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Robust analysis of a novel 
PANoptosis‑related 
prognostic gene signature 
model for hepatocellular 
carcinoma immune infiltration 
and therapeutic response
Yongguang Wei 1,2,3, Chenlu Lan 1,2,3, Chengkun Yang 1,2,3, Xiwen Liao 1,2,3, Xin Zhou 1,2,3, 
Xinlei Huang 1,2,3, Haixiang Xie 1,2,3, Guangzhi Zhu 1,2,3 & Tao Peng 1,2,3*

PANoptosis, an interplay between pyroptosis, apoptosis, and necroptosis, is deeply involved in cancer 
development and immunity. However, the influence of PANoptosis in hepatocellular carcinoma (HCC) 
remains to be further investigated. The differentially expressed PANoptosis‑related genes (PANRGs) 
was screened in The Cancer Genome Atlas (TCGA) database. Accordingly, mutation, bioinformatics, 
and consensus clustering analyses were performed. Then, a prognostic risk model was developed 
by least absolute shrinkage and selection operator (LASSO) Cox regression. Furthermore, the 
prognostic value, immunity correlation and therapeutic response prediction ability of risk model were 
explored. A total of 18 PANRGs were differently expressed in the TCGA‑HCC cohort and were mainly 
involved in cancer‑ and cell death‑related signal pathways. Using unsupervised clustering method, 
we identified two PANRGs‑mediated clustering patterns. The remarkable differences between the 
two clusters on overall survival (OS) and clinical features were demonstrated respectively. Based 
on the five‑gene prognostic risk model, the calculated PANRG‑scores were used to categorize the 
subgroups as high‑ and low‑risk. Notably, the high‑risk subgroup had a dismal prognosis and exhibited 
much lower immune infiltration levels of mast cells, nature killer cells and pDCs, but higher levels 
of aDCs, iDCs and Treg cells than those in the low‑risk subgroup. Furthermore, we constructed a 
reliable nomogram combining clinical traits and PANRG‑score to predict the OS of HCC patients. The 
significantly negative correlation between PANoptosis and tumor mutation burden (TMB), ferroptosis 
were revealed. In drug sensitivity analysis, the high‑risk subgroup had a considerably lower TIDE 
score, suggesting a preferable response to immunotherapy, and may be more sensitive to Tipifarnib, 
Imatinib, Doxorubicin, and Gemcitabine. The upregulated mRNA expressions of FADD were validated 
in 16 paired HCC tissues of Guangxi cohort. Based on PANoptosis‑related genes, an integrated risk 
signature was constructed to provide a roadmap for patient stratification and predict HCC patient’s 
prognosis. The patients with the higher PANRG‑score may carry a dismal survival and relatively low 
immune infiltration, but a potential better immunotherapy response. Therefore, future HCC therapy 
perspectives should emphasize the setting of PANoptosis to achieve a personalized, practicable and 
effective therapeutic regimen.
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Abbreviations
AUC   Area under curve
C-index  Concordance index
CNV  Copy number variations
CTLA-4  CTL antigen 4
CTRP  Cancer therapeutics response portal
ES  Enrichment score
FDR  False discovery rate
GDSC  Genomics of drug sensitivity in cancer
GEO  Gene expression omnibus
GO  Gene oncology
GSCA  Gene set cancer analysis
GSEA  Gene set enrichment analysis
GSVA  Gene set variation analysis
HCC  Hepatocellular carcinoma
HPA  Human protein atlas database
IC50  Half-maximal inhibitory concentrations
ICGC   International Cancer Genome Consortium
KEGG  Kyoto encyclopedia of genes and genomes
LASSO  Least absolute shrinkage and selection operator
LPT1  Liproxstatin-1
OS  Overall survival
PANRGs  PANoptosis-related genes
PCA  Principal component analysis
PCD  Programmed cell death
PCR  Polymerase chain reaction
PD-1  Programmed cell death-1
PD-L1  Programmed cell death ligand 1
PPI  Protein–protein interactions
ROC  Receiver operating characteristic
ROS  Reactive oxygen species
SNP  Single nucleotide polymorphisms
ssGSEA  Single-sample gene set enrichment analysis
STRING  Search tool for the retrieval of interacting genes
TCGA   The cancer genome atlas
TIDE  Tumor immune dysfunction and exclusion
TMB  Tumor mutation burden
t-SNE  T-distributed stochastic neighbor embedding

PANoptosis, a newly discovered cell death pathway with morphological and biochemical properties, highlights 
the interface between the three Programmed cell death (PCD) pathways, namely pyroptosis, apoptosis, and 
necroptosis. Substantial evidence has shown PANoptosis, attaching importance to infectious or metabolic dis-
eases, autoimmunity and cancer, is an interlace of immune  response1–6. In recent years, emerging molecular 
targeted agents and immunotherapy display a great application prospect in systematic therapy of liver cancer. 
PCD enables elimination of modified cancer cells to impede cancer progression through the patients’ own 
immune  system7. Immunotherapy, particularly immune checkpoint inhibitor, efficiently triggered the immune 
system to attack tumor cells by hindering immune escape. Nevertheless, drug resistance and progressive disease 
during immunotherapy really make us frustrated and they may be associated with resistance to drug-induced cell 
 death8. Thus, more researches on seeking in-depth understanding of primary PCD types, including PANoptosis, 
should be performed to overcome cell death-related drug resistance, improve medication sensitivity and develop 
customized therapy regimens for HCC patients.

Hepatocellular carcinoma (HCC) accounts for 85%-90% of primary liver cancer cases and is a prevalent 
malignant tumor of the digestive system  worldwide9. In contemporary clinical practice, chronic viral hepatitis 
and alcoholic or nonalcoholic fatty liver disease are the dominating etiologies of  HCC9,10. Since HCC frequently 
develops asymptomatically, most patients were already in a late stage when they were initially diagnosed, mean-
ing they had missed the chance of curative resection. Despite the ongoing therapeutic strategy improvement, the 
long-term survival of HCC patients is still  low11, which exerts a heavy burden on  society9. According to a retro-
spective study, 52%, 18%, and 9% of patients survived at 5-, 10-, and 15-years respectively after having hepatic 
resection 12. Cell death is a crucial field in the genesis and development of liver carcinogenesis. Under specific 
circumstances, interactive model of PANoptosis enables different cell death pathways to change from one mode 
to another. The primary controlling regulators of PANoptosis have been identified as PANoptosomes, a cytoplas-
mic polymeric protein  complex5,13,14. Acting as focal points, PANoptosomes induces mutiple types of cell death, 
mainly including pyroptosis, apoptosis, and  necroptosis5,15. It is demonstrated that PANoptosomes can cause 
viral-induced fulminant hepatitis in mice by activating the coronavirus murine hepatitis  virus16,17. During the 
viral infection, inflammatory PANoptosis can be triggered to offer host protection when AIM2 controls the innate 
immune sensors pyrin and ZBP118. Conversely, ADAR1 may inhibit PANoptosis mediated by ZBP1, which drives 
 carcinogenesis19. Therefore, in contrast to the typically detrimental effects of an inflammatory state, PANoptosis 
may be beneficial to  cancer20,21. For example, TNF- and IFN-induced PANoptosis creates a lethal mechanism 
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to thwart the progression of  cancer22. Moreover, PANoptosis induced by combined therapies of metformin and 
doxorubicin can inhibit the melanoma cells from progressing in vitro and in vivo23. Besides, the researchers have 
revealed that the PANoptosis-related grading system also makes sense to gastrointestinal  cancer24,25.

Currently, for HCC with dismal prognosis, the study on cellular and molecular mechanism of its carcino-
genesis and progression is worth carrying out in depth. More studies are still needed to clearly comprehend the 
specific involvement that PANoptosis plays in the evolution of HCC. Therefore, we concentrate on the prognostic 
and therapeutic significance of PANoptosis gene signatures in the present study. Robust analysis was carried 
out to identify differently expressed and prognostic PANRGs which contributed to construct a PANRG-score 
for HCC patients. Ultimately, the PANRG-score makes sense in terms of prognostic risk stratification, tumor 
immunoinfiltration evaluation, and therapeutic response prediction.

Results
Identification of differentially expressed PANRGs. The graphical abstract containing the flow chart 
of methods and the main results in our study was showed in Fig. 1A total of 29 PANoptosis-related genes (PAN-
RGs) presented in Supplementary Table S1 were identified from the previous literatures. Using differential gene 
expression analysis in TCGA-HCC cohort, a heatmap illustrated that a total of 18 PANRGs (AIM2, PYCARD, 
CASP3, CASP8, RIPK1, FADD, GSDME, SCAF11, NR2C2, GSDMD, NLRP3, ADAR, IL1B, IRF8, CASP4, 
NLRP12, CASP6, PARP1) were differentially expressed between HCC and normal liver tissues (Fig. 2A). The 
distributions of PANRGs copy number variations (CNV) alterations on chromosomes were shown on a Circos 
graph (Supplementary Fig. 1A). The correlation network that was comprised of all the PANRGs showed the 
positive correlations among every PANRGs except GSDMD (Fig. 2B). The protein–protein interactions (PPI) 
network of differently expressed PANRGs was fashioned in STRING and FADD, RIPK1, PYCARD, IL1B, CASP4, 
CASP3, NLRP3, CASP8, MLKL and AIM2 were determined as the hub genes of network (Fig. 2C).

Landscape of genetic variation of differentially expressed PANRGs.. To explore the genetic vari-
ation landscape of HCC, we summarized the overall incidence and frequency of CNV and somatic mutations 
based on the TCGA-HCC dataset. The results suggested that the main variant classification was missense muta-
tion and the most frequent variant type was single nucleotide polymorphisms (SNP). Base transition C to A 
ranked as the chief single nucleotide variants (SNV) occurrence class (Supplementary Fig. 1B). In addition, in 
terms of the genetic alterations and the mutation frequencies of the differentially expressed PANRGs, the results 
from cBioPortal website showed that six genes had a mutation rate ≥ 3%, in which GSDMD was the gene with 
the highest mutation rate of 10% (Fig. 2D).

Functional enrichment analysis of differentially expressed PANRGs. The gene ontology 
(GO) enrichment analysis revealed that the 18 differentially expressed PANRGs were significantly correlated 
with “pyroptosis, regulation of interleukin-1 production, response to tumor necrosis factor, positive regula-
tion of cytokine production, apoptotic process, regulation of apoptotic signaling pathway, and regulation of 
cytokine − mediated signaling pathway” (Fig.  1E). The Kyoto encyclopedia of genes and genomes (KEGG) 
enrichment analysis demonstrated that they primarily participated in the HCC-related pathways, such as “Toll-
like receptor signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, Apoptosis, Hepa-
titis C, C-type lectin receptor signaling pathway, IL-17 signaling pathway, Cytosolic DNA-sensing pathway, and 
Alcoholic liver disease” signaling pathways (Supplementary Fig. 1C). These results suggested that PANoptosis 
may develop an underlying regulatory mechanism to influence HCC carcinogenesis, cell death and liver diseases.

Identification of the PANRGs‑mediated HCC classification patterns. Based on the unsupervised 
clustering approach and the expression profiles of PANRGs in the TCGA-HCC dataset, two distinct regulation 
patterns were identified (Fig. 3A). The heatmap presented not only the gene expression profile of differentially 
expressed genes but also depicted the significantly different clinicopathological factors, such as T staging, patho-
logical grade and clinical TNM stage between cluster 1 and 2 (Fig. 3B). In the principal component analysis 
(PCA) analysis, two PANRGs-mediated patterns could be categorized (Fig. 3C). The PANRGs-mediated cluster 
1 (C1) incorporated 257 cases, while cluster 2 (C2) incorporated 86 cases and C1 has a significant survival 
advantage over C2 (Fig.  3D). In conclusion, the PANRGs-mediated HCC cluster pattern carried a favorable 
stratification ability of tumor stage and prognostic risk.

Development of a PANRGs‑related prognostic risk signature. On condition that both value of P and 
KM < 0.05, a total of 5 candidate gene signatures were screened from PANRGs utilizing univariate analysis (Fig. 4A). 
After being further refined by the least absolute shrinkage and selection operator (LASSO) Cox regression analysis 
(Fig. 4B,C), a PANRGs-related prognostic risk signature was ultimately established. The formula was developed: 
PANRG-score = (0.020 × FADD) + (0.157 × GSDME) + (0.036 × CASP7) + (0.074 × SCAF11) + (0.0004 × DDX3X). 
Based on the median of calculated risk score, a total of 343 TCGA-HCC patients were categorized equally into 
high- and low-risk groupings and the heatmap showed the expression profile of five key genes between the dif-
ferent subgroups (Fig. 4D), in which FADD, GSDME and SCAF11 were the differentially expressed PANRGs 
(Figs. 2A and 4D). The survival analysis demonstrated the high-risk subgroup took on a significantly shorter 
overall survival (OS) period and a greater mortality risk compared to the low-risk group (Fig. 5A,B). Receiver 
operating characteristic (ROC) analysis manifested that the area under curve (AUC) values were 0.707 for 
1-year, 0.622 for 3-year, and 0.562 for 5-year OS respectively, which proved a promising survival prediction 
ability of our PANRG-score signature (Fig. 5C). Actually, the prognostic ability of PANRG-score alone was lim-
ited and combination with other clinical parameters, such as tumor stage and differentiated degree, should be 
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considered. Additionally, the reliable clustering ability of signature was demonstrated by principal component 
analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis in TCGA and ICGC cohorts 
(Supplementary Fig. 2A–D).

Validated the prognosis value and biological functions of the PANRGs‑related signature 
model. Furthermore, the Kaplan–Meier survival analyses in the validation datasets highlighted the prog-
nostic ability of PANRG-score model ulteriorly and verified the worse prognosis in the high-risk subgroup 
(Fig. 5D–F). Using Gene Set Enrichment Analysis (GSEA) software program, we discovered multiple cell death- 
and cancer-related pathways such as “cell kill, JAK-STAT signal pathway, T cell and nature killer cell mediated 
cytotoxicity, VEGF signal pathway, and B cell, T cell and Toll like receptor signal pathway” were considerably 
abundant in the low-risk subgroup (Supplementary Fig. 3).

Building a predictive nomogram. The results of univariate and multivariate Cox regression analyses 
were exhibited in a forest map (Fig. 6A,B), in which PANRG-score was a reliable OS predictor of HCC patients 
(HR = 2.854, P < 0.05). The muti-ROC analysis suggested PANRG-score with the AUC value of 0.704 had a pref-
erable prognostic value for HCC patients compared with other clinicopathological factors (Fig. 6C). Further-
more, the PANRG-scores were remarkably different between the various clinical stages (T-stage1 vs. T-stage 3; 
Stage I vs. Stage II) and pathological grades (Grade1 vs. Grade3). Hence, the PANRG-score risk model could 

Figure 3.  (A) Based on the PANRGs expression level in TCGA-HCC cohort, two PANoptosis-related clusters 
were identified by consensus clustering analysis. (B) The heatmap presented the gene expression profile of 
differentially expressed genes in the TCGA-HCC dataset and illustrated that the clinicopathological factors, 
such as T staging, pathological grade and clinical TNM stage were significantly different between the two 
clusters. *P < 0.05, ** P < 0.01, *** P < 0.001. (C) The independence of the two clusters in the TCGA-HCC dataset 
was established in principal component analysis. (D) Kaplan–Meier OS curves for the two clusters in the 
TCGA-HCC dataset demonstrated that Cluster 1 had a significant survival advantage over Cluster 2. PANRGs, 
PANoptosis-related genes; TCGA, the Cancer Genome Atlas database; HCC, hepatocellular carcinoma; TNM; 
tumor, node and metastasis; OS, overall survival.
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be predictive of tumor growth and malignant degree (Fig. 6D–G). To comprehend the impact on prognosis of 
HCC patients, a nomogram featuring PANRG-score and clinicopathological characteristics was drawn for the 
prediction of 1-, 3-, and 5-year OS and its C-index is 0.725 (Fig. Supplementary 4A). Moreover, the calibration 
curves illustrated that the comprehensive nomogram model carried an accurate predictive effectiveness of early 
prognosis (Fig. Supplementary 4B,C). To make manipulation and usage easier, the nomogram was adapted into 
a web-based calculator, by which we can enter or select the specific value of clinical parameter and then the 
predicted survival of HCC patient can be showed correspondingly (https:// yongg uangw ei. shiny apps. io/ DynNo 
mapp/; Supplemental Fig. 5).

Immune‑related, TMB, and drug‑sensitivity analysis of PANRGs. In single-sample Gene Set 
Enrichment Analysis (ssGSEA) of TCGA-HCC cohort, the high-risk subgroup exhibited much lower immune 
cell infiltration levels of mast cells, NK cells and pDCs, but higher levels of aDCs, iDCs and Treg than those in 
the low-risk subgroup. For immune-associated functions, the high-risk subgroup displayed the higher activity 
of MHC class I, but the lower activity of cytolytic activity, type I and II IFN Reponses (Fig. 7A,B). In the ICGC-
HCC cohort, these findings were partially verified (Fig. 7C,D). In addition, the negative correlation between 
tumor mutation burden (TMB) and PANRG-score was revealed by spearman’s correlation analysis and the nega-
tive correlations between TMB and DDX3X, CASP7, GSDME expression levels were also uncovered (Fig. 7E–H, 
all P < 0.005). In Cancer Therapeutics Response Portal (CTRP) database, we noticed the GSMDE, FADD and 
DDX3X expression levels were positively corelated with the multiple drugs sensitivity in HCC patients, while 
there was no significant correlation result of SCAF11 or CASP7 (Fig. 8A). Using “pRRophetic” R package, the 
drug sensitivity analysis of specific chemotherapeutics and targeted therapy agents for HCC showed that eight 
medications (Sorafenib, Nilotinib, Axitinib, Erlotinib, Dasatinib, Cisplatin, Docetaxel, and Obatoclax) displayed 
the significantly higher half-maximal inhibitory concentrations (IC50) in the high-risk patients, whereas Tipi-
farnib, Imatinib, Doxorubicin, and Gemcitabine had significantly lower IC50, which suggested that the patients 
with high PANRG-score are more likely susceptible to Tipifarnib, Imatinib, Doxorubicin, and Gemcitabine (all 
P < 0.05, 8B). A computationally based online program called Tumor Immune Dysfunction and Exclusion (TIDE; 
http:// tide. dfci. harva rd. edu/) can stimulate body immune system and forecast an immunotherapy response. 
High TIDE could indicate non-responders whose suppressive cells inhibit T cell infiltration. We observed that 
the high-risk patients had markedly lower TIDE and immune dysfunction scores but higher immune exclusion 
scores than those of the low-risk patients (all P < 0.001, 8C-E).

Figure 4.  (A) Forest plot illustrated the result of univariate Cox regression analysis in TCGA-HCC dataset, 
in which five candidate genes were screened preliminarily (all P < 0.05). (B,C) LASSO regression analysis was 
utilized to further diminish dimensionality and formulate the prognostic risk model based on the TCGA-HCC 
dataset. (D) Heatmap showed the expression profile of five genes in PANRGs-related prognostic risk signature 
between the high- and low-risk subgroups. TCGA, the Cancer Genome Atlas database; HCC, hepatocellular 
carcinoma; LASSO, least absolute shrinkage and selection operator; PANRGs, PANoptosis-related genes.

https://yongguangwei.shinyapps.io/DynNomapp/
https://yongguangwei.shinyapps.io/DynNomapp/
http://tide.dfci.harvard.edu/
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Validating the gene expression of FADD and exploring the correlation between PANoptosis 
and ferroptosis, cuproptosis. Ferroptosis and cuproptosis are the novel forms of PCD and are promising 
as the momentous targets for HCC  therapeutics26,27. Therefore, we investigate the potential connection between 
PANoptosis and ferroptosis, cuproptosis. In Spearman analysis, the negative association between PANRG-score 
and the calculated ES of ferroptosis was significant (Fig. 9A; R = -0.13, P < 0.05). However, the cuproptosis ES and 
the PANRG-score do not significantly correlate (Fig. 9B). Finally, FADD, as an element of PANRG-score signa-
ture, one of the hub genes of PPI network on differentially expressed PANRGs, and the gene related to multiple 
medicines, is demonstrated to be a master regulator in HCC  development28. In the ICGC-HCC and Guangxi 

Figure 7.  (A–D) In terms of 13 immune-related functions and the 16 types of immune infiltration cells, 
Comparison of their enrichment scores the between the high- and low-risk subgroups were conducted in the 
TCGA (A,B) and ICGC (C,D) cohorts respectively. *P < 0.05, ** P < 0.01, *** P < 0.001. (E–H) The negative 
correlations were revealed between the TMB and PANRG-score, DDX3X, CASP7, GSDME expression levels 
in TCGA-HCC dataset. ICGC, International Cancer Genome Consortium; TMB; Tumor Mutation Burden; 
PANRG, PANoptosis-related gene; TCGA, the Cancer Genome Atlas database; HCC, hepatocellular carcinoma.
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cohort, the FADD gene expression level, compared with normal liver tissue, was also considerably augmented in 
HCC tissue (Fig. 9C,D). However, there is no clear difference at the protein level (Fig. 9E).

Discussion
PCD refers to an activated death process in the innate immune system and aberrant physiological states or 
diseases, which sustains the balance of the internal  environment29. The bidirectional co-ordinations between 
different PCDs have been revealed. For example, FADD and caspase-8 were discovered to be the stimulations 

Figure 8.  (A) In CTRP database, the correlations between the FADD, DDX3X, GSDME expression level and 
multiple drug sensitivity in HCC patients were discovered. Red indicates a positive correlation (the higher 
gene expression level carries the greater drug sensitivity), while blue indicates vice versa. The size represents 
the strength of drug targeting. (B) Drug sensitivity analysis of specific chemotherapeutics and targeted therapy 
agents for HCC showed that eight medications (Sorafenib, Nilotinib, Axitinib, Erlotinib, Dasatinib, Cisplatin, 
Docetaxel, and Obatoclax) displayed significantly higher IC50 in high-risk patients, whereas Tipifarnib, 
Imatinib, Doxorubicin, and Gemcitabine had significantly lower IC50, suggesting that the patients with high 
PANRG-score were more susceptible to Tipifarnib, Imatinib, Doxorubicin, and Gemcitabine. (C–E) The 
calculated scores of TIDE, immune dysfunction, and immune exclusion were compared between the high- and 
low-risk subgroups. The result is that the high-risk patients had markedly lower TIDE and immune dysfunction 
scores but higher immune exclusion scores. *** P < 0.001. CTRP, Cancer Therapeutics Response Portal; 
TCGA, the Cancer Genome Atlas database; HCC, hepatocellular carcinoma; IC50; half-maximal inhibitory 
concentrations; TIDE, Tumor Immune Dysfunction and Exclusion.
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of NLRP3 inflammasomes, which demonstrated the connection between apoptotic and pyroptosis  processes30. 
Furthermore, Taabazuing CY et al. demonstrated that the apoptotic caspase-3 and 7 pointedly block pyroptosis 
by cleaving GSDMD from the inflammatory  caspases31. Liproxstatin-1 (LPT1), a ferroptosis inhibitor, can defend 
against steatosis and steatohepatitis in the mice with metabolic associated fatty liver disease and PANoptosis 
may be involved in regulatory  process32. Consistently, our result also detected the potential connection between 
PANoptosis and ferroptosis. One of the characteristics of cancer in an immunosuppressive tumor microenviron-
ment is blocking cell death. Tumor cells frequently have innate resistance in the apoptotic pathways, despite the 
fact that many therapy regimens targeting apoptotic pathways achieve good clinical  effectiveness8. Therefore, to 
surmount this nature of malignant cell, the novel cancer therapeutic approaches targeting additional cell death 
pathways have constantly emerged. Activating “PANoptosis” could overcome resistance to apoptosis by intensely 
triggering inflammatory cell  death13. Moreover, it also implies that PANoptosis holds potential to kill cancer cells 
 directly22. In fact, moderate PANoptosis benefits cancer patients by inducing immune cells infiltration to inhibit 
viral infection or malignancy development, while inordinate PANoptosis may induce detrimental inflammation 
and tissue damage.

For liver cancer, cell death can cause inflammation, fibrosis, and angiogenesis, all of which are closely modu-
lated by a range of resident and infiltrating host  cells7. Besides, inflammasomes have emerged as pivotal innate 
sensors, which have a strong pathogenicity in a variety of liver illnesses. The accumulation of inflammatory 
substances will accelerate the progression from liver cirrhosis to primary liver cancer by promoting cellular 
stress, damage, and transformation. For instance, activation of the NLRP3 inflammasome can lead to hepatocyte 
pyroptosis, liver inflammation, and liver fibrosis in  mice33, in which DDX3X, a driving factor of NLRP3 inflam-
masome, may regulate live-or-die cell-fate decisions under stress  condition34. Toll-like receptor-mediated innate 
immune stimulation reduces the necessity for RIPK1 kinase activity and it can trigger the onset of the NLRP3 
inflammasome and PANoptosis when TAK1 is  immobilized35. Therefore, targeting hepatocellular cell death 
may be able to prevent chronic inflammatory liver disease from progressing to fibrosis and even malignancy.

In our study, multiple PANGRs had abnormal expressions in HCC. The prognostic value of these regula-
tory genes for HCC patients was demonstrated. They may be predominantly involved in the signal pathways 
associated with cell death and cancer development. Caspases are putatively considered to regulate immune 
reaction, homeostasis, and cell  death3,36,37. Caspase-8 is essential for PANoptosis, which can promote T cell-
mediated immunity and inhibit tumor growth when it comes to cancer. By activating Caspase-8, the executor 
caspase-3 and caspase-7 can be removed from the downstream  proteins37. Besides, members of the Gasdermin 
family have a momentous impact on the pyroptosis activation and the formation of plasma membrane pore. 
Additionally, suppressing SCAF11 expression level could inhibit proliferation, attenuate migration and induce 
apoptosis in the liver cancer cell  lines38. The studies of these sensors and signaling molecules establish the basis 
for us to quest the significance of immune-mediated PANoptosis in HCC and also provide desirable targets for 
therapeutic  intervention5.

In the comprehensive HCC treatment, monoclonal and bispecific antibodies targeting inhibitory pathways 
such as programmed cell death-1(PD-1), programmed cell death ligand 1 (PD-L1) and CTL antigen 4 (CTLA-4) 
have been demonstrated to activate the cytokines and cytotoxic mechanisms of adaptive immunity to override the 
resistance to cell death, eradicate cancer cells, and improve overall  prognosis22,28,39,40. In our study, we observed 
a comparatively low immune cell infiltration and immunological response function in the high PANRG-score 
subgroup, which may support the conclusion that the high-risk subgroup had a poor prognosis. In the drug 
sensitivity analysis, the high-risk subgroup exhibited the markedly lower TIDE and immunological dysfunction 
score, which may respond better when receiving immune checkpoint inhibitors. Carina Hage et al. demonstrated 
that sorafenib promoted pyroptosis in macrophages and stimulated cytotoxicity mediated by natural killer cells in 
 HCC41. Besides, by increasing the cellular reactive oxygen species (ROS) levels, the synergistic effect of cysteine 
desulfurase deficiency and oxaliplatin can induce PANoptosis in vitro and vivo colorectal cancer  model42. In 
addition, as an activator of PANoptosis, interferon regulatory factor 1 can induce inflammatory cell death during 
colitis-associated  tumorigenesis20. PANoptosis could mitigate cell death-related drug resistance by enhancing 
local inflammation.

This research is subject to several limitations. Firstly, our PANoptosis-related risk scoring system should be 
further explored by biological experiments and validated in multicenter studies. Additionally, to further prove 
the result, the vitro experiments to verify our drug sensitivity results should be performed in our next studies. 
Finally, TIDE score is a computational framework for evaluating the likelihood of tumor immune escape based 
on gene expression profile of tumor samples, which represents tumor immune dysfunction and exclusion func-
tion. Actually, with the rise of immunotherapy in HCC, deeper researches, managing to acquire individualized 
TIDE score based on our indigenous and clinical HCC sample, are worth carrying out to identify HCC patients 
who could benefit from anti-PD-1/ PD-L1/CTLA-4 immunotherapy.

In conclusion, we set up a PANGR-score risk signature to provide a roadmap for HCC patient stratification 
and predict patients’ prognosis. Patients with the higher PANRG-score may have a dismal survival and barren 
immune infiltration, but a potentially better immunotherapy response. Nevertheless, further experimentation 
should be conducted to establish the compliance of PANoptosis-related risk scoring system. Certainly, future 
therapy perspectives of HCC should emphasize the setting of PANoptosis to achieve a personalized, practicable 
and effective therapeutic regimen.

Materials and methods
Datasets and preprocessing. RNA sequencing gene expression profile (FPKM value), somatic mutation 
and corresponding clinical information were retrieved via the Cancer Genome Atlas (TCGA) dataset (https:// 
portal.gdc.cancer.gov/repository). As external validation cohorts, we collected data on microarray expression 
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profiling and corresponding survival information from the International Cancer Genome Consortium (ICGC) 
and the Gene Expression Omnibus (GEO) database https:// dcc. icgc. org/ proje cts/ LIRI- JP and https:// www. ncbi. 
nlm. nih. gov/ geo/, ID: GSE14520, GSE10186). Patients with follow-up periods of fewer than 30 days and incom-
plete clinicopathological information were removed. Furthermore, the HCC patients who had surgery at the 
First Affiliated Hospital of Guangxi Medical University provided sixteen pairs of tissue samples as the Guangxi 
cohort.

Identification of differentially expressed PANRGs. The heatmap-visualized differentially expressed 
PANRGs were screened via the "limma" R package. The location of the differentially expressed PANRGs on the 
chromosome were visualized using the "Rcircos" R package. The PPI network were analyzed by the Search Tool 
for the Retrieval of Interacting Genes website (STRING v11.0, https:// string- db. org/). Therein, the threshold 
cutoff value of interaction coefficient was 0.443.

Mutation and bioinformatics analysis of PANRGs. The landscape and oncoplot waterfall plot of gene 
mutation for the TCGA-HCC dataset were illustrated utilizing the “maftools” R package. Using the cBioPortal 
for Cancer Genomics online platform (http:// www. cbiop ortal. org/), the genetic alterations and mutation fre-
quencies of the differentially expressed PANRGs were also explored. To pinpoint their prospective molecular 
mechanisms and essential biological characteristics, the GO and KEGG analyses were carried out using the 
“Bioconductor” and “org.Hs.eg.db” R packages. The “GOplot” package was used to develop the visualization of 
significant enrichment terms with both adjusted P and q-value < 0.05.

Consensus clustering analysis. Depending on consensus clustering algorithm and the similarities of 
PANRGs expression profiles, we applied the "ConsensusClusterPlus" R package to classify the TCGA-HCC 
patients (1,000 times repetitions, resample rate of 80%, and Pearson correlation). The clinicopathological char-
acteristics of different clustering groups were compared. To determine the appropriate number of clusters to 
ensure the stability of the PANoptosis-related clustering pattern, the k-means approach in consensus clustering 
analysis was  adopted44. Meanwhile, survival and PCA analysis between different clusters were also performed.

Establishment, assessment, and validation of PANRGs‑related prognostic risk model. Firstly, 
the prognosis-related genes were screened from PANRGs using univariate Cox regression analysis. Candidate 
genes need to meet two conditions, namely both P and KM value < 0.05. Furthermore, the LASSO Cox regres-
sion analysis was undertaken to prevent the hazard of overfitting using the "survival" and "glmnet" R packages. 
Therein, the penalty parameter(λ) was determined according to the minimum criteria. The PANRGs-score risk 
model was developed incorporating the genes that were still significant after screening and their accompanying 
regression coefficients. The calculated median PANRG-score was used to categorize the subgroups as high- and 
low-risk. Kaplan–Meier and ROC curves were drawn to evaluate the prognostic significance of model. Addition-
ally, we also verified if the various clinicopathological characteristics and the PANRG-score connected. Based on 
the formula of our signature, the GSE14520 and GSE10186 and ICGC cohorts were stratified by the respective 
median of calculated PANRG-score to further validate the prognostic value of PANoptosis-related risk scoring 
system. Then, to evaluate the clustering capability, PCA and t-SNE analyses was applied.

Construction and validation of a predictive nomogram. To find the independent prognostic predic-
tor, univariate and multivariate Cox regression analyses of PANRG-score and clinical info were implemented. 
Using the "rms" R package, a nomogram with the PANRG-score and easily accessible and widely accepted clin-
icopathological parameters (gender, age, histologic grade, and pathological stage) was established to forecast the 
OS for patients with HCC. The bootstrap method was applied to calculate concordance index (C-index) with 
1000 resamples. The discrimination capability was examined based on the fitting degree of calibration curves. 
The "DynNom" and "shiny" R packages were utilized to generate the online version of nomogram and uploaded 
on the "shinyapps" website.

GSEA and immune infiltration analysis. In the TCGA and ICGC datasets, the immune-associated cell 
infiltration levels and function pathways between high- and low-risk subgroups were analyzed and compared by 
ssGSEA algorithm of the "gsva" and "limma" R package. In the GSEA software program (v4.0.1; 1,000 permuta-
tions), the significant enrichment levels of biological GO and KEGG function pathway between different sub-
groups was analyzed based on the TCGA-HCC transcriptome data and the gene sets "c5.all.v7.1.symbols.gmt" 
and "c2.cp.kegg.v7.0.symbols.gmt" for reference. The term with both the false discovery rate (FDR) and nomi-
nal P < 0.05 was believed to be a statistically significant pathway. As is known, the distribution density of non-
synonymous mutations in the protein coding region were quantified as TMB. The correlation between the TMB 
of TCGA-HCC sample and corresponding PANRG-score was investigated by spearman’s correlation analysis.

Drug sensitivity prediction analysis. To figure out the IC50 of particular chemotherapeutics and tar-
geted therapy agents for HCC, we utilized the “pRRophetic” R package which is based on ridge regression 
method and the comprehensive data from Genomics of Drug Sensitivity in Cancer (GDSC; www. cance rrxge 
ne. org/) and TCGA  database45. The online Gene Set Cancer Analysis (GSCALite; http:// bioin fo. life. hust. edu. cn/ 
web/ GSCAL ite/) platform provides the comprehensive analysis of genomic cancer, in which the drug IC50 data 
and cancer cell line expression spectrum based on CTRP database were  integrated46. Based on the TCGA-HCC 

https://dcc.icgc.org/projects/LIRI-JP
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org/
http://www.cbioportal.org/
http://www.cancerrxgene.org/
http://www.cancerrxgene.org/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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cohort, the calculated TIDE, immune dysfunction, and immune exclusion scores can be acquired from the TIDE 
website and were further compared between the different PANRG-score subgroups.

Correlation between ferroptosis, cuproptosis and PANoptosis. The relationship between PANRG-
score and the enrichment score (ES) of ferroptosis and cuproptosis, which were figured out by the gene-set-
based Gene Set Variation Analysis (GSVA) approach, were analyzed using Spearman method. Therein, the genes 
for ferroptosis pathway were extracted from the Molecular Signatures Database (https:// www. gsea- msigdb. org/ 
gsea/ msigdb) and the cuproptosis-related genes were collected from the prior  literature47,48.

Polymerase chain reaction (PCR) and HPA database. In Guangxi cohort, the differences of FADD 
gene expression level between HCC and neighboring non-cancerous tissues were compared using paired t-tests. 
Our prior study has expounded how to preserve specimens and the concrete steps for RNA extraction and 
reverse transcription-quantitative  PCR49. The primer sequences for PCR of reference and FADD were as follows: 
GAPDH, forward: GTC AGC CGC ATC TTC TTT , reverse: CGC CCA ATA CGA CCA AAT . FADD, forward: GAA 
TCG GAG CGA AGC AGA GA, reverse: ACC CTA GTG TCC AGG TCT GT. The mRNA expression levels of FADD 
were measured by  2−ΔΔCT method. Furthermore, the FADD protein expression level in the normal liver and HCC 
tissue was explored using Human Protein Atlas database (HPA; https:// www. prote inatl as. org).

Statistical analysis. R (v4.1.1) was employed to perform data analysis and result visualization. The Wil-
coxon rank-sum test was performed between the groups of continuous data, while the chi-square test was used 
for categorical data. The Kaplan–Meier method with log-rank test was utilized to conduct survival analysis. The 
hazard ratios of inclusion factors and their corresponding 95% confidence intervals in the Cox regression analy-
sis were calculated. Unless otherwise indicated, P < 0.05 was provided as the threshold cutoff value.

Ethical approval . TCGA, GEO and ICGC datasets used human genomic data deposited in public reposito-
ries, so ethics approval is not applicable to these datasets. For the Guangxi cohort, the experimental protocol was 
established, according to the ethical guidelines of the Helsinki Declaration and this study was approved by the 
Ethics Committee of the First Affiliated Hospital of Guangxi Medical University. All patients provided written 
informed consent prior to being operation on.

Data availability
TCGA gene expression profile (FPKM value), somatic mutation and corresponding clinical information during 
the current study are publicly available in the TCGA-LIHC repository (https:// portal.gdc.cancer.gov/repository). 
The data on microarray expression profiling and corresponding survival information from the ICGC and the 
GEO database are publicly available in ICGC data portal, and GSE14520 and GSE10186 repository (https:// dcc. 
icgc. org/ proje cts/ LIRI- JP and https:// www. ncbi. nlm. nih. gov/ geo/). The original contributions presented in the 
study are included in the article. Further inquiries can be directed to the corresponding author.
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