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Numerical treatment and global 
error estimation for thermal 
electro‑osmosis effect 
on non‑Newtonian nanofluid flow 
with time periodic variations
O. S. Ahmed 1*, N. T. Eldabe 2, M. Y. Abou‑zeid 2, O. H. El‑kalaawy 1 & S. M. Moawad 1

The essential purpose of this study is to discuss the impact of time-periodic variations on mixed 
convection heat transfer for MHD Eyring-Powell nanofluid. The fluid flows through a non-Darcy 
porous medium over an infinite vertical plate. The effects of viscous dissipation, Ohmic dissipation, 
electro-osmosis force, heat source, thermal radiation, Dufour feature, and chemical reaction are 
presumed. The system of partial differential equations which governs the problem is transformed into 
a system of non-linear algebraic equations and then an explicit finite difference approach is espoused 
to solve these nonlinear algebraic equations. The numerical results for the velocity, temperature, 
and nanoparticles concentration distributions are computed and displayed through a set of graphs. 
Also, the skin friction coefficient, reduced Nusselt number, and Sherwood number are computed 
numerically for various values of the physical parameters. It is found that the velocity becomes greater 
with an elevation in the value of the Helmholtz–Smoluchowski velocity. Meanwhile, it enlarges with 
rising in the value of the electro-osmotic parameter. The rise in the value of the thermal radiation 
parameter causes a dwindling influence on both temperature and nanoparticles concentration. 
Investigations of these effects together are very useful due to their important vital applications in 
various scientific fields, especially in medicine and medical industries, such as endoscopes, respirators, 
and diverse medical implementations, as nanoparticles can be utilized in the remedy of cancer 
tumors. Additionally, electroosmotic flow is important due to its ability to control fluid movement and 
enhance mass transport, making it valuable in various application such as sample separation, drug 
delivery, and DNA analysis, offering enhanced efficiency and sensitivity.

List of symbols
Roman symbols
a and b	� Parameters of Eyring-Powell model
b	� Non-Darcian parameter
A	� Chemical reaction parameter
Bo	� Strength of uniform magnetic field
C	� Nanoparticles concentration
CE	� Ergun constant
Cp	� Specific heat at constant pressure
Cs	� Concentration susceptibility
Da	� Darcy number
Df	� Dufour number
DB	� Brownian diffusion coefficient
DT	� Thermophoretic diffusion coefficient
e	� The electronic charge
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Ec	� Eckert number
Ex	� The electric field component
Fs	� Forchheimer number
g0	� Gravity acceleration
k	� Thermal conductivity
K	� Permeability constant
KB	� Boltzmann constant
KT	� Thermal diffusion ratio
m	� Chemical reaction order
me	� The electroosmotic parameter
M	� Magnetic parameter
n0	� Bulk nanoparticles concentration
n+	� The cations
n–	� The anions
N	� Buoyancy ratio
Nb	� Brownian motion parameter
Nt	� The thermophoresis parameter
Pr	� Prandtl number
q	� The radiative heat flux
Q0	� Heat source parameter
R	� The radiation parameter
Sc	� Schmidt number
t	� Time
T	� Temperature of the fluid
Tav	� The average temperature
Tm	� The mean temperature
UHS	� Helmholtz Smoluchowski velocity
Vi	� Velocity vector = (u(y, t), 0, 0)
Zν	� The charge balance

Greek symbols
α̂	� Non dimensional parameter
β	� Volumetric coefficient of thermal expansion
β*	� Volumetric of expansion with nanoparticles concentration
δ	� Non dimensional parameter
ε	� The dielectric permittivity
ϕ	� The electric potential
γ	� Non dimensional parameter
μ	� Viscosity
ν	� Kinematic viscosity
ω	� Frequency of the oscillating plate
ρ	� The fluid density
ρ	� The fluid density
ρe	� The total ionic energy density
σ	� Electrical conductivity of the fluid
τ	� Stress tensor in Eyring-Powell model
ξ	� The mean of electric potential

Superscripts and subscripts
∞	� Free stream condition
w	� Wall or plate condition

Nanofluid is a traditional liquid consistingof small particles of a diameter lower than 100 nm. It can be defined 
as a kind of fluid having the distinctive ability to improve the fluid thermal properties. Nanofluids have many 
applications in medicine, industry, and engineering.Choi1 tested that the thermal conductivity of the base fluid 
will be improved after adding a small amount of these nanoparticles. Tripathi et al.2 studied on peristaltic flow 
of nanofluids, and they ensure that the nanofluids yield suppressed back flow compared with Newtonian fluids. 
MHD transport of a third-grade nanofluid through a porous medium in the presence of thermal diffusion and 
diffusion thermo effects is discussed byEldabe et al.3. Mekheimer et al.4 analyzed the blood flow with gold nano-
particles in thecatheter. The flow behavior of a pseudo-plastic fluid containing tri-hybrid nanoparticles within 
the suspension; the flow is in the presence of different external effects such as Buoyancy forces, heat generation 
and viscous dissipations is discussed by Sohail et al.5. Nazir et al.6 examined the flow characteristics of a hyper-
bolic tangent liquid, considering the incorporation of ternary hybrid nanoparticles; the study analyzed the flow 
under various influencing factors, including a non-Darcy porous medium, surface rotation, external magnetic 
field, heat generation, and viscous dissipations. Many researchers have studied nanofluids flow through differ-
ent surfaces7–19.
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The study of non-Newtonian fluids is considered to be highly significant in engineering and applied science 
fields. There are various rheological models which utilizing to analyze and display the features of flow and transfer 
of heat. Although this model presents considerable mathematical complexity, it has garnered significant atten-
tion due to several compelling factors. Firstly, its constitutive relationship is established empirically, providing a 
practical approach. Secondly, the Eyring-Powell model exhibits both Newtonian behavior under both low and 
high shear stresses, making it particularly noteworthy. This model in the presence of different external forces 
plays an essential role in natural and geophysical processes which include delivery of dampness and temperature 
over environmental pollution, damaging of crops due to freezing, underground energy transport, geothermal 
reservoirs, thermal insulation, and agricultural fields20–24.

The phenomenon of both heat and mass transfer plays a significant role in various industrial and engineering 
processes, such as equipment power collectors, food processing, heat exchangers, damage of crops, refrigeration, 
and reservoir engineering in connection with thet hermal recovery process. So, in literature, convectional trans-
port theories for heat and mass are utilized by several researchers.The flow phenomenon in this case is relatively 
complex because theseprocesses are containing heat transfer in non-Darcy porous media.Moreover, in the study 
of the dynamics of hot and salty springs of a sea. Fourier25 is the first who introduce the heat conduction law and 
heat transfer properties. The electromagnetic field and Biot number effects on non-Newtonian nanofluid flow 
with heat transfer through a non-Darcy porous medium are analyzed by Abouzeid26. Ismael et al.27 discussed the 
effect of temperature conditions, slip velocity, and entropy generation on MHD biviscosity micropolar nanofluid 
flow via a porous medium in a peristaltic channel. The flow of non-Newtonian fluid past a shrinking plate through 
a porous media with transferring heat and mass is explained by Eldabe et al.28. Several investigators discussed 
the flow with the impact of heat transfer of nanofluid29–34.

Electro-osmosis force (EOF) is due to the electrolyte solution flow under the effect of an external electric 
field on an ionized certain surface. The surface catches ions of the opposite sign from the electrolyte solution and 
holds the ions of the same sign to generate an electric double layer (EDL). In this case, electro-osmotic flow can 
be generated in combination with an electrolyte and an insulating solid. In addition, in natural unfiltered water, 
as well as buffered solutions, electro-osmotic flow can occur. The electro-osmosisexternal force isfirst studied 
by Reuss35. MHD peristaltic flow of Jeffery fluid through micro annulus in the presence of electro-osmosis force 
was studied by Mekheimer et al.36. Nadeem et al.37 observed electro-osmosis force on the microvascular blood 
flow. The electro-osmosis force and chemical reaction effects on the peristaltic flow of non-Newtonian nanofluid 
are focused on by Hegazy et al.38.

As stated by the above studies, the fundamental target of this study is to describe the impacts of time- periodic 
variations as well as electro-osmosis forces on the flow of Eyring-Powel nanofluid through a non-Darcy porous 
media. The fluid is flowing past an infinite vertical plate under the effects of viscous dissipation, Soret with 
Dufour impacts, chemical reaction, and heat source.We transform the system of non-linear partial differential 
equations which govern the problem into algebraic non-linear equations by using the explicit finite difference 
method. Then, the numerical formulas for the velocity, temperature, and nanoparticles concentration as well as 
the skin friction, reduced Nusselt number, and Sherwood number are obtained. The influences of diverse physi-
cal parameters on the various distributions are computed numerically and displayed through a set of graphs.
The computed numerical results are given using tables for parameters of engineering importance. Furthermore, 
there is a strong correlation seen between the current solutions and the earlier stated outcomes in the relevant 
circumstances. Physically, nanofluids has several implementations in diverse scientific fields like the medical 
industry; medicine. For example, some nanoparticles are utilized in the therapy of cancer tumors. Additionally, 
the current study will serve as a vehicle for understanding more complex problems in industry, engineering 
such as separation processes, flow tracers, polishing of prosthetic heart valves, reducing friction in oil pipelines, 
cooling of metallic plates, and other fields.

Mathematical formulation
Eyring-Powell model13,20 is chosen to describe the non-Newtonian fluid, which is in the usual notation given as:

where τxx = 2µ∂u
∂x + 1

b sinh
−1

(

2
a
∂u
∂x

)

,

Consider the infinite vertical plate entrenched in an incompressible fluid (see Fig. 1). Initially, the temperature 
and nanoparticles concentration of both are assumed at T∞ and C∞ . Then, at t > 0, the plate temperature and 
nanoparticles concentration are elevated to Tω and Cω , and a periodic temperature and nanoparticles concentra-
tion are assumed. A uniform magnetic field B0 is applied transversally to the flow. We choose any point of the 
flat vertical infinite plate to be the origin of the coordinate system, the x − axis is chosen along the vertical plate 
vertically upwards, and the y − axis perpendicular to the plate. The following set of differential equations can be 
written by using boundary-layer assumptions as6,8,13,20,29:
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[
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The appropriate initial and boundary conditions of the above equations may be expressed as20,29:

By usingtheRosseland approximation39, the radiative heat flux may be defined as:

The temperature differences within the flow are small such that T4 may be expressed as a linear function of 
temperature. This is achieved by expanding T4 in a Taylor series about Tm and omitting higher-order terms39, 
one gets:

By applyingGaussian’s law14,36–38, one gets:

We assume that the electric field is a conservative field14,36–38, then

(2)

∂u

∂t
= v

∂2u

∂y2
+ 1

ρ a b

(

∂2u

∂y2

)

1
√

1
a2

(

∂u
∂y

)2
+ 1

−
(

σB20
ρ

+ v

K

)

u − b u2 + ρe Ex + g0β(T − T∞)+ g0β
∗(C − C∞),

(3)

∂T

∂t
= k

ρ Cp

∂2T

∂y2
+ v

Cp

(

∂u
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)2

+ 1

ρbCp

(

∂u
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)

sinh
−1

(

1

a

∂u
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+ σB20u
2

ρCp
+ DBKT

CpCs

∂2C

∂y2
+ Q0 (T − T∞)+ DB

(

∂T
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∂C
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)
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(
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,

(4)
∂C

∂t
= DB

∂2C

∂y2
+ DT

Tm

∂2T

∂y2
− A(C − C∞)m.

(5a)u = 0, T = T∞, C = C∞ for all t ≤ 0,

(5b)
u = 0, T = T∞ + ε (Tω − T∞) cosω t,

C = C∞ + ε (Cω − C∞) cosω t at y = 0, t > 0,

(5c)u → 0, T → T∞, C → C∞ as y → ∞, t > 0,

(6)qy =
−4σ ∗

3kR

∂T4

∂y
.

(7)T4 ≈ 4T3
m T − 3T4

m.

(8)∇ · E = ρe ε,

(9)E = −∇ϕ and therefore, ∇2ϕ = −ρe ε,

Figure 1.   Sketch of the problem.
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By using theBoltzmann distribution14,36–38, the net charge density can be written as:

According to the Debye–Huckel linearization principle e zν
kBTav

≪ 1 , then, Eq. (10) became as follows:

where �e = 1
e zν

√

ε kB Tav
2n0

  Then, according to boundary-layer assumption, Eq. (10) may be written as:

Let us introduce the following dimensionless quantities6,13,14,20,29:

Then, Eq. (13) may be expressed as:

By applying the boundary conditions ϕ = 1 at y = 0 and ϕ → ∞ at y → ∞ , the analytical solution of 
Eq. (16) may be expressed as:

Then, the system of Eqs. (2), (3) and (4) is obtained in the dimensionless form as follows, after dropping the 
star mark

The initial and boundary conditions in the dimensionless form are

The finite difference method
The governing Eqs. (18) → (20) and the boundary conditions (21a, 21b and 21c) are solved numerically by using 
a standard explicit finite–difference technique16. Here, we can write

(10)ρe = −Zν e (n
− − n+),

(11)n± = n0 e
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ϕ
,
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(21a)u = 0, T = 0, C = 0 for all y, t ≤ 0,

(21b)u = 0, T = ε cos ωt, C = ε cos ωt at y = 0, t > 0,

(21c)and u → 0,T → 0,C → 0asy → ∞, t > 0



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14788  | https://doi.org/10.1038/s41598-023-41579-3

www.nature.com/scientificreports/

where the indexi refers to y and the∆ y = h = 0.05 and ∆ τ = 0.003. According to the boundary conditions (21a, 21b 
and 21c), theMathematica package is used to solve Eqs. (18), (19) and (20) numerically, then a Newton iteration 
method continues until either the goals specified by accuracy goal or precision goal are achieved and determine 
the velocity and uniform magnetic field as afunction of y.

Consistency of the finite difference scheme.  The term consistency, which is applied to a finite differ-
ence method, means that the procedure may in fact approximate the solution of the partial differential equa-
tion of the present problem and not the solution of any other partial differential equation. The consistency is 
measured in terms of the difference between a differential equation and a difference equation. For consistency 
of Eqs. (18), (19) and (20), we estimate

Here, R.H.S. of Eqs. (23), (24) and (25) represent truncation error as �τ → 0 with �y → 0 , the truncation 
error tends to zero. Hence our explicit scheme is consistent.

Global error estimation.  We useZadunaisky technique4, to calculate the global error estimation G. E. E., 
which can be explained in the following steps:

(1)	 Interpolate the functions uni ,Tn
i  and Cn

i  withtheir first derivatives, where (i = 1,2,….., 6) from their val-
ues, name them Pi (i = 1,2,...,6), and interpolate the functions of u′′, T ′′ andC′′ , and name them as 
R1(y) = u′′, R2(y) = T ′′, R3(y) = C′′.

(2)	 Calculate the detect functions Di (i = 1,2,…,6), which can be written as follows:
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1.	 D1(y) = P′1 − P2 = 0, D2(y) = P′2 − R1(y),
2.	 D3(y) = P′3 − P4 = 0, D4(y) = P′4 − R2(y),
3.	 D5(y) = P′5 − P6 = 0, D6(y) = P′6 − R3(y),
(3)	 Add the detect functions Di (i = 1,2,…,6) to the original problems and replace every Yi by another variable 

Zi (i = 1,2,...,6).
(4)	 Solve the pseudo -problem by the same method to get the solution Z(z) whose elements Zi (i = 1,2,…,6).
(5)	 Calculate the global error from the relation en = Zn-P(zn), (n = 1,2,…,6), where Zn is the approximate 

solution of the pseudo -problemat the point zn and Z(zn) is the exact solution of the pseudo -problemat 
zn . Obviously, the exact solution of pseudo –problemis. Z(zn)= P(zn).

(6)	 The values of the global error are presented in Table 1. This error is based on using 11 points to find the 
interpolating polynomials PI (I = 1, 2,… 6), of degree 104.

In order to achieve the above task we use the Mathematica package 10.1.

The skin‑friction,heat and mass transfer40

The skin-frictioncoefficient reduced Nusselt number and Sherwood number in the non-dimensional form can 
be written as:

We can write equations (26), (27) and (28) by using finite difference method as follows:

Results and discussion
In this section, we show the effects of the problem’sphysical parameters on the velocity of the fluid, temperature, 
nanoparticles concentration, skin frictioncoefficient, reduced Nusselt number, and Sherwood number. These 
impacts were evaluated by setting the following standard values:

ω = 0.005, γ = 0.4, ε = 0.05, , ,M = 10,Da = 0.1, Fs = 0.5,Gr = 0.5,Pr = 2.5,Q = 5,Ec = 1, Sc = 1,

Df = 0.05,Nb = 2.5,Nt = 3.5, ,UHS = 2 , R = 1, m = 1, and δ = 0.1.
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.

Table 1.   The values of the global error estimation for the velocity, temperature and nanoparticles 
concentration.

Global error estimation

y u e1 T e3 C e5

0 0 0 0.05 0 0.05 0

0.4 0.05786 0.290D–3 0.1215 0.500D–5  − 0.0115  − 0.100D–5

0.8 0.06072 0.400D–3 0.1351 0.700D–5  − 0.0186  − 0.500D–6

1.2 0.47400 0.400D–3 0.1084 0.700D–5  − 0.0065  − 0.500D–6

1.6 0.02607 0.290D–3 0.0605 0.500D–5  − 0.0003  − 0.100D–5

2 0 0 0 0 0 0
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Figures 2 and 3 are plotted to illustrate the influence of both theHelmholtz–Smoluchowski velocity dimen-
sionless UHS and the electro-osmotic parameter me on the velocity distribution u(y) . It is observed that the 
velocity distribution increases with an increase in the value of UHS . Meanwhile, it decreases as me increases.
Physically, Coulomb force induced by an electric field charges in a solution causes electro-osmotic flow. Because 
the chemical balance between a surface and an electrolyte solution usually leads to the interface acquiring a net 
fixed electrical charge, a layer of mobile ions, known as the Debye layer, creates in the region near the interface. 
When an electric field is applied to the fluid, the net charge in the electrical double layer is induced to move by 
the resulting Coulomb force. The resulting flow is termed electro-osmotic flow. So, the bigger resulting Coulomb 
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Figure 2.   The velocity u is plotted with y, for different values of UHS.
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Figure 3.   The velocity u is plotted with y, for different values of me.
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Figure 4.   The velocity u is plotted with y, for different values of N.
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force and consequently easily fluid flow. It is also noted that for each value of both UHS and me , there exists a 
maximum value of uand all maximum values occur at y ≃ 0.49 . Figure 4 illustrates the effect of the buoyancy 
ratioNon the velocitydistribution u. It is found that the velocity increases withan enlargement inNin the intervals 
y ∈ [0.0, 0.3] ∪ [1.2, ). otherwise it decreases by increasing N. So, the behavior of u in the interval y ∈ [0.3, 1.2] , 
is an inversed manner of its behavior in the other intervals. In this case, for each value of N, there are maximum 
values of u hold at y = 0.65. Figure 5 illustrates the impact of the thermophoresis parameter Nt on the velocity 
distribution u(y) . It is depicts that in the interval of the coordinate y[0.0, 1.29] , the behavior of u for various values 
of Nt is exactly similar to the behavior of u for various values of me given in Fig. 3. It is also noted, from Fig. 5, 
that in the interval of the radial coordinate y[1.29, ) , the behavior of u is an inversed manner of its behavior in 
the y[0.0, 1.29] except that the curves are very close to each other in the second interval. Moreover, in the first 
interval, there is a maximum value of u holds at y = 0.62 and this maximum value slightly increases with an 
elevation in the value of Nt.

The variations of the temperature distribution T with the dimensionless coordinate y for various values ofboth 
Eckert number Ec and radiation parameter R are displayed throughout Figs. 6 and 7 respectively. The graphical 
results of Figs. 6 and 7 indicate that the temperature distribution T increases with an increase in the parameter 
Ec.From the physical point of view; during the motion of the fluid particles, the fluid viscosity converts some 
kinetic energy into thermal energy. This process is called viscous dissipation because it occurs due to viscosity. 
So, viscous dissipation can be defined as a heat source that results from the irreversible work done by the fluid 
flow to conquer the shear forces layers in the flow and appears as an increase in the fluid temperature. Conse-
quently, it interprets the result in Fig. 6. This behavior is in agreement with that reported by40,41. Meanwhile, it 
declineswith an enhancement in the value ofR. It is also noted that T increases with y till a definite value y = y0 
(represents the maximum value of T) and it decreases afterward. Similarly, we draw the variation of T with y for 
different values of the thermophoresis parameter Df in Fig. 8, we will obtain a figure in which the behavior of 
the curves is the same as that obtained in Fig. 6, with the only difference that the obtained curves are very larger 
to each other than those obtained in Fig. 6. The results in Fig. 8, is due to the following; the Dufour effect is 
the energy flux due to a mass concentration gradient occurring as a coupled effect of irreversible processes. It is 
the reciprocal phenomenon to the Soret effect2. The concentration gradient results in a temperature change. So, 
it always makes to increase the energy of luiquids.
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Figure 5.   The velocity u is plotted with y, for different values of Nt.
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Figure 6.   The temperature T is plotted with y, for different values of Ec.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14788  | https://doi.org/10.1038/s41598-023-41579-3

www.nature.com/scientificreports/

Brownian motion as a natural phenomenon, is the random motion of particles suspended in a mediumwhich 
may be a liquid or gas. This motion pattern typically consists of random fluctuations in a particle’s position 
inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more 
fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium and makes 
to increase the nanoparticles concentration. This will clarify the next result. Figures 9 and 10 represent the 
behaviors of the nanoparticles concentration distribution C with the dimensionless coordinate y for different 
values of Brownian motion parameter Nb and Dufour number Df, respectively. It is observed from Figs. 9 and 
10, that the nanoparticles concentration enhances with the increase of Nb. Whereas it dwindles as Df  elevates, 
respectively. On the other hand, it had an inverse effect near the wall y = 0, namely in the interval y ∈ [0.0, 0.18]. 
It is also noted that the difference of the nanoparticles concentration distribution C for different values of Nb 
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Figure 7.   The temperature T is plotted with y, for different values of R.
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Figure 8.   The temperature T is plotted with y, for different values of Df.
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Figure 9.   The nanoparticles concentration C is plotted with y, for different values of Nb.
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and Df, becomes lower with increasing the coordinate y and reaches minimum value, after which it increases. 
Figure 11 illustrates the effect of Schmidt number Sc on the nanoparticles concentration distribution C as a 
function of the dimensionless coordinate y. It is found that in the interval of the radial coordinate y ∈[0.0, 1.1], 
the behavior of C for various values of Sc is exactly similar to the behavior of C for various values of Nb given 
in Fig. 9. It is also noted, from Fig. 11 that in the interval of the coordinate y ∈[1.1, ∞ ), the behavior of C is an 
inversed manner of its behavior in the interval y ∈[0.0, 1.1], except that the curves are very close to each other in 
the first interval. In this case, for any value of the parameter Sc, there is a minimum value of C holds at y = 0.49, 
and this minimal slightly decreases by increasing the value of Sc. The influence of the thermal radiation param-
eter R on the nanoparticles concentration distribution C is illustrated in Fig. 12. It is found that the effect of R 
on C is opposite to the impact of Sc on C given in Fig. 11, with the only difference that, the curves in Fig. 11 are 
very close to those to each other in the first interval than those obtained in Fig. 12. Now, we will explicate how 
the radiation parameter affects the nanoparticles concentration. The thermal radiation parameter is defined as 
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Figure 10.   The nanoparticles concentration C is plotted with y, for different values of Df.
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Figure 11.   The nanoparticles concentration C is plotted with y, for different values of Sc.
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Figure 12.   The nanoparticles concentration C is plotted with y, for different values of Sc.
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the relative contribution of conduction heat transfer to thermal radiation transfer. It is evident that an increase 
in the radiation parameter causes in decreasing the nanoparticles concentration within the layer. The impacts 
of other parameters are similar tothat obtained in Figs. 9 and 10. But, they are excluded here to avoid any kind 
of repetition.

Figures 13 and 14 illustrate the behavior of skin friction coefficient τω with the time t, for various values of 
the electro-osmotic parameter me and Dufour number Df. It is observed from these figures that skin friction 
coefficient increases as me increases, while it decreases with the increase of Df. Moreover, we can notice from 
Figs. 13 and 14 that skin friction coefficient is always negative and decreases as t increases and at a finite value 
of t, the relation between τω and t is a straight line parallel to the time.
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Figure 13.   The skin friction coefficient τω is plotted with t, for different values of me.
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Figure 14.   The skin friction coefficient τω is plotted with t, for different values of Df.
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Figure 15.   Nusselt number Nu is plotted with t, for different values of R.
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The values of Nusselt number Nu are plotted versus the time t through Figs. 15 and 16 for various values of 
the thermal radiation parameter R and the thermophoresis parameter Nt. It is indicated from Figs. 15 and 16 
that Nusselt number increases with increasing R and decreases with increasing values of R for 0 < t < 0.13 , 
while Nusselt number decreases as Nt increases. In addition, the values of Nu for different values of R and Nt, 
initially increases as t increases till a finite value of t, after which it crumbles.

The behavior of Sherwood number Sh with the time t for various values of Dufour number Df, and the 
chemical reaction parameter δ are presented in Figs. 17 and 18, respectively. It is clear from these figures that 
Sherwood number decreases by increasing the chemical reaction parameter δ , while it increases by increasing 
Dufour number Df. Moreover, it is noted that the difference of Sherwood number Sh for different values of γ , 
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Figure 16.   Nusselt number Nu is plotted with t, for different values of Nt.
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Figure 17.   Sherwood number Sh is plotted with t, for different values of Df.

Figure 18.   Sherwood number Sh is plotted with t, for different values of δ.
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and Bn becomes lower with increasing t and reaches the minimum value, after which it increases. Note that the 
minimum value of Sherwood number decreases by increasing δ , whereas it increases with the increase of Df. 
Further, it is found for each value of γ , M Bn and, Sh is always positive.

Figures 19 and 20 display a comparison for the velocity and temperature values between our results and those 
obtained by B´eg et al.42. It is noticed that there is a good agreement in the obtained results.

Table 2 presents numerical results for the skin friction τω , reduced Nusselt number Nu and Sherwood number 
Sh, for various values of the wave amplitude ε , Prandtl number Pr and heat source parameter Q0

40. It is clear from 
Table 2, that an increase in ε , Pr and Q0 gives an increase in the values of dimensionless quantity τω and Sh , but 
decreasing in the dimensionless quantity Nu. In addition, these results have been compared with those obtained 
by B´eg et al.42, and it is found that there is a good agreement between our results and B´eg et al.42.

B´eg et al. 42
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Figure 19.   Comparison of the velocity values in our study and those obtained by B´eg et al.42.
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Figure 20.   Comparison of the velocity values in our study and those obtained by B´eg et al.42.

Table 2.   Comparison between numerical results for the skin friction, reduced Nusselt number and Sherwood 
number in the present study and those obtained by B´eg et al.42.

ε Pr Q0 τω in the present study τω(B´eg et al.42) Nu in the present study Nu (B´eg et al.42) Sh in the present study

0.05 2.5 1 0.0797  − 0.0024 0.0066

0.1 2.5 1 0.1816  − 0.0083 0.0821

0.2 2.5 1 0.6342  − 0.1749 0.5998

0.2 3 1 0.2951  − 0.1867  − 0.0221 0.0957 0.2042

0.2 3.5 1 0.2954  − 0.0891  − 0.0320 0.0118 0.2166

0.2 4 1 0.2957  − 0.0107  − 0.0424 0.0083 0.2297

0.2 4 2 0.2290  − 0.2348 0.4089

0.2 4 3 0.3047  − 0.5515 0.6691

0.2 4 4 0.3169  − 1.1642 1.1732
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Conclusion
The main target of this study is to present the effects of electro-osmosis forces on the free convective flow of 
Eyring-Powel nanofluid through a non-Darcy porous medium. The system is influenced by an external uniform 
magnetic field, thermal radiation, heat source, Ohmic dissipation,and viscous dissipation. The explicit-finite 
difference method is applied to obtain a numerical solution to the equations that govern the fluid motion. In 
addition, we obtain an estimation of the error propagation by using Zadunaisky technique for the finite differ-
ence method. The estimated errors ensure the usage of the approximated solutions as a suitable approximation 
to the calculated physical values. It is hoped that the present work will serve as a vehicle for understanding more 
complex problems in industry, engineering, and some physiological flows43–46. The obtained results are also 
shown in a graphic representation and can be summarized as follows:

(1)	 The velocity u decreases with anenrichin ε me , M, R, Sc and α.Whilst it elevates as Da,ε , Nb and Q0 increase. 
In addition, as both N and Nt increase, it increases or dwindles.

(2)	 By increasing the coordinate y, the velocity u for different values of problem physical parameters becomes 
greater and reaches a maximum value at a finite value, after which, it declines.

(3)	 The temperature T increases with an enhancement inthe values of Nt,Nb,Df ,Q0 and Ec.Whereas it dwin-
dles or elevates as both R and Pr enhance.

(4)	 All curves of the temperature for different values of the several physical parameters don’t intersect at the 
plate y = 0 , then increase as y escalates till a maximum value.

(5)	 The behavior of nanoparticles concentration C seems to be opposite to the temperature behavior.

Future perspectives.  Numerous potential applications in bioinformatics, fluid dynamics problems, and 
critically important financial mathematics may be numerically treated using the Lobatto IIIA and spectral col-
location algorithms.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due [All the required 
data are only with the corresponding author] but are available from the corresponding author on reasonable 
request.
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