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On catching the preparatory 
phase of damaging earthquakes: 
an example from central Italy
Matteo Picozzi 1*, Antonio G. Iaccarino 1, Daniele Spallarossa 2 & Dino Bindi 3

How, when and where large earthquakes are generated remain fundamental unsolved scientific 
questions. Intercepting when a fault system starts deviating from its steady behavior by monitoring 
the spatio-temporal evolution and dynamic source properties of micro-to-small earthquakes can 
have high potential as tool for identifying the preparatory phase of large earthquakes. We analyze 
the seismic activity that preceded the Mw 6.3 earthquake that hit L’Aquila on 6 April 2009 in central 
Italy, and we show that the seismic catalog information can be transformed into features allowing us 
to track in a statistical framework the spatio-temporal evolution of seismicity. Features associated 
to foreshocks show different patterns from the background seismicity that occurred in the previous 
years. We show that features ensemble allows to clearly capture the activation phase of the main 
event. Nonetheless, foreshocks share similar clustering properties of previous seismic sequences not 
culminating in large earthquakes, and thus generating questions on their use as potential precursor for 
earthquake sequences prone to evolve into catastrophic sequences.

Among natural phenomena, earthquakes are one of the most impressive. Large earthquakes have strong impact 
on society, not only due to the loss of human lives, but also because the domino effects on our globalized soci-
ety causes billions of euros of damage. Retrospective and theoretical studies on megathrust earthquakes have 
shown that patterns in seismicity and crustal deformation precede large  earthquakes1–8.

The complex multi-scale generation process of large earthquakes might have different dominant features 
depending on the tectonic environment, such as foreshocks or slow slip events and creep  phenomena9,10. 
 Laboratory11,12 and  simulation13 results suggest the occurrence of foreshocks being primarily related to structural 
and stress heterogeneities over rupture surfaces (i.e., where stress heterogeneity is higher, the foreshocks activity 
is the more prominent). Upscaling laboratory results to crustal faults, we can figure out that on faults with few 
stress heterogeneities, the preparatory process is driven by seismic and aseismic slip around a nucleation zone 
(i.e., aseismic model). On the contrary, on faults with diffuse stress and surface heterogeneities, we can find 
foreshocks triggering each other in a cascading process (i.e., cascade model). When foreshocks occur at a large 
and stressed asperity, the process can culminate in a large earthquake.

More in general, the large earthquake generation process is proposed being related to a progressive localiza-
tion of shear deformation around a rupture zone that progressively evolves into a final rapid loading (i.e., gener-
ating the small magnitude earthquakes called foreshocks) of a crustal volume localized nearby the hypocenter 
of the major dynamic  rupture14. Similar patterns of damage evolution have also been observed by studying 
acoustic emissions during triaxial tests on rock  samples11, suggesting that the process generating earthquakes 
may be universal.

However, the non-systematic foreshocks appearance and the lack of systematic precursory patterns in seis-
micity and ground deformation in tectonic context different from megathrust areas are demonstrating us that 
the background physical processes generating large earthquakes are not fully understood  yet14. Therefore, the 
prediction of large magnitude earthquakes remains an unresolved fundamental scientific question that needs 
to be investigated.

Thanks to the strategies implemented by the seismological community in establishing dense seismic net-
works to monitor regions known to be prone to large earthquakes, standardizing formats for data transmission 
and archiving, and creating open data repositories for sharing real-time and archived data streams, nowadays 
it is greatly improved our possibility to study the multi-scale (spatial and temporal) generation process of large 
earthquakes, and new scientific avenues have been opened. A meta-analysis of foreshocks  data15 has shown that 
a preparatory phase is potentially identified when seismic catalogs are complete for at least three magnitude 
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units less than the mainshock unit. It must keep in mind, however, that ‘foreshock’ is merely a label assigned to 
earthquake retrospectively.

For unveiling if preparatory processes are ongoing, instead of trying to establish whether an event is a fore-
shock or not, Picozzi and  Iaccarino16 proposed to study the spatial and temporal collective behavior of small 
magnitude earthquakes. Applying this concept to microseismicity from The Geysers geothermal field in Cali-
fornia, where the seismicity was characterized by features carrying information about crustal stress conditions, 
it was shown as a recurrent neural network could identify the preparatory phase of moderate  earthquakes16, 
which raises hope for identifying the preparatory phase of future large earthquakes.

Although some success on intercepting the preparatory phase of earthquakes starts to be achieved, recent 
analyses on two large Italian earthquakes (i.e., the Mw 6.3 L’Aquila 2009 and the Mw 6.1 Amatrice 2016), which 
occurred at few tens of kilometers of distance and in the same extensional environment in the Apennines in 
central Italy, have highlighted important differences in their  initiation17,18, with a clear preparatory phase identi-
fied for the former and only a long-lasting quiescence without a clear activation phase for the second. The latter 
examples highlight the enigmatic nature of the preparatory phase of large earthquakes, which also in case of 
nearby earthquakes can result be dominated by different driving mechanisms.

Although not very large in magnitude, the Mw 6.3 L’Aquila 2009 (hereinafter, AQU), Italy, earthquake is very 
well known within the scientific community and one of the most studied recent earthquakes in the literature 
(International Seismological Centre 2022, On-line Event Bibliography, https:// doi. org/ 10. 31905/ EJ3B5 LV619). 
We find AQU interesting because previous studies proposed its preparatory phase being characterized by both 
the presence of foreshocks clustered near the nucleation area of the  mainshock20–23 and by a slow-slip  event24, 
despite the latter is still  debated25.

Studies of this preparatory phase from different perspectives have highlighted a foreshocks migration towards 
the mainshock nucleation  point26, b-value changes associated to change in the stress level on the  fault27, changes 
in the elastic properties of the  medium28, and different source properties between foreshocks and  aftershocks29. 
A more detailed analysis on the spatio-temporal evolution of foreshocks source properties approaching the 
mainshock was made possible thank to an innovative service for the Rapid Assessment of Seismic Moment 
and Radiated Energy in Central Italy  (RAMONES30), which innovatively allows studying the small magnitude 
seismicity by direct estimates of their seismic moment and seismic radiated energy. Picozzi et al.17 analyzed the 
temporal evolution of radiated energy and size of small magnitude earthquakes preceding AQU and showed that 
during the final activation phase preceding the mainshock the foreshocks had dynamic characteristics distinct 
from those of normal rate (background) seismicity.

The key idea here is to retrospectively study the earthquakes that have preceded AQU to explore our capability 
to outline the evolution of fault loading processes. The main scientific question that we face is if we can identify 
trends in the spatio-temporal evolution and dynamic properties of seismicity that highlight changes with respect 
to the crustal background activity. In other words, can we catch the preparatory phase of large magnitude events 
by looking at tiny earthquakes?

We reprocessed thousands of earthquake recordings that have occurred in the Apennine region since 2005, 
creating an innovative high-resolution seismicity catalog (see supplemental material) with information on both 
the spatial and dynamic properties of seismic sources. These pieces of information are transformed into features 
representing the spatio-temporal clustering and the dynamic characteristics of the earthquakes. Then, we analyze 
and exploit the estimated features to comprehensively characterize the evolving pattern of seismicity. To this 
purpose, we set up a probabilistic framework by which we explore the differences between the spatio-temporal 
and dynamic source properties of microseismicity approaching the mainshock with respect to those of the 
background and clustered seismicity that occurred in the past.

Results
Overview of seismicity features. We retrieved data from publicly available databases and identified 4820 
earthquakes occurred between the 1 of January 2005 until the occurrence of AQU on 6 April 2009 (Supplemen-
tary material). The earthquakes range between magnitude Mw 1 and Mw 6.3, hypocentral depths between 0.3 
and 29 km, and are distributed along the central Apennines (Fig. 1). Uncertainties in event location are mostly 
within 1 km both horizontally and vertically (Fig. S1). We first focus on a subset of data (i.e., between 2005 and 
2007) to define reference models for the spatio-temporal evolution of seismicity. Hereinafter, we refer to this 
subset as ‘reference period’. Considering that seismicity can be seen as composed by two main populations, that 
is the background seismicity associated to tectonic stress field and the clustered one having different origin (e.g., 
foreshocks, aftershocks, swarms), we apply a clustering  analysis31,32 and we model the distribution with a sum 
of a log-Gaussian  function33 for discriminating the two populations (hereinafter, defined as background, B, and 
clustered, C, Figs. S2 and S3).

We characterize the seismicity in terms of a set of twelve physically based features varying in time and describ-
ing different aspects of the temporal and spatial evolution of seismicity: the b-value of the Gutenberg–Richter 
 law34; the fractal dimension of hypocenters, Dc35; the generalized distance between pairs of earthquakes, η, and 
its space and time components (Rη, Tη, respectively), rate, ρ, and moment rate, Ṁ0

36, the Shannon’s information 
entropy, H37; the effective stress, Δσe 38, the volume, V, by the 3D convex Hull of the hypocenters in a given time 
window, the Kostrov strain, Δε39, and the Energy Index,  EI17 (see “Materials and methods” section for details 
about the computation of seismic features). We estimate the uncertainty associated with the features by apply-
ing a bootstrap  approach40, repeating at each time instant the features computation with 200 random sampling 
realizations of the original dataset with replacement. This analysis is carried out for b-value, Dc, Ṁ0, H, Δσe, Δε, 
and EI (Fig. 2), while we exclude from the bootstrap analysis the remaining five features that are function of the 
earthquake location and origin time only (η, Rη, Tη, ρ, and V). The features are computed also for the seismicity 
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occurred from the 1 January 2008 until AQU (the latter period is indicated as AQU09). For AQU09, we do not 
discriminate between B and C seismicity. Indeed, we consider AQU09 as a ‘testing dataset’ and, after having 
characterized the B and C populations, we look for deviations in AQU09 with respect to B and C that could hints 
for the preparation process of the mainshock.

The temporal evolution of the features shown in Fig. 2 is obtained by considering events with magnitude 
equal or larger than Mw 1.5. We also investigated the effect of different cutoff magnitudes  (Mcut) in computing 
the features considering the AQU09 period (i.e., Mw 1.5 Fig. S4, Mw 1.6 Fig. S5, Mw 1.7 Fig. S6, Mw 1.8 Fig. S7, 
Mw 1.9 Fig. S8). The gradual decrease in the number of events does not seem to influence the main trends in the 
temporal evolution of the features, in particular the rapid changes in the patterns during the activation phase. 
We compute for all the features and for different cutoff magnitudes the empirical cumulative density function, 
ECDF (Fig. S9) and we fit them with logistic functions (CDF in Fig. S10). The ECDF and CDF seem not affected 
in their trend and statistical properties with the change in  Mcut. Nevertheless, comparing the features for  Mcut 
1.5 (Fig. S4) and  Mcut 1.9 (Fig. S8), we see that lowering the number of data (i.e., higher  Mcut) would make any 
conclusion about the temporal evolution of the preparatory process less robust. We also verify the implications 
of different area cut-offs. We thus split the background seismicity in three subsets according to the geographical 
distribution of the earthquakes along the Apennines (Fig. S11a, with epicenters as black points in the Northern 
sector, as red points in the Central one, and as blue points in the Southern one). The ECDF and PDF for the 
three subsets are shown in Figs. S12, S13, S14. Their overlapping indicates that for the considered areas, the 
features do not present statistically significant differences. The same kind of analysis for the clustered seismicity 
is not possible due to the lower numerosity of data in the considered period (Fig. S11b), but it will be carried 
out in the next future for the period 2009–2023. Concerning the reference period, looking at Fig. 2, we find that 
a high fraction of seismicity is classified as background (green), with respect to which many features for both 
the clustered one (blue) and the seismicity preceding AQU09 (red) show distinct values and trends (Fig. 2). To 
highlight the existence of differences between the three populations, we compute their ECDF (Fig. S15) and 
CDF (Fig. 3) fitting them with logistic functions (Figs. S16 and S17). For the AQU09 period, we compute the 
CDF considering different time periods preceding the mainshock (i.e., 120, 60, 30, 15 days before AQU that are 
shown as yellow, orange, red and dark red in Fig. 3, respectively).

The B and C populations show distinct CDFs trend for most of the features (Fig. 3), except for the b-value 
and EI for which the CDFs appear overlapping. Considering that both EI and b-value have been put in relation 
to the stress level on the  fault18,26, the CDF similarity for these two features suggest that background seismicity 

Figure 1.  Overview of the 2005–2009 seismicity in central Italy. (a) location of the earthquakes colored per 
date of occurrence, and epicenter of the Mw 6.3 L’Aquila 2009 shown as red star. (b) distribution of magnitude 
in time. The reference and the AQU09 periods are highlighted and separated by a vertical dashed red line. (c) 
Histogram showing the distribution of Mw.
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Figure 2.  Overview of the seismic features in time. From (a) to (l) we show the evolution in time of each 
feature, where for b-value, Dc, Ṁ0, H, Δσe, Δε, and EI we show the mean value ± the standard error (vertical bar).
We highlight with different colors the Background events (green), the Clustered ones (blue), and the AQU09 
seismicity considered for identifying the preparatory process (red). The colored vertical dashed lines indicate 
120 days yellow, 60 days orange, 30 days light red, 15 days dark red before the mainshock.
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and past seismic sequences, which did not culminate in large magnitude earthquakes, occur on small scale faults 
with similar properties, and that both static and dynamic stresses should reach higher values over larger spatial 
scales to sustain the development of large ruptures. We also find interesting the way the CDFs for AQU09 change 
with different time periods preceding the mainshock (from yellow to dark red in Fig. 3). We note cases where 
the AQU09-CDFs initially resemble the B-CDFs but progressively become like the C-CDFs (i.e., for Δε, η, Rη, 
Tη, Δσe). This result highlights a progressive clustering of the events approaching the activation phase. All that 
features are indeed related to the events time and space occurrence.

Furthermore, we also see other AQU09-CDFs that are initially similar to the B-CDFs, but then becoming 
distinct from both B and C CDFs (i.e., Dc, Ṁ0, r, H, V and EI, which are related to the temporal evolution of 
dynamic source properties).

Temporal evolution of features. We aim to measure the temporal evolution of differences among CDF 
for different event populations. Our goal is to verify if deviations in source and spatial characteristics for events 
belonging to the AQU09 series with respect to those of background and clustered earthquakes are measurable. 
We thus track the relation between AQU09’s CDFs with respect to those for B and C in time.

We explore two ways for quantifying the differences among CDFs: (1) the two sample Cramer-von Mises 
criterion used in statistic  test41; (2) a distribution-free overlapping  measure42 (as example, Fig. 4 shows the two 
difference measures for the b-value). In few words, by the first approach we measure the cumulative distance 
(D) between CDFs, while by the second one we measure the overlapping (O) between PDFs derived by CDFs 
(see “Materials and methods” section).

The parameters D and O are computed for all the features and considering: (i) the whole population of events 
for B and C; (ii) a moving window with 30 days width that moves of 1 day at time for AQU09. We thus obtain 
time series of D and O values with respect to both B and C (i.e., we get  DB and  DC, Fig. 4a and b, and  OB and 
 OC, Fig. 4c and d).

The temporal evolution of  DB for all features is shown in Fig. 5a, where we plot only the last part of the ref-
erence period for better representing the preparatory phase during AQU09. During the reference period (i.e., 
before 2009), the features have both variable  DB amplitudes and incoherent trends. Conversely, during AQU09, 
we observe a progressive increase in  DB for all features while approaching the mainshock. The  DB trends are 
compliant with what we expected. At the initial stage of AQU09, the CDFs are like those of the reference period 

Figure 3.  Overview of the Cumulative Density Function (CDF) computed for the different features and 
seismicity belonging to different periods. From (a) to (l) we show for each feature the CDF with solid lines and  
± 1 std. with dashed lines for the background seismicity in green, the clustered one in blue, and those of different 
time periods before the Mw 6.3 L’Aquila earthquake (120 days yellow, 60 days orange, 30 days light red, 15 days 
dark red).
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 (DB is very low). Conversely,  DB progressively increases approaching the mainshock’s activation phase because 
during the latter phase the CDFs become dissimilar from those of the reference period.

The ensemble of all features, 
∏

DB , shows low values for the whole reference period and an increase before 
the mainshock (Fig. 5b). A closer look at the temporal evolution of 

∏

DB highlights that during the activation 
phase (i.e., from the end of March 2009), 

∏

DB increases of six orders of magnitude with respect to the range of 
values observed for the reference period (i.e., green dots in Fig. 5e).

Results for  DC (Fig. 5c) show trends complementary to those of  DB.  DC trends are in fact characterized by 
high values for both the reference period and the initial part of 2009. On the contrary, we observe a decrease in 
 DC for most of the features when approaching the activation phase. The high  DC values during the initial stage 
of AQU09 are clearly due to the similarity between that seismicity with the reference period one (small  DB). 
Conversely, approaching the activation phase the CDFs for AQU09 become progressively similar to the clustered 
seismicity ones (small  DC). Again, the ensemble of all features, 

∏

DC , emphasizes the drop at the activation phase 
with respect to the previous period (Fig. 5d). We find intriguing the complementary trend of 

∏

DB and 
∏

Dc 
(Fig. 5e), with the former increasing and the latter decreasing at the activation phase. We highlight that in the 
months preceding the activation phase neither an increase in 

∏

DB , nor a decrease in 
∏

Dc of a similar amount 
is observed. Similar results are obtained considering  OB and  OC (Fig. 6), but using them we observe a less clear 
distinction between the activation and the previous periods. The ensemble of all features with the overlapping 
parameter (i.e., 

∏

OB and 
∏

OC ) appears noisier than 
∏

DB and 
∏

Dc and less efficient in discriminating the 
activation phase from the background seismicity (Fig. 6e). For these reasons, in the following, we will focus on 
∏

DB and 
∏

Dc only.
We apply a Monte Carlo approach to assess the robustness of observed  trends17,43. We consider the AQU09 

period, and we generate for each feature 1000 random time series of values extracted from their PDF (random 
samples and time series are shown in Figs. S18, S19, and S20). In comparison with results of Fig. (5), we check 
how often: (1) the random time series have a slope during the short activation phase equal or larger than that for 

Figure 4.  Outline of the criteria adopted to measure the distance between CDFs. (a) CDFs distance according 
to the Cramer-von Mises criterion  (DB) with CDF relevant to the b-value for background in green and that 
of the AQU09 period in red at the generic time window i. (b) The same as (a), but with the CDF for clustered 
seismicity in blue  (DC). (c) similar to (a), but considering the overlapping measure (O) between probability 
density functions (PDF). (d) The same as (c), but for clustered seismicity.
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Figure 5.  Temporal evolution of the Cramer-von Mises distance criterion for the CDFs relevant to seismic 
features. (a) For each feature it is shown the base-10 logarithm of the distance  (DB) between the CDF for 
background seismicity and that for AQU09. The features are ordered as follows: 1. b, 2. Dc, 3. Δε, 4. Ṁ0 , 5. ρ, 
6. η, 7. Rη, 8. Tη, 9. H, 10. Δσe, 11. V, 12. EI. The red dashed line represents the origin time of the mainshock. 
(b Similar to (a), but showing the ensemble of the CDF distances ( 

∏

DB ). (c) and (d) the same as (a) and (b), 
respectively, but for the clustered seismicity. (e) Evolution of 

∏

DB in green and 
∏

DC in blue. The start of the 
activation phase is represented as black dashed line, while the origin time of the mainshock is shown as red 
dashed line.
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the reference time series; (2) if the last value is an extreme point (i.e., a maximum or a minimum). In this way, 
we assess the likelihood that the slope of features during the activation phase was the largest of the time series by 
chance, and similarly that the last value was an extreme point by chance. Since the activation phase is identified 
by the ensemble of features, we have also computed the mean of all computed rates (see Table S1). Table S1 shows 
that it is very unlikely that the observed results arise from noise, suggesting that our analysis results are robust.

Figure 6.  The same as Fig. 5, but for the overlapping (O) distance criterium between PDFs.
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Features importance and best-set selection. We try next to understand which, among the consid-
ered features, is dominating over the others in discriminating the preparation phase. Understanding the fea-
tures importance would indeed allow us to tailor workflows for the detection of the preparation phase of large 
earthquakes. Hence, we set up a simple feature importance analysis by measuring the root mean squared error 
(RMSE) between 

∏

DB for all the n features (i.e., n = 12) and its counterpart obtained excluding one feature 
at time ( 

∏

n−1 DB ) (Fig. 7a). Intuitively, when we exclude a feature with low impact on 
∏

DB , the two curves 
( 
∏

DB and 
∏

n−1 DB ) are very similar and the RMSE is low. On the contrary, excluding an important feature 
would determine different curves and high RMSE. Figure 7b shows the results of this analysis for both  DB and 
 DC, where the RMSEs for the two datasets are normalized to their maximum for facilitating the comparison. 
Concerning  DB, we observe that the five most important features are, in descending order V, Ṁ0, EI, ρ, and Δε. 
When we consider  DC, the most important features are the same, despite it changes their relative importance. 
Observing that the same features play a significant role for both 

∏

DB and 
∏

DC confirms us that both the char-
acteristics with which the clustering of seismicity occurs and the change in dynamic properties of the foreshocks 
with respect to the background activity are key elements of the activation phase of the L’Aquila earthquake.

Besides a classification of the features importance, we also search for a set of features that allows to maximize 
the difference between the activation phase (i.e., up to 6 days before the mainshock) and the reference period 
(ΔA,RP) in terms of  DB, and, at the same time, to minimize the one between the same time periods in terms of 
 DC. This analysis aims to verify if it is possible to separate the features in two groups with different sensitivity 

Figure 7.  Feature importance analysis. (a) Comparison between  DB curves, whereas the reference one obtained 
by the ensemble of all features is shown as green squares, while those obtained neglecting one feature at time are 
represented as green lines. Similarly, the  DC for the ensemble of all features is shown as blue dots, while those 
eliminating one feature at time are shown as blue lines. (b) Normalized feature importance for  DB, shown as 
green squares, and  DC, blue dots.
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to the clustering phenomena and to the change in dynamic properties. One fascinating hypothesis is that fea-
tures independent from the spatial organization of the seismicity but sensitive to the activation phase would be 
informative of the stress level on the fault, and thus about the future size of the main event. Figure 8a shows the 
two distances ΔA,RP (i.e., red for  DB and blue for  DC) with respect to the permutations (i.e., a different number 
and combination of features), where with the increase of permutation number does also increase the number 
of features considered. We combine the two ΔA,RP measures assigning to them the same importance (i.e., we use 
their mean, ΔA,RP-C, shown as black dots in Fig. 8a). Figure 8b shows all the curves colored per ΔA,RP-C, where 
 DB (red) and  DC (blue) for the best combination of features are highlighted (i.e., the case where ten over twelve 
features are used). Only the fractal dimension (2) and the energy index (12) are excluded from this optimal set 
of features. These results also suggest that there is no feature able to intercept the activation phase alone. Of 
course, this conclusion is related to the features considered here; while, hopefully, looking at other foreshocks 
properties would unveil new information.

Discussion
The short-term activation of the 2009 L’Aquila earthquake falls into a well-known precursory pattern of large 
 earthquakes44. This earthquake seems to comply rather well with the model proposed by Kato and Ben-Zion14. 
Despite our features-based methodology seems potentially useful to intercept the preparatory phase of events 

Figure 8.  Analysis for identifying the set of features maximizing the difference between activation phase and 
background seismicity. (a) Here, we represent, as function of different number and combination of features, 
the difference between the ensemble of features during  DB in the activation phase and in the reference-period 
is shown as red stars. We also plot the distance for  DC considering the clustered seismicity and the activation 
phase, which is shown as blue stars. The average of the two measures is shown as black stars. (b)  DB curves 
colored per the difference parameter ΔA,RP-C. The curves corresponding to the set of features that at the same 
time maximize the distance between the activation phase and the background seismicity in  DB and minimize 
that one between the activation phase and the clustered seismicity in  DC are shown as red and blue curves, 
respectively.
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behaving as the 2009 L’Aquila earthquake, it is worth mentioning that different precursory patters have been 
observed in the  past8, 45 (e.g., quiescence, accelerating seismic release, doughnut, and event migration inward 
and outward the nucleation area). Differences in the preparatory phase for the 2009 L’Aquila and the nearby 2016 
Amatrice earthquakes highlight that crustal processes leading to large earthquakes are influenced by unforesee-
able combination of heterogeneous fault properties, stress interactions and crustal fluids. For instance, it was 
proposed that the high-pressure deep  CO2-dominated fluids along the central and southern  Apennines46,47 is 
responsible for the nucleation of large earthquakes in Italy (e.g., the 1997 Colfiorito, the 2009 L’Aquila, and the 
2016 seismic  sequences48,49).

We cannot generalize our results and it is certainly crucial to carry out further also considering different 
tectonic context (e.g., among others the Kumamoto, 2016, Valparaiso, 2017, and Ridgecrest, 2019 earthquakes).

Our statistical approach, which is still merely a preliminary workflow, can be easily extended for integrating 
features derived from other geophysical measurements repeated in time (e.g., geodetic deformation, geochemical 
parameters). Therefore, we believe that it could become a perfect tool for the multi-disciplinary study of active 
fault systems at near fault observatories. A similar principle was applied to forecast strong aftershocks in earth-
quake clusters in northeastern Italy and western  Slovenia50. Our understanding of the processes occurring in 
the crust is inevitably hampered by the impossibility of collecting measurements directly within the seismogenic 
 volumes51. This is certainly one of the most important limitations we must face while attempting to identify the 
preparatory process of large earthquakes. To overcome this obstacle, besides establishing denser seismic networks 
nearby active faults, we must boost up the use of microearthquakes as indicators of the mechanical state of the 
 crust18,52. A key advantage of microearthquakes is that they are too small to interact with each other and therefore 
contribute little to crustal  deformation53, but their properties and distribution in time and space are sensitive to 
stress changes. Therefore, in the framework of the Kato and Ben-Zion’s  model14, microearthquakes can help to 
intercept and to better understand processes occurring within the crust. The increasing availability of augmented 
seismic catalogs, especially along deep transition zones of megathrusts, or acoustic emissions in case of labora-
tory stick–slip experiments, is pushing the scientific community in mining data across wide spatio-temporal 
scales, from which it emerges that the spatio-temporal evolution of microseismicity/acoustic emissions provide 
information on seismic friction and coupling. The latter pieces of information resulted useful to also predict the 
occurrence time of laboratory earthquakes, seismic tremor, and slow slip  events54–56.

Previous retrospective studies investigated specific aspects of the preparation phase of the L’Aquila earthquake, 
and they highlighted: b-value  changes25; foreshocks migration towards the nucleation area of the  mainshock24,25; 
different source properties between foreshocks and the preceding background  seismicity17. Differently from 
previous studies, we have set up a workflow that allows to both characterize the evolution of the microseismicity 
spatio-temporal characteristics and source properties and then to compare their statistical properties with those 
of background and clustered seismicity. Instead of focusing on the properties of each single events, we use a 
probabilistic framework working on subgroups of events evolving in time. Indeed, we believe that only studying 
the collective spatial patterns and properties of earthquakes we will be able in future to get hints of the proximity 
to a large rupture (i.e., as recently done in stick–slip laboratory  experiments57,58).

Our results highlight that not only a feature like the b-value, which is well-known being representative of the 
stress conditions associated to  ruptures59, but also other features (e.g., the fractal dimension, the 3D convex Hull 
volume of the hypocenters, the seismic rate and moment rate, just to mention a few of them) seem able to mark 
the deviation from the features trend observed during the interseismic period, especially when their ensemble 
is considered. While the activation phase start (~ 1 week before AQU) is well intercepted, it is worth mention-
ing that our feature-based probabilistic framework seem rather blind to the long-term variations in seismicity 
occurrence and spatial organization observed by Sugan et al.26. When we consider the 2 months before the 
mainshock, some of our features seem to delineate a population distinct from that of background seismicity (e.g., 
the Shannon’s information entropy, H, the effective stress, Δσe, and the Kostrov strain, Δε, in Fig. 3). However, 
further studies are necessary to clarify if one of these features, or their ensemble, can highlight the presence of 
such long-term deviation from the background seismicity.

An issue limiting the power of the adopted approach is the minimum magnitude considered in the event 
selection (i.e., Mw = 1.5), which limits the number of events usable to characterize the spatio-temporal distribu-
tion and properties evolution of the microseismicity. The used threshold in magnitude is also due to difficulties 
in estimating the seismic radiated energy for small magnitude events (used for computing the energy index and 
the Shannon’s entropy). Hence, further efforts will focus on strategies to characterize smaller magnitude events.

We have shown that it is possible to identify deviations of seismic activity from a background level. Hence, 
studying features describing different physical processes and monitoring their spatio-temporal evolution might 
represent a powerful tool for intercepting hints of large earthquake preparatory processes. However, we must 
recognize that our results suggest that we are not able to foresee towards which state the system is evolving (large 
earthquake vs. seismic sequence with low magnitude earthquakes). In respect to this issue, our level of knowl-
edge seems still limited. For this reason, we believe that it is necessary to carry out systematic studies of source 
properties for foreshocks and seismic sequences to identify if differences among these two seismic populations 
exist, and to investigate if some of the features bring information on the size of the future event.

Materials and methods
Dataset and features computation. To characterize the spatio-temporal and source properties evolu-
tion of seismicity, we use information extracted from a seismic catalog including 4820 earthquakes occurred in 
central Italy between the 1 January 2005 until the occurrence of AQU on 6 April 2009 (supplementary material 
S1). The catalogue includes for each earthquake information about the origin time, the hypocentral location, 
local magnitude, seismic moment and radiated energy (supplementary material S1). The latter parameters are 
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estimated following the RAMONES procedure (http:// www. distav. unige. it/ rsni/ ramon es. php 30), which exploits 
continuous data streams stored in free repositories (i.e., ORFEUS-EIDA, IRIS, DPC).

b-value. The b-value is estimated analyzing the frequency-magnitude distribution by the Gutenberg–Richter 
 law34

where N is the cumulative number of earthquakes, a and b values are parameters describing the productivity 
and relative event size distribution). The b-value is obtained by the maximum likelihood  approach60). Together 
with the b-value, we retrieve the simultaneous estimate of the completeness magnitude Mc, which is useful to 
estimate some of the following features.

Fractal dimension. The fractal dimension of earthquake hypocenters, Dc, is computed applying the correlation 
integral  method35:

where r is the radius of a sphere of investigation and Cr is the correlation integral:

with n indicating the number of data in the analysis window (i.e., n = 200 events), x the hypocenter coordinates, 
and H the Heaviside step function H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0. Finally, the fractal dimension Dc is 
estimated as the slope of the best-fit straight line of Cr versus the distance r in a bi-logarithmic diagram.

Moment rate. We compute the moment rate Ṁ0
61 as follows:

where ρ is the seismic rate of events larger than Mc,  M0 and  m0 are the seismic moment and magnitude cor-
responding to Mc, A is the area of finite extension including the events (in  km2),  mmax is the largest magnitude 
in the catalogue.

Seismic rate. We compute the seismic rate ρ57 considering the number of events ΔN with magnitude larger than 
the completeness magnitude, Mc, that occurred in a time window ΔT in areas of finite extension A

where ρ represents the events per day per square kilometers (eqks./(day·km2)).

Effective stress drop of earthquake clusters. Following Fisher and  Hainzl38, we compute the effective stress drop 
of earthquake clusters as follows:

where R is the radius of the 3D convex Hull of the hypocenters and ΣM0 is the sum of seismic moments in a 
given time window.

Nearest-neighbor distance, η, rescaled distance,  Rη, and time,  Tη. The nearest-neighbor  approach31,32 computes 
the generalized distance between pairs of earthquakes, η, from the analysis of the time–space distances between 
pairs of earthquakes. The parameter η is derived computing the distances in time (i.e., rescaled time,  Tη) and 
space (i.e., rescaled distance,  Rη) between an event i and its parent j normalized by the magnitude of the parent 
event as follows:

where m is the magnitude (Mw), b is the parameter of the Gutenberg–Richter law, t is the earthquake intercur-
rence time, r is the earthquake distance, and  Dc is the fractal dimension. The values of b and  Dc are changed 
according to the estimates obtained for the considered window of events.

Finally, η is defined as:

(1)logN = a− b ·Mw,

(2)Dc = lim
r→0

logCr

log(r)
,

(3)Cr = lim
n→∞

1

n2

n
∑

i=1

n
∑

j=1

H(r −
∣

∣xi − xj
∣

∣),

(4)Ṁ0 = ρMoA
b

1.5− b

[

10(1.5−b)(mmax−m0) − 1
]

,

(5)ρ =
�N

(�T · A)
,

(6)�σe =
7

16

∑

M0

R3
,

(7)Tij = tij10
−bmi/2,

(8)Rij =
(

rij
)Dc10−bmi/2,

http://www.distav.unige.it/rsni/ramones.php
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In our work, η,  Rη and  Tη are considered as features.

Shannon’s information entropy. The Shannon  entropy37, also known as information entropy, provides a 
measure of the disorder level in a system. We compute the Shannon entropy using a regular 2-D grid (each 
1.5 km × 1.5 km).

We compute the Shannon entropy as

where  ek represents a fraction of the total seismic energy  ER radiated within the kth cell. We rely here on seismic 
radiated energy from RAMONES. The  ek/ER ratio is assumed to represent an empirical approximation of the 
probability of the seismic energy radiated in the kth cell,  Pk(ER), with respect to the total radiated seismic energy, 
conditioned on the total energy radiated.

Equation (10) can therefore be rewritten as

Therefore, computing H at a given temporal interval consists of summing up the  ek/ER ratio for the entire 
grid. To allow comparison between different time intervals and to ensure unity total probability, H is generally 
normalized to the equipartition entropy HE, which corresponds to the case where  ER is uniformly distributed in 
the cells (i.e., given by the sum of  ER divided by the number of cells). The normalized information entropy h = H/
HE ranges between 1 and 0, which correspond to the total disorder of the system and the extreme concentration 
of events, respectively.

The Shannon entropy concept provides hence a useful quantification of the system predictability; where h = 0 
suggests the highest level of predictability and h = 1, on the contrary, suggests high disorder and low predictability.

Volume. We estimate the volume, V, as the 3D convex Hull of the hypocenters in a given time window.

Kostrov strain. The Kostrov strain Δε39 is computed as follows:

where μ is the rigidity module, V the volume defined by the hypocenters and ΣM0 is the sum of seismic moments 
of earthquakes in a given time window.

Energy Index. The Energy  Index17, EI, is derived considering seismic moment,  M0, and radiated energy,  ER, 
estimates obtained by RAMONES. The seismicity that occurred over the period 2005–2007 and consisting of 
461 earthquakes has been used to calibrate a reference scaling model between the base-10 logarithm (indicated 
as ‘log’) of  M0, and  ES

17.
EI is then computed for new earthquakes as:

where  ES is the experimental estimate for new earthquakes and  ESt is the energy value derived from the median 
 ES-to-M0 reference scaling model for the  M0 of the experimental earthquakes. Positive EI values indicate that 
an earthquake has radiated with respect to the reference model more energy per unit-slip and unit-area (i.e., 
per seismic moment,  M0) than expected. On the contrary, negative EI values are associated with earthquakes 
showing an excess of slip or larger rupture area and lower stress drop with respect to what expected from the 
reference model.

Outline of the analyses. We divide the seismic catalog including 4820 earthquakes (supplementary mate-
rial S1) occurred in central Italy between 1 January 2005 until the occurrence of AQU on 6 April 2009 as follows: 
(i) we consider earthquakes occurred between 2005 and 2007 (i.e., referred as ‘reference period’) for calibrating 
the spatio-temporal and source dynamic properties of events belonging to the background, B, and clustered, C, 
seismicity (supplementary materials S2 and S3). Therefore, we split the data in two subsets (B and C); (ii) a third 
subset of data includes the events from 1 January 2008 and until the Mw 6.3, 2009 L’Aquila earthquake (supple-
mentary material S4).

The discrimination between B and C seismicity in the reference period is carried out by computing the gen-
eralized distance, η, of the events, and modeling the η distribution with the sum of two log-Gaussian  functions29 
(Fig. S2). By using a threshold η value (i.e., η = 3) for discriminating between B from C (Fig. S3), we implicitly 
accept that we will include a small portion of events belonging to one population into the other.

(9)logηij = logRij + logTij ,

(10)H = −

m
∑

k=1

ek

ER

[

ln
ek

ER

]

,

(11)H = −

m
∑

k=1

Pk(ER)[lnPk(ER)],

(12)�ε =

∑

M0

2µV
,

(13)EI = log(ES)− log(ESt)
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The third population of events includes all the earthquakes occurred after the 1 January 2008. For the latter, 
we do not discriminate between background and clustered seismicity because we are interested to analyze al the 
data for assessing the information provided by features about the preparatory phase of the mainshock.

We characterize the three populations (B, C and AQU09) computing the features on windows of events with 
fixed length (i.e., l = 30 days). For each window, the feature values are assigned to the end time of the last day 
in the window. Windows move of 1 day at time, hence each feature represents a time series. Windows with less 
than 50 earthquakes are discarded.

We then compute for each feature the Empirical Cumulative Density Function, ECDF, for both the B and 
C populations (Fig. S15), and we use a generalized linear regression model to fit them with a logistic function 
(Figs. S16 and S17). The latter analysis is also repeated for the features belonging to the AQU09 period, but in this 
case considering limited sets of data. For instance, for the results shown in Fig. 3, we adopted time windows of 
different lengths (i.e., 120, 60, 30, 15 days preceding the mainshock). Differently, during the temporal analysis of 
features, and their ensemble, shown in Figs. 5 and 6, we used windows with length 15 days moving 1 day at time.

Data availability
We used data and information retrieved from ORFEUS-EIDA (https:// www. orfeus- eu. org/ data/ eida/), IRIS 
(https:// www. iris. edu/ hq/) and DPC (http:// ran. prote zione civile. it/ EN/ index. php). We used data mainly from 
networks IV (https:// doi. org/ 10. 13127/ SD/ X0FXn H7QfY), IT (https:// doi. org/ 10. 7914/ SN/ IT) and MN (https:// 
doi. org/ 10. 13127/ SD/ fBBBt Dtd6q). Supplemental material includes 8 Figures.
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