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Increased impact of the El 
Niño–Southern Oscillation 
on global vegetation under future 
warming environment
Thanh Le 

There are broad effects of vegetation changes on regional climate, carbon budget, the water cycle, 
and ecosystems’ productivity. Therefore, further knowledge of the drivers of future vegetation 
changes is critical to mitigate the influences of global warming. The El Niño–Southern Oscillation 
(ENSO) is a major mode of interannual climate variability and is likely to affect vegetation on the 
global scale. Nonetheless, little is known about the causal impacts of ENSO on future vegetation cover 
with changes in land use and a warming environment. Here, we examined the connections between 
ENSO and vegetation using leaf area index (LAI) data over the period 2015–2100 from Coupled 
Modeling Intercomparison Project Phase 6. Our findings indicate that, compared with the historical 
period 1915–2000, the vegetated areas influenced by ENSO are projected to rise by approximately 
55.2% and 20.7% during the twenty-first century of the scenarios SSP2-4.5 and SSP5-8.5, respectively. 
Though uncertainty for the causal link between ENSO and vegetation changes remains in several 
regions (i.e., parts of North America, southern Australia, and western Asia), ENSO signature on LAI 
variations is robust over northern Australia, Amazonia, and parts of Southeast Asia. These results 
indicate that the influences of ENSO on global vegetation may strengthen in the future.

There are broad impacts of vegetation changes on the water  cycle1–5, regional  climate6–12, carbon  budget13–18 and 
ecosystems  productivity19,20. Hence, further understanding of the drivers of future vegetation changes is crucial 
to mitigate the impacts of global warming.

The El Niño–Southern Oscillation (ENSO), as a major mode of climate  variability21,22, is expected to affect 
global vegetation changes. As the growth of trees depends on water  availability23, ENSO-induced changes in 
the water  cycle24–26 may lead to impacts on vegetation cover. For instance, ENSO shows an impact on global 
growing-season normalized difference vegetation index  (NDVIgs)27, vegetation  respiration28, vegetation  health29, 
and plays an important role in altering the global crop  production30,31. In particular, ENSO showed influences 
on tree-level ecophysiology via the impacts on regional water  availability32 and ENSO-induced drought and soil 
drying may cause leaf shedding, tree mortality, and slow recovery of  forests33–35. In addition, ENSO causes a shift 
in the response of leaf and seed fall over the tropical forest of  Panama36,  Amazonia37, and vegetation changes 
over eastern, southern, and western  Africa38–41.

However, the causal impacts of ENSO on green vegetation cover in the future remain unclear. While long-term 
observed leaf area index (LAI) products are  limited17,42,43, Earth system models provide important information 
on how forests may evolve with different scenarios of a future warming  environment23,44. In addition, previous 
works focused on the correlation between ENSO and LAI, while causal analysis accounting for the confounding 
influence of other main climate modes is deficient.

In the present work, we evaluate the possibility of the causal impacts of ENSO on the global LAI using CMIP6 
data over the 2015–2100 period. The outputs from CMIP6 models offer a valuable opportunity to assess the future 
influence of ENSO on vegetation cover.
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Data and methods
Datasets. We used data from the historical simulation and  ScenarioMIP45,46. We limited our study to two 
future scenarios SSP5-8.5 (i.e., Shared Socio‐Economic Pathway 5 and climate forcing level of 8.5 W/m2 at the 
year 2100) and SSP2-4.5 (i.e., Shared Socio‐Economic Pathway 2 and climate forcing level of 4.5 W/m2 at the 
year 2100). The scenario SSP5-8.5 represents the high end in the range of future forcing pathways while the sce-
nario SSP2-4.5 represents the intermediate forcing  level46. These future scenarios cover the 2015–2100 period. 
The historical  simulation45 is utilized as a baseline to evaluate potential differences of the impacts of ENSO on 
the future global vegetation cover compared to the historical simulation. The historical simulation covers the 
period 1915–2000. Table S1 shows the 14 CMIP6 models which supplied vegetation cover data for the present 
work. The use of multiple model outputs reduces the uncertainty of the links between ENSO and green vegeta-
tion cover.

We used leaf area index (LAI) datasets from CMIP6 models. LAI (computed as one-sided green leaf area per 
unit ground surface) is an important indicator of vegetation cover or vegetation greenness and is a fundamental 
variable in land  models17. LAI is also an important indicator of fuel supply, burning conditions, and fire predic-
tion over a specific  area43,47. The CMIP6 models may overestimate the mean LAI and the variations of LAI in 
some  regions48. In addition, the models may have biases in simulating different phases (e.g., onset and length) 
of the growing  season49,50 and the magnitude of LAI  growth51. However, outputs from Earth system models are 
still helpful to investigate the variations of global vegetation  cover44,52,53.

We utilized monthly sea level pressure (SLP) and sea surface temperature (SST) to compute the time series 
of major climate modes (see also Sect. "Methods" and Text S1).

Methods. The methods used in this work are based on a multivariate predictive  model24,54 to assess the null 
hypothesis of no Granger causality between ENSO and LAI. Our approach uses the p-value or probability value 
as a metric to estimate the likelihood for no causal effects of ENSO on LAI.

In the computations, we considered the confounding effects of other main climate modes (i.e., the Southern 
Annular Mode (SAM) (e.g., Cai et al.55), the Indian Ocean Dipole (IOD)56,57, and the North Atlantic Oscilla-
tion (NAO)58) on the connections between ENSO and LAI. Additional details of the methods are described in 
section Text S1.

Results
Model simulations of LAI. The models mean map of LAI is shown in Fig. 1a–c for the historical experi-
ment and two future scenarios SSP2-4.5 and SSP5-8.5, respectively. There is a high agreement between the mod-
els for most vegetated areas (denoted by stippling in Fig. 1a–c) in simulating LAI trends in the past and the 
future. The multi-model standard deviation of LAI for each simulation is depicted in Fig. S1. In the projections, 
there is an increase in the global LAI compared to the historical experiment (Fig. 1d, e). The largest increases 
in LAI are over middle Africa, southeast Asia, east Asia, Alaska, and eastern North America. LAI is projected 
to decrease over a few spots over western tropical Africa, Central America, eastern South America, and part 
of southeast Asia. The largest decrease in LAI is observed over eastern South America in SSP5-8.5 scenario 
(Fig. 1e). The higher increase in LAI for most regions is observed for SSP5-8.5 scenario compared to SSP2-4.5 
scenario (Fig. 1f).

Figure 2 describes the global LAI of 14 single models (see also Table S1). The spatial pattern of global LAI 
is largely consistent for most models with higher LAI observed over the tropics, east Asia, parts of Europe, and 
parts of North America. Several models (e.g., ACCESS_ESM1_5, GISS-E2-1-G) show weaker simulated LAI 
compared to the models mean and other models.

ENSO causal impacts on annual mean LAI. Figure 3 illustrates the multi-model mean of the causal 
effects of ENSO on global LAI for the historical experiment over the 1915–2000 period (a) and the projections 
over the 2015–2100 period of the two future scenarios SSP2-4.5 (b) and SSP5-8.5 (c). We show that ENSO is 
unlikely (very unlikely) to exhibit no causal effects on LAI (i.e., p-value are lower than 0.33 (0.1)) over the trop-
ics, western and southern North America, Australia, southern South America, and Central Asia.

ENSO impacts on LAI are not seen over central Asia in historical periods (Fig. 3a), however, these impacts 
appear to be more significant in the future projections (Fig. 3b, c). The effects of ENSO on LAI are generally weak 
over Africa, except few spots over eastern and southern Africa. There is a high model consensus (denoted by 
stippling in Fig. 3) of ENSO effects on LAI over parts of Southeast Asia, northern South America which includes 
Amazonia, and parts of northwestern North America.

Figure 4 reveals the differences between historical and future simulated patterns of ENSO impacts on LAI. We 
observed an expansion of ENSO impacts over the tropics, Central Asia, and North America (Fig. 4a, b). These 
increases in ENSO impacts are associated with the increase in LAI in some regions (Fig. 1). On the opposite, there 
is a decline in the likelihood of ENSO effects over tropical Africa, northern South America, and part of western 
North America (only for SSP5-8.5 scenario). Figure 4c suggests that the regions with considerable ENSO effects 
on LAI account for approximately 7% of global land-area in the SSP5-8.5 scenario and approximately 9% of global 
land-area in the SSP2-4.5 scenario. The areas impacted by ENSO in the historical period account for approxi-
mately 5.8% of global land-area. Compared to the historical period, there is a significant increase of around 55.2% 
and 20.7% of the affected land area in the scenarios SSP2-4.5 and SSP5-8.5, respectively. The increase in ENSO 
impacts in the SSP2-4.5 scenario is mainly found over western North America, Australia, and northern South 
America, while the increase in the SSP5-8.5 scenario is limited to northern South America (Fig. 3).

Figure 5 shows the outcomes of 14 single models (see also Table S1) for the causal impacts of ENSO on LAI 
over the 2015–2100 period of the future scenario SSP2-4.5 (i.e., with stronger ENSO global impacts compared to 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14459  | https://doi.org/10.1038/s41598-023-41590-8

www.nature.com/scientificreports/

the SSP5-8.5 scenario as shown in Figs. 3 and 4). In Fig. 5, several models (i.e., BCC_CSM2_MR, GISS-E2-1-G, 
INM-CM4-8, and INM-CM5-0) underestimate the response of vegetation to ENSO over tropical southeast Asia 
and Australia compared to the models’ mean. The models ACCESS_ESM1_5 and MPI_ESM1_2_HR show a 
stronger effect of ENSO on vegetation over Africa compared to other models. The spread of models in simulat-
ing the response of vegetation to ENSO may imply biases in the interactions between land, air, and biosphere 
in the models.

ENSO causal impacts on seasonal mean LAI. Figure 6 shows the causal influences of ENSO (D(t)
JF(t + 1), see also text S1 for definitions) on seasonal LAI (text S1). In Fig. 6, ENSO impacts on seasonal LAI are 
significant in all four seasons over much of the tropics. ENSO impacts over Australia are expanded in the follow-
ing boreal fall (SON(t + 1)), the growing season in the southern hemisphere (Fig. 6c). The response of seasonal 
LAI to ENSO over North America weakens from boreal fall. The impacts of ENSO on vegetation are fading in 
the next winter (D(t + 1)JF(t + 2)) for most regions, except the tropics (Fig. 6d). ENSO impacts over central Asia 
are mainly apparent in the following boreal summer (JJA(t + 1)) as shown in Fig. 6b. The vegetated areas affected 
by ENSO are largest in the following boreal summer and spring, accounting for approximately 7.1% and 6.8% of 
the land-area, respectively (Fig. S2). In the following boreal fall and winter, this area reduces to approximately 
5.9% and 2.4% of the land-area, respectively (Fig. S2).

Figure 1.  (a–c) Multi-model mean map of annual LAI  (m2  m-2) over the 1915–2000 period of the historical 
experiment (a) and over the 2015–2100 period of the future scenarios SSP2-4.5 (b) and SSP5-8.5 (c). In (a), (b) 
and (c), stippling implies that at least 70% of total models show agreement on the mean LAI of all models at a 
given grid point. The agreement of a single model is defined when the difference between the selected model’s 
LAI and the multi-model mean LAI is less than one standard deviation of the multi-model mean LAI. Blue 
shades imply a high annual LAI. (d) Difference of multi-model mean annual LAI between future scenario SSP2-
4.5 and historical experiment (i.e., SSP2-4.5 minus historical experiment). (e) As in (d), but for future scenario 
SSP5-8.5 and historical experiment (i.e., SSP5-8.5 minus historical experiment). (f) As in (d), but for future 
scenario SSP2-4.5 and future scenario SSP5-8.5 (i.e., SSP2-4.5 minus SSP5-8.5. LAI: Leaf Area Index.
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Discussion and conclusions
The increase in the global LAI in the future scenarios (2015–2100) compared to the historical period (1915–2000) 
(Fig. 1) is contributed by a warming environment, an increase in atmospheric  CO2 and nitrogen deposition, and 
changes in land use and land  cover43,59–62 with  CO2 fertilization is the primary  driver17. This increase in the global 
LAI is consistent with the greening trends reported in recent  years3,17,62–65 and these trends may continue in the 
 future66. While land cover change mainly contributed to the regional greening observed in the eastern United 
States and southeast  China62, the decrease in LAI over eastern South America (Fig. 1) might be associated with 
the drying trend in recent years, driven by both changes in climate and land  management67.

Enhanced ENSO impacts on LAI (Figs. 3 and 4) might be associated with land-use change and regrowth of veg-
etation in some  areas14 and an increase in ENSO variability and ENSO-induced atmospheric  teleconnections68–71. 
Significant impacts of ENSO on vegetation over Southeast Asia, Australia, and South America are consistent 
with recent  works24,26,72 which showed a strong ENSO signature on the regional water cycle. ENSO impacts 
on a few spots over eastern and western Africa show an agreement with recent  studies38–40. Increase of ENSO 
impacts over Northern America and central Asia might be related to warmer temperature and reforestation or 
afforestation over the  extratropic63,73. These results highlight the important role of ENSO in the future change 
of global vegetation.

Figure 2.  Map of annual LAI  (m2  m-2) over the period 2015–2100 for the future scenario SSP5-8.5 of 14 single 
models (see Table S1). LAI: Leaf Area Index.
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Figure 3.  Map of multi-model mean probability for no Granger causality from ENSO [D(t)JF(t + 1)] to 
annual mean LAI over the period 1915–2000 of the historical simulation (a) and over the period 2015–2100 
of the future scenarios SSP2-4.5 (b) and SSP5-8.5 (c). Stippling implies that at least 70% of total models show 
agreement on the mean probability of all models at a given grid point. The agreement of a single model is 
given when the difference between the selected model’s probability and the multi-model mean probability is 
less than one standard deviation of the multi-model mean probability. In (a), (b) and (c), the cyan and yellow 
contour lines indicate p-value = 0.33 and 0.1, respectively. Brown shades denote a low probability for no Granger 
causality. ENSO: El Niño–Southern Oscillation. LAI: Leaf Area Index.
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Figure 4.  (a) Difference of multi-model mean probability for no Granger causality from ENSO [D(t)JF(t + 1)] 
to annual mean LAI between future scenario SSP2-4.5 and historical experiment (i.e., SSP2-4.5 minus historical 
experiment). (b) As in (a), but for future scenario SSP5-8.5 and historical experiment (i.e., SSP5-8.5 minus 
historical experiment). In (a) and (b), red (blue) shades imply a higher (lower) probability for the absence of 
Granger causality in the future scenarios SSP2-4.5 and SSP5-8.5 compared to the historical experiment. (c) 
Fraction of total land-area with probability for the absence of Granger causality from ENSO to LAI lower than 
0.33 (i.e., p-value < 0.33). Fraction areas are presented for the historical experiment, the future scenarios SSP2-
4.5 and SSP5-8.5. ENSO: El Niño–Southern Oscillation. LAI: Leaf Area Index.
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The vegetation area affected by ENSO might be low compared to previous  studies27,29 using correlation analy-
sis. The higher influence of ENSO is related to the confounding factors (e.g., the SAM, the IOD and the NAO) 
which are not considered in the correlation analysis. Different land-use scenarios may influence the connection 
between ENSO and LAI. For example, the land use changes employed in SSP5-8.5 are more extreme compared to 
SSP2-4.5 (i.e., the global time series of pastureland area are lower in SSP5-8.5)46,74. These differences in land-use 
scenarios may lead to more significant impacts of ENSO on LAI for SSP2-4.5 compared to SSP5-8.5.

Figure 5.  Map of probability for no Granger causality from ENSO [D(t)JF(t + 1)] to annual mean LAI over 
the period 2015–2100 of the future scenario SSP2-4.5 for 14 single models (see Table S1). Stippling implies that 
at least 70% of total models show agreement on the mean probability of all models at a given grid point. The 
agreement of a single model is given when the difference between the selected model’s probability and the multi-
model mean probability is less than one standard deviation of the multi-model mean probability. The cyan and 
yellow contour lines indicate p-value = 0.33 and 0.1, respectively. Brown shades denote a low probability for no 
Granger causality. ENSO: El Niño–Southern Oscillation. LAI: Leaf Area Index.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14459  | https://doi.org/10.1038/s41598-023-41590-8

www.nature.com/scientificreports/

The high agreement of the models in simulating past and future LAI (Figs. 1 and 2) suggests that the models 
may have the capability to project future LAI trend and outputs from CMIP6 models are useful. Despite high 
consistency in simulating global LAI (Figs. 1 and 2), some models’ discrepancy of ENSO effects is observed in 
several regions (Figs. 3 and 5), suggesting that improvement in the models may benefit further understanding 
of ENSO impacts on future global vegetation.

Data availability
The data that support the findings of this study are openly available at the following website: https:// esgf- node. 
llnl. gov/ search/ cmip6/.
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