scenarios.

Figure 5.  Confusion matrix utilizing EfficientNetB4 after tuning 40 layers.
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Figure 6 shows activation maps of various parasitic egg classes utilizing EfficientNet-B4 before tunning 
(freezing layers) and after tuning of 40 layers. The maps illustrate the capability of EfficientNet being tuned 
to focus the attention on the objects (eggs) inside the microscopic images and ignore irrelevant staff. On the 
contrary, EficientNet-B4 with layers frozen was unable to highlight regions in the image that were relevant to 
the class of egg.

Figure 6.  Activation maps of various classes utilizing EfficientNetB4, where the left images are the activation 
maps after tuning the network, and the right images are the activation maps after freezing the network.

Table 14.  Classification report of the DenseNet121 after tuning last 20 layers. Significant values are in [bold].

Precision Recall F1-score Support

Ascaris lumbricoides 0.90 0.78 0.83 200

Capillaria philippinensis 0.75 0.84 0.79 200

Enterobius vermicularis 0.80 0.98 0.88 200

Fasciolopsis buski 0.99 0.89 0.93 200

Hookworm egg 0.99 0.97 0.98 200

Hymenolepis diminuta 0.72 0.96 0.83 200

Hymenolepis nana 1.00 0.80 0.89 200

Opisthorchis viverrine 0.80 0.88 0.84 200

Paragonimus spp 0.97 0.72 0.83 200

Taenia spp. egg 0.81 0.96 0.88 200

Trichuris trichiura 0.97 0.72 0.83 200

Accuracy 0.86 2200

Macro avg 0.88 0.86 0.86 2200
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The second experiment was done to evaluate the performance of DenseNet CNN. Different versions of 
DenseNet such as 121, 169, and 201 were evaluated and compared. The DenseNet with 121 layers was selected 
because it can balance between high accuracy and high speed of training and inference. Various numbers of layers 
tuned were evaluated to find the best hyperparameters that were able to produce the highest performance in terms 
of accuracy, recall, precision, and F1 scores. Table 14 shows the classification report for scenario of tuning last 
20 layers. The recall, precision, and F1 scores were calculated for each class from eleven classes. Then, the aver-
age of recall, precision, and F1 scores were found. Additionally, the average of accuracy was found. It is obvious 
that tuning last 20 layers of DenseNet121 CNN was able to give high results in terms of average accuracy (86%), 
average recall (86%), average precision (88%), and average F1 score (86%). The DenseNet121 was pre-trained 
with ImageNet dataset which includes 1000 classes that are different from parasitic egg classes. The scenario 
of tuning last 20 layers was found to be able to extract informative features that were suitable for parasitic egg 
recognition. Additionally, it learnt better parameters that can differentiate between various types or categories 
of parasitic eggs. The results of tuning last 20 layers showed high F1 scores for Hookworm egg and Fasciolopsis 
buski types of eggs. On the other hand, the results showed low F1 score of class Capillaria philippinensis which 
indicated inability of DenseNet121 to distinguish this type of parasitic egg.

The confusion matrix of DenseNet121 CNN after tuning the last 20 layers is shown in Fig. 7. The high values 
of elements in the main diagonal refer to high accuracy of the model to recognize the parasitic eggs. The classes 
2 and 4 (Enterobius vermicularis and Hookworm egg) were recognized perfectly with 196/200 and 195/200, 
respectively of correct predictions. On the other hand, the class 8 (Paragonimus spp.) was misclassified largely 
compared to other classes with 145/200 correct predictions. The majority of misclassified samples in class 8 were 
classified wrongly as class 5 (Hymenolepis diminuta) which indicated the similarity between features extracted 
by DenseNet121 from microscopic images that belong to classes 5 and 8.

Figure 8 shows activation maps of various parasitic egg classes utilizing DenseNet121 before tunning (freez-
ing layers) and after tuning of 20 layers. The maps illustrate the capability of DenseNet being tuned to focus 
the attention on the objects (eggs) inside the microscopic images and ignore irrelevant staff. On the contrary, 
Densenet121 with layers frozen was unable to highlight regions in the image that were relevant to the class of egg.

The third experiment was done to evaluate the performance of vision transformer. The version 16 was selected 
because it has fewer parameters. The vision transformer was pre-trained on ImageNet-21k, a dataset consisting 
of 14 million images and 21 k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 
1 k classes. These datasets are different from parasitic egg classes. In Table 15, the recall, precision, and F1 scores 
were calculated for each class from eleven classes.

The fourth experiment was done to evaluate the performance of CoAtNet. The version 0 was selected because 
it has fewer parameters, fewer blocks and channels and can produce higher accuracy than other CNN-only based 
models. The CoAtNet was pre-trained with ImageNet dataset which includes 1000 classes that are different from 
parasitic egg classes. In Tables 16 and 17, the recall, precision, and F1 scores were calculated for each class from 
eleven classes.

Figure 7.  Confusion matrix of the DenseNet121 after tuning 20 layers.
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Then, the average of recall, precision, and F1 scores were found. Additionally, the average of accuracy was 
found. There were two scenarios to use CoAtNet as shown Fig. 9. The first scenario was to freeze all layers in the 
backbone and tune only head classification layers. This scenario produced the worst performance in terms of 
accuracy, recall, precision, and F1 scores as shown in Fig. 9 with 71% average accuracy, and 71% average F1 score. 
Freezing all layers of backbone indicated that parameters of CoAtNet CNN were not able to extract informative 
features or presentations that were suitable for parasitic egg recognition. In other words, there was a need to tune 
more layers to learn better parameters and more informative features that can differentiate between various types 
or categories of parasitic eggs. Therefore, the second scenario was implemented to tune all layers in the CoAtNet 
backbone. This scenario was able to give the highest performance in terms of average accuracy (93%), average 
recall (93%), average precision (94%), and average F1 score (93%) as shown in Fig. 9. The results of tuning all 
layers showed high F1 scores for the most of parasitic egg types. On the other hand, the results showed low F1 
scores for two classes of Hymenolepis diminuta (82%), and Paragonimus spp (86%). However, the F1 score of 
Paragonimus spp in CoAtNet0 is still higher than one of EfficientNet-B4 (80%) and one of DenseNet121 (83%).

The confusion matrix of CoAtNet after tuning all layers is shown in Fig. 10. The high values of elements in 
the main diagonal refer to high accuracy of the CoAtNet to recognize the parasitic eggs. The classes 0, 1, 2, 4, 
6, 9, and 10 were recognized perfectly with 199, 194, 197, 200, 196, 195, and 198 of correct predictions out of 

Figure 8.  Activation maps of various classes utilizing DenseNet121, where the left images are the activation 
maps after tuning the network, and the right images are the activation maps after freezing the network.

Table 15.  Classification report of the vision transformer after tuning all layers. Significant values are in [bold].

Precision Recall F1-score Support

Ascaris lumbricoides 0.93 0.92 0.92 200

Capillaria philippinensis 0.63 0.97 0.77 200

Enterobius vermicularis 0.67 0.99 0.80 200

Fasciolopsis buski 0.99 0.94 0.97 200

Hookworm egg 0.94 0.99 0.97 200

Hymenolepis diminuta 0.84 0.86 0.85 200

Hymenolepis nana 1.00 0.82 0.90 200

Opisthorchis viverrine 0.99 0.41 0.58 200

Paragonimus spp 0.87 0.86 0.86 200

Taenia spp. egg 0.99 0.81 0.89 200

Trichuris trichiura 0.99 0.89 0.93 200

Accuracy 0.86 2200

Macro avg 0.89 0.86 0.86 2200



15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14475  | https://doi.org/10.1038/s41598-023-41711-3

www.nature.com/scientificreports/

200, respectively. On the other hand, the class 5 (Hymenolepis diminuta) was misclassified largely compared to 
other classes with 141/200 correct predictions. The majority of misclassified samples in class 5 were classified 
wrongly as class 8 (Paragonimus spp.) which indicated the similarity between features extracted by CoAtNet 
from microscopic images that belong to classes 5 and 8. Additionally, the classes 0 and 1 of Ascaris lumbricoides 
and Capillaria philippinensis were recognized well in CoAtNet (199/200 and 194/200 respectively) compared to 
(155/200 and 178/200 respectively in EfiientNet-B4) and (155/200 and 168/200 respectively in DenseNet121).

Table 16.  Classification report of the CoAtNet0 after tuning only the classification head.

Precision Recall F1-score

Ascaris lumbricoides 0.61 0.34 0.44

Capillaria philippinensis 0.56 0.82 0.67

Enterobius vermicularis 0.73 0.81 0.77

Fasciolopsis buski 0.69 0.87 0.77

Hookworm egg 0.95 0.95 0.95

Hymenolepis diminuta 0.55 0.64 0.59

Hymenolepis nana 0.96 0.75 0.84

Opisthorchis viverrine 0.65 0.65 0.65

Paragonimus spp. 0.66 0.42 0.51

Taenia spp. egg 0.88 0.79 0.83

Trichuris trichiura 0.69 0.81 0.75

Table 17.  Classification report of the CoAtNet0 after tuning all layers.

Precision Recall F1-score

Ascaris lumbricoides 0.81 0.99 0.89

Capillaria philippinensis 0.92 0.97 0.95

Enterobius vermicularis 0.92 0.98 0.95

Fasciolopsis buski 0.93 0.87 0.90

Hookworm egg 1.00 1.00 1.00

Hymenolepis diminuta 0.97 0.70 0.82

Hymenolepis nana 0.99 0.98 0.98

Opisthorchis viverrine 0.99 0.89 0.94

Paragonimus spp. 0.82 0.90 0.86

Taenia spp. egg 1.00 0.97 0.99

Trichuris trichiura 0.97 0.99 0.98

Figure 9.  Finetuning CoAtNet0 in two scenarios.
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Figure 11 shows activation maps and attention score of various parasitic egg classes utilizing CoAtNet0. 
The maps and scores illustrate the capability of CoAtNet0 to focus the attention on the objects (eggs) inside the 
microscopic images and ignore irrelevant staff.

Figure 12 compares between the proposed solution of CoAtNet and several baselines including CNN-only 
based models such as EfficientNet-B4 with 40 layers tuned (90% accuracy and 90% F1 score), DenseNet121with 
20 layers tuned (86% accuracy and 86% F1 score), and EfficientNet-B7 with layers frozen and support vector 
machine (SVM)  tuned33 (82% accuracy and 82% F1 score). Similarly, Fig. 12 compares CoAtNet with other 
methods used for parasitic egg  recognition33 such as EfficientDet with EfficientNet-v2  backbone33 (88% accuracy 
and 85% F1 score). The results showed superior performance of convolution and attention network method 
(93% accuracy and 93% F1 score) compared to baseline methods. Additionally, the CoAtNet0 that has lower 
computational cost was found to outperform the fusion decision method (92% accuracy and 93% F1 score)33 
that has complex architecture of two backbones used to extract features and fuse the decision produced in the 
output layers.

The combination of two techniques including attention and convolution in CoAtNet plays role to improve 
parasitic egg recognition because it combines properties of both models (convolutional network and vision 
transformer). The convolutional neural network gives the task of parasitic egg recognition more generalization, 

Figure 10.  Confusion matrix of the CoatNet0 after tuning all layers.

Figure 11.  Activation maps of various classes of CoAtNet0 (first row) and attention score visualization of 
CoAtNet0 (second row).
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and efficiency. On the other hand, the vision transformer gives the task larger model capacity that can benefits 
from the large parasitic egg dataset. As a result, the previous advantages of this combination lead to produce 
a higher testing accuracy that cannot be achieved by a standalone convolutional network such as EfficientNet 
and DenseNet.

Finally, it is necessary to study the cost of each model in terms of time complexity and memory efficiency. As 
shown in Table 18, CoAtNet0 was able to balance between inference time and number of parameters compared 
to CNN bae models (DenseNet121 and EfficientNet-B4) and self-attention-based vision transformer. CoAtNet0 
can produce lower inference time and number of parameters than vision transformer. However, CoAtNet0 has 
higher inference time and number of parameters than EfficiientNet-B4 and DenseNet121.

This paper shaded light on an interesting challenge and contributed to the body of knowledge as follows:

1. Various pre-trained CNNs such as DenseNet121 and EfficientNet-B4, and pre-trained vision transformer 
were fine-tuned with parasitic eggs dataset for classification purposes. EfficientNet-B4 that has five layers 
tuned got the worst performance (75% accuracy and 75% F1 score). On the other hand, EfficientNet-B4 
that has 40 layers tuned produced the best performance (90% accuracy and 90% F1 score). Additionally, 
DenseNet121 that has 20 layers tuned gave 86% accuracy and 86% F1 score. Furthermore, vision transformer 
gave 86% accuracy and 86% F1 score.

2. A novel solution utilizing the concept of combining convolution and attention to recognize eleven types of 
parasitic eggs. A CoAtNet was proposed for parasitic egg recognition in microscopic images for classifying 
eggs into eleven categories. The pre-trained CoAtNet that was used after freezing all layers except the classifi-
cation heads gave the worst performance of 71% accuracy and 71% F1 score. On the other hand, pre-trained 
CoAtNet with all layers tuned produced the best performance of 93% accuracy and 93% F1 score.

3. This work targeted a novel dataset that was proposed in ICIP2022 challenge to recognize eleven types of 
parasitic eggs acquired under various complex conditions such as illuminations and resolutions. The pro-
posed solution of convolution and attention was able to outperform not CNN-only based models and self-
attention vision transformer, but also object detection method of EfficientDet with EfficientNet-v2 backbone. 
This finding proposes a novel technique of adding CoAtNet as a backbone in object detector to enhance the 
detection performance.

Conclusion and future work
This paper presented a fast, and highly accurate technique to recognize parasitic eggs in microscopic images and 
classify them into eleven categories. Various methods such as convolutional neural network (CNN) based models 
and convolution and attention (CoAtNet) based models were evaluated and compared using Chula-ParasiteEgg 
microscopic image dataset that was proposed in ICIP2022. The proposed identification technique of CoAtNet 

Figure 12.  Comparison between the proposed CoAtNet and the baseline methods.

Table 18.  Comparison between methods in terms of inference time and memory efficiency.

Architecture Number of parameters Inference time (s) Flops (B)

DenseNet121 7,376,215 0.082 16.8

EfficientNet-B4 20,049,514 0.094 9

ViT-B_16 86,198,027 0.111 35.2

CoatNet0 (proposed) 22,623,557 0.095 26.3
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was trained and fine-tuned with eleven types of parasitic eggs including various egg sizes and numerous condi-
tions such as illumination, resolution, and blurring. A CoAtNet was found to reduce diagnosis errors and give 
high sensitivity. It was able to outperform other CNN based models such as EfficientNet-b4 and DenseNet121 
and self-attention based models such as vision transformer. An average accuracy of 93%, and an average F1 score 
of 93% were resulted from the proposed solution which helps to diagnose the most common intestinal parasitic 
infections in humans in low-and-middle-income countries. This also contributed to preserve the status of eco-
nomic and health sectors in countries. The finding opens door to integrate the proposed solution in automated 
parasitological diagnosis.

In this study, the need to tune all layers of model requires powerful machine with multiple GPUs and large size 
of RAM memory to fine-tune large number of parameters which is costly process. Therefore, we used CoAtNet0 
version because it has lower number of parameters compared to other versions to reduce the training time and 
hardware requirement and thus reduce the cost. Additionally, the selection of the proposed CoAtNet0 has a 
limitation related to inability to localize and classify parasitic eggs if more than one egg with different categories 
are available in the same microscopic image.

Hence, we intend to enhance the recognition performance by training bigger versions of convolution and 
attention networks, but this improvement requires more resources such as cloud platform with cluster of several 
machines, several GPUs, and memory. Additionally, the results showed superior performance of convolution 
and attention network compared to convolution-only models and thus they highlighted the potential of adding 
CoAtNet as a backbone in object detector to detect and classify multiple eggs with different categories in one 
microscopic image. Furthermore, augmentation of microscopic images by blurring and adding noise can enhance 
the recognition performance.

Data availability
The data that support the findings of this study are available from University of Bristol, UK, and Chulalongkorn 
University, Thailand under license Creative Commons Attribution. The data are publicly available in this link: 
https:// ieee- datap ort. org/ compe titio ns/ paras itic- egg- detec tion- and- class ifica tion- micro scopic- images.
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