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The transition from field emission 
to collisional space‑charge limited 
current with nonzero initial velocity
Lorin I. Breen 1,2, Amanda M. Loveless 3, Adam M. Darr 3,4, Keith L. Cartwright 4 & 
Allen L. Garner 2,3,5*

Multiple electron emission mechanisms often contribute in electron devices, motivating theoretical 
studies characterizing the transitions between them. Previous studies unified thermionic and field 
emission, defined by the Richardson‑Laue‑Dushman (RLD) and Fowler–Nordheim (FN) equations, 
respectively, with the Child‑Langmuir (CL) law for vacuum space‑charge limited current (SCLC); 
another study unified FN and CL with the Mott‑Gurney (MG) law for collisional SCLC. However, 
thermionic emission, which introduces a nonzero injection velocity, may also occur in gas, motivating 
this analysis to unify RLD, FN, CL, and MG. We exactly calculate the current density as a function of 
applied voltage over a range of injection velocity (i.e., temperature), mobility, and gap distance. This 
exact solution approaches RLD, FN, and generalized CL (GCL) and MG (GMG) for nonzero injection 
velocity under appropriate limits. For nonzero initial velocity, GMG approaches zero for sufficiently 
small applied voltage and mobility, making these gaps always space‑charge limited by either GMG 
at low voltage or GCL at high voltage. The third‑order nexus between FN, GMG, and GCL changes 
negligibly from the zero initial velocity calculation over ten orders of magnitude of applied voltage. 
These results provide a closed form solution for GMG and guidance on thermionic emission in a 
collisional gap.

The continuing diversification in size, pressure, temperature, and phases of matter in electronic devices motivates 
the unification of various electron emission models to improve device design and  operation1–4. Characterizing 
electron emission and the transitions between mechanisms is critical for numerous applications, including 
directed energy, high power vacuum electronics, time-resolved microscopy, and x-ray  systems3. Moreover, elec-
tron emission plays a critical role in discharge generation for microscale and smaller gaps, where field and/or 
thermionic emission may strip sufficient electrons from the cathode due to high electric fields and/or tempera-
ture, respectively, to induce  discharge3,5–7.

However, practical devices may not operate in a single electron emission regime, motivating the characteriza-
tion of the transition between these  mechanisms3. Increasing the emission current of a device, regardless of the 
emission mechanism, ultimately causes electron emission to become limited due to the presence of too much 
charge in the  gap8–10. Lau et al. solved for the transit time of a single electron emitted from the cathode by field 
emission to derive an exact solution for the current density that accounted for space-charge8. In the limits of 
high applied voltage V  and/or small gap distance D , this solution reduced to the space-charge limited current 
(SCLC) in vacuum, the Child-Langmuir (CL)  law11,12, given by

where ε0 is the permittivity of free space, e is electron charge, and m is electron mass. In the limits of low V  or 
large D , the solution approached the Fowler–Nordheim (FN) equation for field emission, given  by13–15
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where

Es is the electric field at the cathode, y = �−1
√
4QeEs  where Q = e2/(16πǫ0) , AFN = e3/

(

16π2
ℏ�

)

 and 
BFN = 4

√
2m�3/(3ℏe) are FN constants, � is the electrode work function, and ℏ is the reduced Planck’s constant. 

Table 1 summarizes the values of key physical parameters used in these equations and throughout this paper.
Recasting these equations in nondimensional variables yielded a universal (true for any diode geometry) set 

of equations and matching the resulting asymptotic solutions indicated the transition from a field emitting diode 
to a space-charge limited  one8. Note that this matching invalidates the assumptions inherent in the fundamental 
equations since CL is commonly derived for Es = 0 , while FN requires nonzero Es = V/D . Thus, characterizing 
electron emission near this “nexus” necessitates solving the full solution that accounts for all relevant physics.

Similar asymptotic approaches have been applied to characterize other emission and circuit phenomena. By 
introducing electron mobility µ into the electron force law to account for collisions, Benilov assessed the transi-
tion from CL to SCLC with  collisions16, or the Mott-Gurney (MG) law, given  by17

where µ is the electron mobility in the gas. Additional applications of this approach to assess field emission, SCLC, 
and resistive dissipation include the transitions between CL, FN, and Ohm’s  law18; CL, FN, and  MG19; and CL, 
FN, MG, and Ohm’s  law20. This approach has also been applied to include the enhancement in quantum SCLC at 
small gaps with the transition to field emission driven microdischarges at large  gaps21 and the transitions between 
FN and SCLC in liquids and during the transition in phase from liquid to  gas22. This approach of developing full 
analytic theories coupling relevant electron emission sources and assessing the transition between dominant 
mechanisms, referred to more broadly as “nexus theory”4, may be extended to other electron emission source 
mechanisms. For instance, Darr et al.23 replaced FN with the general thermal-field (GTF) emission  equation2,24–26, 
which couples field and thermionic emission, to derive exact and asymptotic solutions linking FN, CL, and the 
Richardson-Laue-Dushman (RLD) solution for thermionic emission, given  by27

where T is the cathode temperature, kB is the Boltzmann constant, and ARLD = em/
(

2π2
ℏ
3
)

 . Darr et al. extended 
previous studies examining the transition from RLD to CL using Miram  curves28–33 by incorporating FN and 
showing that an increasing contribution of field emission could soften the characteristic “knee” during the 
transition to CL. Lang et al.34 replaced the GTF equation with the general thermo-field photoemission (GTFP) 
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Table 1.  Typical values of physical parameters.

Parameter Quantity Value

AFN Fowler Nordheim coefficient (at 4.5 eV) 3.44× 10−7AV−2

BFN Fowler Nordheim coefficient (at 4.5 eV) 6.55× 1010Vm−1

e Electron charge 1.602× 10−19C

m Electron mass 9.11× 10−31kg

kB Boltzmann’s constant 1.38× 10−23JK−1

ε0 Permittivity of vacuum 8.854× 10−12Fm−1

ℏ Reduced Planck’s constant 1.05× 10−34Js

Q Fowler Nordheim constant 5.77× 10−29Jm

� Work function 4.5eV

E0 Electric field scaling constant 6.55× 1010Vm−1

F0 Force scaling constant 1.05× 10−8N

T0 Temperature scaling constant 5.22× 104K

t0 Time scaling constant 3.93× 10−16s

φ0 Voltage scaling constant 116.5V

v0 Velocity scaling constant 4.53× 106ms−1
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 equation24,25 to include the transition to the Fowler-DuBridge (FD) equation for  photoemission2,35. In addition to 
providing a detailed step-by-step process for developing nexus phase space plots showing the device conditions 
necessary for the transitions between FD, RLD, FN, MG, CL, and Ohm’s law, Lang et al. derived exact solutions 
for the current density as a function of voltage and demonstrated the transitions to FD, RLD, FN, and CL under 
appropriate asymptotic conditions of temperature, gap distance, voltage, and laser  frequency34.

Nexus theory may also be applied to assess variations in electron emission regime for rough electrodes. A 
recent study applied nexus theory to a fractional dimensional model to derive the conditions for transitions 
between FN, MG, and CL for different conditions of surface  roughness36. Such a model may be extended to the 
condition here combining RLD with FN, MG, and CL by following the steps outlined in that study; however, it 
would also be necessary to extend the GTF representation of combined electron emission to fractional dimen-
sions to derive the solution for the exact current density in the diode.

Although a given emitter may realistically exhibit multiple mechanisms due to field and temperature non-
uniformities, the present study considers a one-dimensional (1D) system assuming all electron emission behavior 
along the cathode follows a common mechanism (or combination of mechanisms). Using 1D nexus theory sim-
plifies the assessment of emitter behavior, elucidating inter-mechanism transitions based on operating system 
conditions.

While several studies have applied nexus theory to assess numerous transitions, none have explicitly consid-
ered the transition between RLD and MG. While this transition has been examined using nexus theory by match-
ing the RLD and  MG23, an exact solution fully coupling collisions and the GTF or GTFP source has not yet been 
conducted. While seemingly of academic interest, this assessment has practical implications in device physics. 
Although many vacuum electronics devices use cold cathodes (field emission with the electrons emitted with zero 
velocity)35,37,38, many use thermionic cathodes (electrons emitted with nonzero velocity)38–40. This motivated the 
earlier study linking RLD with FN and  CL23. Less often considered theoretically, although motivating the previous 
study linking MG with FN and  CL19, is that vacuum devices often do not operate in perfect vacuum. Pressures 
of  10–5 Torr can dramatically degrade field  emission41 and the failure rate of emitters increases with increasing 
 pressure42. Alternatively, at atmospheric pressure for microscale gaps, strong electric fields strip electrons off 
the cathode by field emission to reduce breakdown with decreasing gap  size5. Reducing gap size to nanoscale 
causes space-charge to begin to limit the current prior to  breakdown7. Since thermionic emission may also play 
a role in micro- or nano- scale  breakdown6, this physics is also relevant for higher pressures; one example being 
high altitude discharge. For instance, when attempting to define “high pressure” and “low pressure” cutoffs for 
choosing the correct model to describe a device, it can be helpful to know the “midpoint pressure” as defined 
by nexus theory involving MG. This could be especially useful in thermionic diodes, to define a threshold for 
temperature-induced outgassing that may change device  operation43–47. Hanquist et al. addressed high heating 
rates on hypersonic vehicles and developed a model combining SCLC with thermionically emitted electrons at 
the surface to include transpiration  cooling48.

The other challenge is that when examining the nexuses of SCLC with RLD, one must also consider the 
implications of nonzero injection velocity on SCLC. The most widely-cited derivation of 1D, planar SCLC with 
nonzero electron injection velocity was derived by Jaffé49–51 as

where v0 is electron injection velocity. Liu and Dougal derived an alternate solution, referred to as the bifurcation 
current density JB , given  by52

In (8), the electrons have zero velocity at the virtual cathode. In (7), the electric potential is shallower since 
the electrons maintain a nonzero velocity at the virtual cathode. From the asymptotic analysis of the transition 
from RLD to CL, Darr et al. derived a generalized CL law (GCL) JGCL  as23

which behaves identically to (7) in the limit of mv20(2eV)−1 ≪ 1 . However, no readily available solution for an 
analogous general MG (GMG) solution for nonzero injection velocity exists to serve as an appropriate nexus 
equation for a thermionic cathode in a non-vacuum environment.

Thus, this paper will develop a first-principles based linkage of FN, RLD, GMG, and GCL to assess this 
behavior considering a 1D system. We first derive the theory starting from the electron force law coupled with 
the GTF and obtain the relevant asymptotic solution for GMG. We next apply the resulting asymptotic theories 
and exact solutions to assess nexuses under various conditions before making concluding remarks.
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Results
Derivation. We consider a 1D, planar diode containing neutral gas with electron mobility µ , the cathode at 
x = 0 held at electric potential φ = 0 , and the anode at x = D held at φ = V  with respect to the cathode. We 
assume the electron is emitted from the cathode at x(0) = 0 with initial velocity v(0) = v0 and initial accelera-
tion a(0) = eEs/m . Combining Poisson’s equation with continuity, given by J = enev , yields

where ne , v, and J are electron number density, electron velocity, and current density, respectively. Assuming 
that the current is emitted due to a combination of thermionic and field emission, we define J using the GTF 
relation, JGTF = ARLDT

2N(n, s) , where ARLD = (emk2B)/(2π
2
ℏ
3) , ℏ is the reduced Planck constant, n = βT/βF , 

βT = 1/(kBT) , and βF , s , and N(n, s) are functions of F and T (see Supplementary Information)23. The force on 
an electron is given by

The first term on the right-hand-side of (11) represents the force on the electron due to the electric field, while 
the second represents a friction term introduced by collisions. To reduce parameters and facilitate analysis, we 
nondimensionalize (10) and (11) by defining

where the bars represent dimensionless parameters, terms with subscript 0 are scaling terms, and the FN coef-
ficients are given by AFN = e3/(16π2

��) and BFN =
(

4
√
2m�3

)

/(3�e) . Substituting (12) into (10) and (11) 
yields

and

respectively. Equations (13) and (14) are universal since all material dependence has been removed through 
nondimensionalization.

Differentiating (14) with respect to x , considering v = dx/dt to change variables, and combining with (13) 
gives

Solving (15) for velocity using the initial conditions defined previously yields

where v0 =
√
(kBT)/me

23, which may be written non-dimensionally as v0 =
√

T/26.1145 . Integrating (16) 
gives electron position as

At low mobility (high pressure), exp(−t/µ) ≈ 0 , simplifying (16) and (17) to v(t) ≈ µ
(

E + Jt
)

+ v0 and 
x(t) ≈ µ

(

Et + Jt
2
/2
)

+ v0t , respectively. The critical current density can then be obtained by considering the 
condition x(τ ) = D . This gives the transit time as τ = χE/J  , with χ simplifying to

for µ ≪ 1.
Instead of defining V  using an energy balance  equation8, we integrate (14) with respect to x and change 

variables to t to  obtain19
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where v(t) is defined by (16). Because µ ≪ 1 , the second term on the right-hand side of (19) dominates. Substi-
tuting the simplified velocity function, v(t) ≈ µ

(

E + Jt
)

+ v0 , and τ  into (19) gives

Neglecting higher order terms of µ , considering V ≫ 1, and incorporating the definition of χ from (18) 
simplifies (20) to give the general MG (GMG) equation for nonzero initial velocity as

For v0 = 0 , or T = 0 , JGMG simplifies to (5).
Assuming µ ≫ 1 (low pressure) eliminates the collisional terms and simplifies (16) and (17) to 

v(t) ≈ (Jt
2
)/2+ Et and x(t) ≈ (Jt

3
)/6+ Et

2
/2 , respectively. Taking those equations and considering V ≫ 1 

recovers the general Child-Langmuir (GCL)  function23, given by [cf. (9)]

FN defines the limit in which field emission dominates, and is recovered for V ≪ 1 to give

RLD predicts the limit when thermionic emission dominates, T ≫ E , and is given by

Theoretical analysis and results. Figure  1 compares the full solution from (19) with the asymptotes 
defined in (21), (22), (23) and (24) for GMG, GCL, FN, and RLD, respectively, for D = 250 . For µ = 5 and 
T = 0.04 , Fig. 1a shows that electron emission transitions from RLD to FN to GMG to GCL with increasing V  . 
Reducing T  to 0.002 for µ = 5 eliminates the RLD regime in Fig. 1b. In general, for sufficiently low µ in Fig. 1a 
and b, electron emission first transitions to GMG before reaching GCL. Figure 1c shows that increasing µ to 
100 for T = 0.04 causes electron emission to transition from RLD to FN to GCL with increasing V  , bypassing 
the GMG regime. In addition to demonstrating the direct transition from FN to GCL, Fig. 1d, which considers 
µ = 100 and T = 0.002 , shows that emission bypasses the RLD regime at low V  , just as for lower µ in Fig. 1b. In 
all cases, regardless of µ , electron emission follows GCL at sufficiently high V  since the electrons will eventually 
have enough energy to exhibit vacuum-like behavior in the presence of  gas16,19. At low V  , electron emission will 
be driven by RLD at sufficiently high T  (i.e., v0 ) or FN at sufficiently low T  (i.e., v0 ). Electron emission will only 
transition to GMG before GCL for a sufficiently low µ . The presence or absence of these various transitions may 
be assessed by using nexus phase space plots.

To characterize the transition between two electron emission mechanisms, we equate J  from their asymptotic 
solutions. To simplify GMG and reduce numerical errors, we first derive asymptotic equations in the limits of 
high ( v0 ≫ 1 but still nonrelativistic) and low ( v0 ≪ 1 , but nonzero) velocity as
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JGCL = JFN results in

JGCL = JGMG,v0≪1 gives

JRLD = JGCL yields
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Figure 1.  Dimensionless current density J  as a function of dimensionless voltage V  for the exact solution 
represented by (19) and the asymptotic solutions GMG, GCL, FN, and RLD, respectively, with dimensionless 
gap distance D = 250 for (a) dimensionless mobility µ = 5 and dimensionless temperature T = 0.04 ; (b) 
µ = 5 and T = 0.002 ; (c) µ = 100 and T = 0.04 ; and (d) µ = 100 and T = 0.002 . For a low mobility (or high 
pressure), the full solution will follow GMG for sufficiently high V  . For a sufficiently high mobility, electron 
emission bypasses GMG and transitions directly to GCL [cf. (c) and (d)]. Low temperature eliminates the 
contribution of thermionic emission, removing the RLD regime from the full solution [cf. (b) and (d)].
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and JGMG,v0≪1 = JRLD gives

where T ∼= 26.1145v20 . Since (27), (28), (29), (30), (31), (32) arise from matching asymptotic solutions, they will 
not perfectly match the exact solution from (19). This is a standard characteristic of matched asymptotic analyses 
since the assumptions used to obtain each asymptote will inherently conflict with those to determine the other 
asymptote (or asymptotes for a higher order nexus) at their  intersection5. However, these nexuses specify a regime 
where the dominant electron emission mechanisms would be sensitive to any D , V  , v0 , and µ.

Figure 2 illustrates the transitions between electron emission mechanisms by plotting V  as a function of D , µ , 
and v0 . The second-order nexus curves in Fig. 2 demonstrate the conditions where the dominant electron mecha-
nisms transition. RLD consistently dominates when V  is small, except for µ � 0.3 for D = 250 and T = 0.02 , 
where MG dominates at low V  because the gap is always space-charge limited and JMG ≈ 0 for sufficiently low V  
and v0  = 0 . This suggests that combinations of µ and V  below this threshold (or, alternatively, any pressure above 
this threshold) prohibit the emission of electrons into the gap due to strong collisionality and weak electric field 
(and concomitant force), respectively, resulting in a near-zero SCLC. Mathematically, for nonzero v0, sufficiently 
low µ and V  increases the magnitude of D4

v40µ
−4V

−4 such that JGMG → 0 in (21), making it less than both JRLD 
and JFN so that the gap becomes space-charge limited at any V  below this threshold µ . Increasing V  eventually 
causes GCL to dominate at high V  independent of µ (since JGMG increases with increasing V  , making it nonzero 
even at low µ ), implying that the gap behaves like vacuum for any electron emitted at sufficiently high V  . Figure 3 

(32)Vµ =
√

2D
3
µT

2
e−1/T + 4D

2
v20/3,

Figure 2.  (a) Dimensionless breakdown voltage V  as a function of dimensionless gap distance D for 
dimensionless mobility µ = 5 and dimensionless temperature T = 0.02 . (b) Dimensionless breakdown voltage 
V  as a function of dimensionless injection velocity v0 , for dimensionless mobility µ = 5 and dimensionless 
gap distance D = 250 . (c) Dimensionless breakdown voltage V  as a function of dimensionless mobility µ for 
dimensionless temperature T = 0.02 and dimensionless gap distance D = 250.
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shows an example of a completely space-charge limited gap where electron emission only transitions from GMG 
to GCL with no other emission mechanisms involved for µ = 0.1 , D = 250 , and T = 0.02.

At least one third-order nexus, corresponding to the intersection of three asymptotic solutions, appears in 
each panel of Fig. 2. Figures 2a and c show the third-order nexus where JGMG = JGCL = JFN , analogous to our 
prior study demonstrating the intersection of MG, CL, and FN for zero injection  velocity19. The third-order 
nexus between FN, GMG, and GCL informs whether electron emission bypasses the GMG regime during the 
transition from FN to SCLC with decreasing D or increasing µ . Figure 2a shows that for D < DGMG,GCL,FN for 
a fixed v0 and µ , electron emission transitions directly from FN to GCL without undergoing GMG, indicating 
that the gap behaves essentially as vacuum. Figure 2c shows that for µ > µGMG,GCL,FN for a fixed v0 and D , the 
electrons encounter sufficiently few collisions crossing the gap such that electron emission transitions directly 
from FN to GCL without undergoing GMG.

We can derive this condition analytically by rewriting the second-order nexus for JGCL = JFN as

The third-order nexus JGMG = JFN = JGCL can be obtained bv setting JGMG = JFN and JGMG = JGCL , adding 
them to obtain 2JGMG = JFN + JGCL , and solving to yield

Equations (33) and (34) describe the third-order nexus between FN, GMG, and GCL for some fixed D,V , 
or µ for a given v0 . Comparing the solution from (33) to (34) to the solution for zero injection  velocity19 shows 
that incorporating v0 induces a negligible change in the third-order nexus (< 0.1%) for 105 ≤ V ≤ 1015 ; hence, 
we may use the zero injection nexus relationships, given by

and

(33)D = V ln
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Figure 3.  Dimensionless current density J  as a function of dimensionless voltage V  for the exact solution 
represented by (19) and the asymptotic solutions GMG and GCL, respectively, for dimensionless mobility 
µ = 0.1 , dimensionless gap distance D = 250 , and dimensionless temperature T = 0.02 . Asymptotic solutions 
FN and RLD are excluded because they are outside the relevant range.
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for the given voltage range with minimal loss of accuracy, as done previously when incorporating thermionic 
 emission23. Figure 3  from19 shows the behavior of the third-order nexus under this condition. The impact of 
injection velocity on the third-order does not become significant until V < 103 , as shown in Fig. 4, which shows 
how V  at the third-order nexus behaves as a function of D and µ for different v0 , respectively. The divergence 
due to nonzero v0 becomes particularly pronounced at low V  for both low D and µ.

Two third-order nexuses arise when considering V  as a function of v0 in Fig. 2b: one nexus between RLD, 
FN, and GMG and a second between RLD, GMG, and GCL. This indicates that for a given v0 , the full solution 
transitions from RLD to FN to GCL, which is demonstrated in Fig. 1, or transitions from RLD to GMG to GCL, 
bypassing the FN regime. For the third-order nexus JGMG = JFN = JRLD , the condition can be derived analyti-
cally by considering JFN = JRLD to obtain

where W is the Lambert W-function, or the product log function. The third-order nexus can then be recovered 
by setting JGMG = JFN and JFN = JRLD , adding them to obtain 2JFN = JRLD + JGMG , and solving to yield

Similarly, the condition for the third-order nexus JGCL = JGMG = JRLD can be derived analytically by first 
considering JGCL = JRLD to obtain

where T ∝ v20 . As above, considering JGMG = JRLD and JGCL = JGMG , adding them to obtain 
2JGMG = JGCL + JRLD , and solving for µ gives

Although not visible in Fig. 2, a fourth-order nexus may also occur between RLD, FN, GMG, and GCL for 
an appropriate combination of V ,D,µ, and v0 . Selecting any one of these parameters uniquely defines the other 
three to achieve the fourth-order nexus. To predict the fourth-order nexus, we first determine D with respect to 
v0 and V  . Since JRLD = JFN = JGMG = JGCL , we can solve for D independent of µ by considering JRLD = JGCL , 
yielding D by (39). The fourth-order nexus can then be recovered by setting JGMG = JGCL, JGMG = JFN and 
JGMG = JRLD , adding them to obtain 3JGMG = JGCL + JRLD + JFN , and solving for µ to obtain
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Figure 4.  Dimensionless voltage V  as a function of (a) dimensionless gap distance D and (b) dimensionless 
mobility µ describing the third-order nexus between GCL, GMG, and FN.
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Equations (39) and (41) describe the fourth-order nexus between RLD, FN, GMG, and GCL for a combina-
tion of D,V , µ , or v0 , shown in Fig. 5.

Figure 6 compares the two space-charge-limited regimes, GCL and GMG, by plotting each with respect to 
the corresponding equation with zero injection velocity. From above, GMG differs from MG by a recurring term 
χ2 = [Dv0/

(

µV
)

]2 , which represents the ratio of initial velocity v0 to the nominal drift velocity vD = µV/D ; 
therefore, we plot JGMG/JMG as a function of χ2 in Fig. 6a. This demonstrates that JGMG decreases and approaches 
zero with increasing χ2 , which corresponds to vd ≪ v0 . This means that insufficient electric field and/or low 
mobility ( µ → 0 , which corresponds to a strongly collisional gap) makes it difficult for the electrons to move 
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Figure 5.  The fourth-order nexus corresponding to JRLD = JFN = JGMG = JGCL uniquely defined by any one 
of the dimensionless voltage V  , dimensionless injection velocity squared v20 , dimensionless gap distance D , or 
dimensionless mobility µ.

Figure 6.  (a) Ratio of dimensionless GMG current density JGMG to MG current density JMG as a function 
of χ2

= [Dv0/
(

µV
)

]
2 . (b) Ratio of dimensionless GCL current density JGCL to CL current density JCL as a 

function of the ratio of kinetic energy (KE) to potential energy (PE), given by U .
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in the medium. Since JGMG → 0 , as χ2 → ∞ , the gap will always be space-charge limited since its strong col-
lisionality or weak electric field prohibits electron emission until the applied voltage becomes sufficiently high, 
at which point the gap becomes space-charge limited by CL [cf. Fig. 2c]. With decreasing χ2 (i.e., vd ≪ v0 ), 
JGMG → JMG . Figure 6b shows JGCL/JCL as a function of U = v20/

(

2V
)

 , which is the standard scaling for CL 
with nonzero v0 for  planar49–51 and  nonplanar53,54 diodes. As U → 0 , JGCL → JCL ; as U → ∞ , JGCL continues to 
increase. At some point, relativistic effects become  important55, which is beyond the scope of the current study.

Conclusion
This paper extends nexus theory to assess the transitions between RLD, FN, GMG, and GCL. Nexus theory 
provides a way to assess the dominant mechanisms before carrying out complicated simulations or experiments. 
Constructing the nexus phase space plot using the analytic equations for these mechanisms (including the GMG 
derived in this manuscript) with the desired operating conditions will demonstrate whether the equation for a 
single mechanism can be used (i.e., well away from one of the nexus curves) or if a more complicated equation 
combining multiple equations must be used (i.e., close to a nexus curve for two or more mechanisms). If this 
simple analysis shows that only one of these equations is dominant, this simplifies the design and simulation of 
the specific device; however, if operating near a nexus, then one must combine the mechanisms and use a more 
complete theory to predict behavior. The difference between using one of the simple equations can be significant, 
as illustrated by the 153.4% difference between GMG and the exact solution and 96.0% difference between FN 
and the exact solution in plot a of Fig. 1 at V = 25.73687 near the nexus curve between FN and GMG.

The exact solution that accounts for temperature and mobility approaches the accepted equations for these 
mechanisms in the appropriate limits. Furthermore, we derive an analytic equation for GMG that includes the 
injection velocity, which is relevant for thermionic emitters under non-vacuum conditions. We also observe 
that applying a sufficiently small (but nonzero) bias voltage with a sufficient mobility yields a near-zero JGMG 
such that the gap is always space-charge limited, ultimately transitioning to GCL with increasing bias voltage.

We have recently experimentally and theoretically assessed the transitions between FN, MG, CL, and field 
emission-driven breakdown for nanoscale gaps at atmospheric  pressure7 and  vacuum56 near the third-order nexus 
between FN, MG, and CL. Other theories have examined thermo-field emission driven breakdown for microscale 
gaps at microwave  frequencies57,58, indicating that the electrons undergoing these mechanisms need not only 
originate from cold cathodes. Thus, the results reported here, particularly for the fourth-order nexus between 
RLD, FN, GMG, and GCL, elucidate the contributions of the emission mechanisms (RLD and FN) and limits 
(GMG and GCL) for thermionic emitters in nano- and microscale devices that may undergo gas breakdown. 
Such theories may ultimately be extended to include additional emission mechanisms, such as  photoemission34, 
or nonplanar geometries, which have been an ongoing area of study for both  zero59 and  nonzero53,54 injection 
velocity. Meadors and Poirier studied how to use a laser to heat a cathode to induce thermionic emission in 
vacuum and at atmospheric pressure without electromagnetic  interference60. Another study addressed cathode 
heating and subsequent thermionic emission that play a critical role in arc  formation61.  Go62 pointed out that ion-
enhanced thermo-field emission enabled the study of how slow-moving ions influenced thermionic emission in 
cathodic  arcs63–67 and then developed a theory for thermo-field emission driven microscale breakdown, extending 
the typi cal theories that considered strictly field emission driven  breakdown5. As gap distances become smaller, 
the operating conditions approach the regime where the individual RLD, FN, MG, and CL may not capture the 
physics and a combined theory as derived in this paper becomes necessary.

Mobility may also be incorporated into recent work that unified RLD, FN, and SCLC in a vacuum crossed-
field diode, where a magnetic field is applied perpendicular to the applied electric  field68. All these applications 
of nexus theory demonstrate the importance of appropriately characterizing the dominant mechanism(s) to 
determine the current density. While perhaps not as important when considering two conditions (e.g., FN and 
CL), this becomes increasingly important as more mechanisms are added and the phase plot of contributing vari-
ables (e.g., voltage, gap distance, pressure, and temperature) increases. This complicates the transitions between 
the mechanisms and necessitates more care for ensuring that any theories or simulations properly account for 
the dominant mechanism.

Finally, we point out that the present paper considers the emission mechanism(s) predicted by the theory as 
coming from the full device. In other words, we do not consider that nonuniformities in temperature or electric 
field may result in different areas of the emitter undergoing emission mechanisms. Such a multidimensional 
model may be interesting to better understand behavior in these different regimes in future studies, but the 
approach here provides value for experimentalists to rapidly characterize the overall behavior of the measured 
current–voltage plots of the overall device.

Data availability
All data generated or analyzed during this study are included in this published article. This paper reports the 
results from theoretical research.
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