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The synergistic effect of EMT 
regulators and m6A modification 
on prognosis‑related 
immunological signatures 
for ovarian cancer
Yanna Zhang 1, Xun Wang 2, Xiaogang Duan 3, Ting Du 4* & Xiancheng Chen 2*

Recently, there has been growing interest among researchers in exploring the effects of epithelial‑
mesenchymal transformation (EMT) or N6‑Methyladenosine (m6A) modification regulators on 
tumor development. However, the synergistic efficiency of these regulators in relation to ovarian 
cancer development remains unclear. This study aims to explore the transcription patterns of main 
regulators, including 19 EMT and 22 m6A, in ovarian cancer samples from TCGA datasets and normal 
samples from GTEx datasets. After conducting a LASSO regression analysis, ten prognostic signatures 
were identified, namely KIAA1429, WTAP, SNAI1, AXL, IGF2BP1, ELAVL1, CBLL1, CDH2, NANOG 
and ALKBH5. These signatures were found to have a comprehensive effect on immune infiltrating 
signatures and the final prognostic outcome. Next, utilizing the ssGSEA algorithm and conducting 
overall survival analyses, we have identified the key prognosis‑related immunological signatures in 
ovarian cancer to be ALKBH5, WTAP, ELAVL1, and CDH2 as the regulators. The characteristic immune 
response and related genetic expression have revealed a significant correlation between the alteration 
of m6A regulators and EMT regulators, indicating a synergistic effect between these two factors in the 
development of ovarian cancer. In summary, our research offers a novel perspective and strategy to 
enhance the occurrence, progression, and prognosis of ovarian cancer.

Abbreviations
EMT  Epithelial-mesenchymal transformation
m6A modification  N6-methyladenosine modification
TCGA   The Cancer Genome Atlas
GTEx  Genotype tissue expression
ssGSEA  Single sample gene set enrichment analysis
LASSO regression  Least absolute shrinkage and selection operator regression
PPIs  Protein-protein interactions
CPTAC   Clinical Proteomic Tumor Analysis Consortium
GEPIA2  Gene expression profiling interactive analysis 2
CCLE  Cancer Cell Line Encyclopedia

So far, ovarian cancer remains the most lethal form of female malignancy worldwide, regardless of the diverse 
histologic  subtypes1,2. As there are typically minimal or no noticeable symptoms during the early stages, diag-
nosis of this condition is often delayed until the advanced stage, earning it the nickname of the “silent killer”3,4. 
Although the treatment for ovarian malignancy is constantly evolving, the 5-year survival rates still remain 

OPEN

1Department of Blood Transfusion, Sichuan Provincial People’s Hospital, University of Electronic Science and 
Technology of China, Chengdu 610072, People’s Republic of China. 2Department of Biotherapy, Cancer Center 
and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, 
People’s Republic of China. 3Chengdu Eighth People’s Hospital/Geriatric Hospital of Chengdu Medical College, 
Chengdu 610000, Sichuan, People’s Republic of China. 4Noncoding RNA and Drug Discovery Key Laboratory of 
Sichuan Province, Chengdu Medical College, Chengdu 610000, Sichuan, People’s Republic of China. *email: 
aileen9190@163.com; chenredstar123@126.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-41554-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14872  | https://doi.org/10.1038/s41598-023-41554-y

www.nature.com/scientificreports/

below 45%5. As a result, there exist significant challenges for implementing novel strategies aimed at enhancing 
the survival rate and quality of life for those suffering from ovarian cancer. According to some investigations, 
both epithelial-mesenchymal transition (EMT) and N6-Methyladenosine (m6A) modification play a role in the 
development and occurrence of several  tumors6–10. EMT refers to a complex and reversible process involving 
the loss of epithelial apical-basal polarity and cell junctions, and the acquisition of migratory capabilities under 
specific conditions. This process plays a critical role in the progression of tumor occurrence, development, 
invasion, metastasis, and drug  resistance11,12. Importantly, the EMT process plays a critical role in the invasion 
and metastasis of ovarian  cancer13,14. An RNA methylation modification called m6A occurs at the nitrogen-6 
position of the adenosine  base14,15. Simultaneously, m6A modification, an integral part of the epigenetic pattern, 
is a commonly occurring and classic co-transcriptional alteration in eukaryotes, which has garnered significant 
interest among researchers in recent  years14,16. Previous research has established that m6A methylation plays a 
central role in several physiological and pathological processes, especially during the onset and progression of 
various types of  cancers17,18. Methylation modification of m6A, which is similar to DNA and protein modifica-
tion, is dynamically regulated by Writers (methyltransferases), Erasers (demethylases), and Readers (reading 
proteins)19,20. Many studies have demonstrated that m6A modification can impact tumor formation and evolution 
by regulating biological functions associated with  cancer21,22. Although the accumulating data suggests that both 
EMT and m6A may play vital roles in the administration of certain physiological or pathological  processes22–24, 
our current understanding of their effects on the development and prognosis of ovarian cancer remains incom-
plete. So far, the relevant mechanisms underlying the prognosis and tumor immune microenvironment in ovarian 
cancer remain insufficient and ambiguous. Additionally, the tumor heterogeneity further complicates the critical 
evaluation of each patient’s prognosis. Accurately evaluating the prognosis and improving the survival rate of 
ovarian cancer patients continue to be significant challenges.

While the aforementioned research often focuses solely on EMT or m6A  regulators25,26, it should be noted 
that the impact on tumors is typically the result of a highly synergistic process involving a variety of tumor 
suppressors. Thus, gaining an integrated understanding of the synergistic effects of multiple EMT and m6A 
regulators on the prognostic and immune characteristics would aid in comprehending their crucial roles in the 
progression of ovarian cancer. In our study, we conducted a systematic analysis of the expression patterns of 
EMT and m6A regulators in 379 ovarian cancer samples from TCGA datasets and 88 normal ovarian samples 
from GTEx datasets. Our aim was to gain a comprehensive understanding of the potential relationship between 
these patterns, immune characteristics, and prognosis outcomes. LASSO regression and ssGSEA analysis have 
revealed that EMT and m6A regulators play a critical role in the immune microenvironment and prognosis of 
ovarian cancer. Next, we combined survival analysis with immune response and characteristic alterations to 
identify core prognosis-related immunological signatures. This allowed us to further validate their impact on 
the immune microenvironment and prognosis estimation for ovarian cancer (Figure S1). In order to offer a fresh 
approach in developing more efficient strategies for enhancing the development and prognosis of ovarian cancer.

Materials and methods
Collection of relevant sample data. The transcriptome profiles and relevant clinical information of 
patients with ovarian cancer were derived from TCGA (https:// portal. gdc. cancer. gov/) and normal human ovar-
ian samples were obtained from GTEx (https:// www. gtexp ortal. org/ home/ datas ets). Then these data were com-
bined with batch normalization using the R package “sva”.

Screening and transcriptional characterization of EMT and m6A modification regulators. A 
list of 19 EMT regulators and 22 m6A modification regulators were collected from published  literatures20,27–32. 
Next, the transcriptional expression characterization between the ovarian cancer and normal samples were sys-
tematically contrasted by R software (version 3.6.3).

Construction and analyzing the PPIs network. The Protein–protein interactions between EMT and 
m6A regulators were explored by STRING (version 11.5, https:// www. string- db. org/)33. In order to obtain a 
more credible PPIs network, the regulators with interaction score greater than 0.4 were only obtained and exhib-
ited by Cytoscape (Version 3.6.1)34.

Correlation between EMT and m6A regulators. The co-modulation regulators were identified accord-
ing to the PPIs among EMT and m6A regulators. Meanwhile, the expression correlation between EMT and m6A 
regulators was calculated by the package “ggpubr” and “ggExtra” based on “ggplot2” in R software (version 3.6.3).

Acquisition of prognostic characteristics based on EMT and m6A regulators. The prognostic 
scores for EMT and m6A regulators in ovarian cancer were evaluated through univariate independent prognos-
tic analysis. Combined the prognostic regulators with co-modulation regulators, the risk characteristics were 
explored via LASSO  algorithm35. Then, prognostic signatures and their weight coefficients were calculated by the 
minimal loss as the optimal norm factor λ related to the ovarian cancer samples. The risk score of samples was 
evaluated via function: ∑Weight*xi, where Weight is the coefficient factor, xi is the expression value of z-score 
conversion for the regulator. The formula was used to verify the risk score of every ovarian cancer sample. Then, 
ovarian cancer samples were divided into high risk and low risk groups through the median risk scores. ROC 
analysis was accomplished based on the risk score to define whether the survival prediction was sensitive and 
specific.

https://portal.gdc.cancer.gov/
https://www.gtexportal.org/home/datasets
https://www.string-db.org/)
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Assessment of immunocyte and tumor microenvironment infiltration for prognostic char‑
acteristics. According to EPIC (https:// github. com/ Gfell erLab/ EPIC), there are eight immunocyte types 
consisted of B cells, CD4 + T cells, CD8 + T cells, NK cells, Cancer associated fibroblast cells, endothelial cells, 
macrophages and uncharacterized cells to evaluate the effect and correlation of immunocyte infiltration on the 
prognostic characteristics. Meanwhile, tumor purity, stromal cell score, adipocytes and microenvironment score 
were performed using R package “ESTIMATE” or xCell (version 1.0). In addition, these infiltration levels in high 
risk or low risk subtype were also further investigated.

Confirmation the accuracy for immune clustering. According to the expression patterns of ovarian 
cancer samples, the Tumor Purity, ESTIMATE Score, Immune Score, and Stromal Score were identified via 
using R package “ESTIMATE”36 and validated the effectuality of ssGSEA  grouping37. The score deriving from the 
results of “ESTIMATE” was visualized by heatmap and violin plot. Next, combined with clinical information on 
ovarian cancer samples, survival analysis was performed among three clusters through using package “survival”. 
In addition, we performed the R package “CIBERSORT” to evaluate the differences of 22 immune cell subtypes 
among three clusters on the foundation of ovarian cancer expression  file38. Finally, the expression patterns of 
prognostic characteristic regulators in three clusters were analyzed via the package “ggpubr”.

Prediction for immune response. Spearman correlations between the expression or methylation of 
prognosis-related immunological characteristic regulators and Immunomodulator (including Immunoinhibi-
tors, Immunostimulator, and MHC molecules) and associations between expression and molecular subtypes 
(covering Differentiated, Immunoreactive, Mesenchymal and Proliferative) across ovary cancer were calculated 
using TISIDB  database39 (http:// cis. hku. hk/ TISIDB/).

Immunotherapeutic response prediction. The tumor immune dysfunction and exclusion (TIDE) 
algorithm (http:// tide. dfci. harva rd. edu/) was used for predicting the clinical response to immune checkpoint 
block therapy using the transcriptomic profile of ovarian cancer. Moreover, the unsupervised subclass mapping 
(https:// cloud. genep attern. org/ gp/ pages/ login. jsf) method was further applied to predict the responsiveness to 
immune checkpoint block therapy of different risk or immune subtypes.

Genetic alteration of prognosis‑related immunological signatures in ovarian cancer. CBioPort
al40,41(version 5.3.12, http:// www. cbiop ortal. org/) was used to analyze and visualized the genetic alteration in key 
prognosis-related immunological signatures regulators in ovarian cancer.

Key prognosis‑related immunological regulators validation. Protein expression analysis of key 
prognosis-related immunological regulators was using data from CPTAC dataset in  UALCAN42,43. Simultane-
ously, the expression about key prognosis-related immunological signatures regulators in various ovarian cancer 
cell lines were also explored from Cancer Cell Line Encyclopedia (CCLE)44.

Statistical analyses. All the above analyses were performed using R 3.6.3 software and P < 0.05 was deemed 
to statistical significance.

Ethics approval and consent to participate. All data are from public databases and do not involve ethi-
cal approval or consent to participate. And our manuscript was also not involved the subject.

Results
Transcriptional characterization of EMT and m6A regulators in ovarian cancer. To identify the 
critical roles of EMT and m6A regulators in the initiation and development of ovarian cancer, we conducted 
a comprehensive investigation of the transcription patterns of 19 EMT regulators and 22 m6A regulators. The 
transcriptional characterization of EMT (Fig. 1A, C) and m6A regulators (Fig. 1B, D) were represented using 
heatmaps and violin plots respectively. The results showed significant differences in transcription patterns 
between ovarian cancer and normal samples. To further investigate the interactions between EMT and m6A 
regulators in ovarian cancer samples, we conducted additional analysis to examine the correlations among these 
factors (Fig. 1E, F). Our findings revealed a statistically significant correlation.

Correlation between EMT and m6A regulators. A total of 41 individuals were involved in this study, 
including 19 EMT regulators and 22 m6A regulators (9 writers, 11 readers, and 2 erasers), as shown in Fig. 2B. 
The PPIs network (Fig. 2A) and Radar plot (Fig. 2C) depicted a closely related mutual regulation between EMT 
and m6A regulators. In addition, Table S1 summarizes the topology parameters of the PPI network, including 
Betweenness centrality (Figure S2A), Avg. clustering coefficient (Figure S2B), Topology coefficient (Figure S2C), 
Closeness centrality (Figure S2D), Frequency of path length (Figure S2E), Avg. neighborhood connectivity (Fig-
ure S2F), Stress centrality (Figure S2G), Frequency of neighbors (Figure S2H), and Distribution of the node 
degree (Figure S2I).

Investigating the EMT and m6A prognostic signatures. To analyze the prognostic effects of indi-
vidual EMT and m6A regulators, we performed univariate independent prognostic analysis on the transcrip-
tional characterization of these regulators (Table S2). The study findings indicated that out of the 41 regula-
tors, 7 (P < 0.1) were significantly associated with overall survival, as illustrated in Figure S3A-B. Of these seven 

https://github.com/GfellerLab/EPIC
http://cis.hku.hk/TISIDB/
http://tide.dfci.harvard.edu/
https://cloud.genepattern.org/gp/pages/login.jsf
http://www.cbioportal.org/
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regulators, namely KIAA1429, WTAP, SNAI1, AXL, IGF2BP1, ZEB1, and ELAVL1 (except ELAVL1), all had 
been previously identified as risk regulators with a Hazard Ratio > 1. Subsequently, mutual regulation factors 
including CBLL1, CDH1, CDH2, NANOG, IGF2BP1, ALKBH5, and ELAVL1 were incorporated to conduct 
LASSO regression analysis (Figure S3C). Ten prognostic signatures, including KIAA1429, WTAP, SNAI1, AXL, 
IGF2BP1, ELAVL1, CBLL1, CDH2, NANOG and ALKBH5, were confirmed through LASSO regression analysis 
(Fig. 3A, B). We combined the expression level with the coefficients (Table S3) of each signature regulator to 

Figure 1.  Expression landscape and interaction among EMT and m6A modification in ovary cancer. The 
expression levels of m6A regulators (A) and EMT regulators (B) in 88 normal samples and 379 ovary cancer 
samples were visualized via the package “pheatmap” in R software (Version 3.6.3). Quantitative analysis of 
m6A regulators (C) and EMT regulators (D) in normal and ovary cancer samples. Relationship among m6A 
regulators (E) or EMT regulators (F) were displayed by the package “ggpubr” and “ggExtra” based on “ggplot2” 
in R software (Version 3.6.3). A fork indicated that the correlation between two regulators did not accord with 
P < 0.05.
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calculate the risk score. After the analysis, the ovarian cancer samples were categorized into high-risk and low-
risk groups based on the median risk score. The Kaplan–Meier curve revealed a significantly higher survival 
rate for the low-risk group compared to the high-risk group (P = 4.234e−13), indicating that the risk score was 
a reliable prognostic indicator (Fig. 3C). Therefore, we compared the expression and survival characteristics of 
prognostic signatures (Figure S3). It is evident that there were significant differences in the transcription patterns 
of prognostic signatures between high-risk and low-risk patients (Figure S4A). Risk curves and scatter plots were 

Figure 2.  Correlations landscape among EMT and m6A regulators. (A) The protein–protein interactions 
among EMT and m6A regulators were acquired via STRING (version 11.5, https:// www. string- db. org/) and 
visualized using Cytoscape (Version 3.6.1). (B) The composition summary of EMT and m6A regulators. (C) 
Radar map of the number of EMT and m6A regulators.

https://www.string-db.org/
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Figure 3.  Construction of EMT and m6A prognostic signature. (A) The LASSO analysis confirmed the EMT 
and m6A regulators relevant to prognosis. (B) The optimal coefficients determined via multiple verification. (C) 
overall survival rate between low risk (blue) and high risk (red) group. (D) ROC curve for predicting overall 
survival. (E) Time-dependent ROC curve for predicting overall survival in ovary cancer samples at one (green), 
two (blue), and three (red) year. (F) Calibration maps used to predict the overall survival at 3 years in patients 
with ovary cancer. (G) The Nomogram to furcate the survival time of ovary cancer.
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used to illustrate the risk scores and survival rates for all ovarian cancer patients, revealing that the mortality or 
lifetime of low-risk patients was notably lower than that of high-risk patients (Figure S4B-C). The ROC analy-
sis was carried out using the risk score to determine the sensitivity and specificity of survival prediction. The 
accuracy of the risk model was evaluated by calculating the area under the curve (AUC) of the ROC curve. The 
AUC value of 0.648, as shown in Fig. 3D, indicated that the constructed risk model was accurate. Moreover, the 
accuracy of prognostic signatures was assessed by calculating the overall survival of ovarian cancer patients at 1, 
2 or 3 years using time-dependent ROC curves (Fig. 3E). The AUC values for 1 year (0.640), 2 years (0.650), and 
3 years (0.623) showed that prognostic signatures were highly accurate in predicting overall survival. Overall, the 
aforementioned analysis identified ten regulators as a prognostic signature for ovarian cancer. To enhance the 
quantitative approach for superior outcome prediction, a nomogram was established for prognostic signatures 
associated with ovarian cancer. The calibration curve obtained was in close agreement with the ideal model, as 
shown in Fig. 3F. A higher total point on the nomogram (Fig. 3G) indicates a worse survival outcome.

Effect of immunocyte infiltration in tumor microenvironment on prognostic characteris‑
tics. We further investigated the relationship between immunocyte connection, risk score, and infiltration 
levels in various risk subtypes to evaluate the impact of ten prognostic regulators on the immune microen-
vironment of ovarian cancer. The risk score showed positive correlation with B cell (p = 0.669) (Figure S5A), 
NK cells (P = 0.313) (Figure S5D), cancer-associated fibroblasts (p = 5.974E−07) (Figure S5E), endothelial cells 
(p = 0.025) (Figure S5F) and macrophages (p = 8.517E−05) (Figure S5G), while CD4 + T cells (p = 0.074) (Fig-
ure S5B), CD8 + T cells (p = 0.327) (Figure S5C) and uncharacterized cells (p = 6.363e−08) (Figure S5H) were all 
negatively associated with the risk score. Meanwhile, we also investigated the correlation between the risk score 
and tumor microenvironment-related cell types and infiltration levels to evaluate its impact on the tumor micro-
environment. Our findings revealed a negative association between tumor purity (p = 2.197E−11) (Figure S5I) 
and the risk score, while stromal cell score (p = 1.096E−13) (Figure S5J), adipocytes (6.315E−06) (Figure S5K), 
and microenvironment score (6.215E−11) (Figure  S5L) were positively correlated with the risk score. These 
results provide further evidence for the significant relationship between modulator-based prognostic signatures 
and the immune microenvironment of ovarian cancer.

Verification and evaluation of immune cluster for ovarian cancer. The ssGSEA algorithm was uti-
lized to assess the degree of immunocyte infiltration in cases of ovarian cancer. Subsequently, the abundance of 
29 immune-related cells or types in ovarian cancer samples was determined to evaluate the corresponding score. 
Through the use of an unsupervised clustering algorithm (with a truncation value of 1.0), ovarian cancer samples 
were classified into three clusters based on their respective immune infiltration scores, namely high (n = 193), 
medium (n = 149), and low (n = 37) immunocyte infiltration clusters (Fig. 4A). Secondly, to confirm the accuracy 
of the clustering mentioned above, we utilized the ESTIMATE algorithm to compute Tumor Purity, ESTIMATE 
Score, Immune Score, and Stromal Score based on the expression levels of relevant molecules in ovarian cancer. 
The outcomes revealed that the Tumor Purity of the high immunocyte infiltration cluster was lower than the 
other two clusters, whereas the Stromal Score, Immune Score, and ESTIMATE Score were inversely related 
(Fig. 4A). The results regarding tumor purity (Fig. 4B), ESTIMATE Score (Fig. 4C), Immune Score (Fig. 4D), and 
Stromal Score (Fig. 4E) in the three distinct immune clusters were presented as violin plots, indicating consistent 
findings. Additionally, the Kaplan–Meier curve demonstrated that patients with low immunocyte infiltration 
had a lower survival rate, with a significant statistical difference observed among the three clusters (P = 0.011) 
(Figure S6A). To analyze the immune cell types, the CIBERSORT algorithm was employed. The results showed 
that out of the 22 immune cell types, only memory B cells, plasma cells, and CD8 + T cells exhibited notable vari-
ations across three immune clusters. In the high immune clusters, plasma cells and CD8 + T cells were found to 
be present in high proportions, whereas memory B cells were present in an opposite proportion (Figure S6B). 
We utilized box plots to visualize the expression differences in prognostic signatures among low, medium, and 
high immunocyte clusters. Furthermore, our findings indicated that the transcriptional levels of WTAP, SNAI1, 
IGF2BP1, ELAVL1, CDH2, AXL, and ALKBH5 varied significantly across different immune cell infiltration 
clusters (Figure S6C). These results enable us to identify seven immunological features associated with ovar-
ian cancer. The expression landscape of key prognosis-related immunological signatures was obtained through 
Fig. 5A, which showed that ALKBH5, WTAP, ELAVL1, and CDH2 were the primary immune signatures associ-
ated with the prognosis of ovarian cancer, with AXL expression levels being similar in both ovarian cancer and 
normal tissues.

Correlations among expressions of key signatures with immunomodulators and molecular 
subtypes of ovarian cancer. To further investigate the influence of key signatures on the immune response 
of ovarian cancer, we calculated the correlations between signature expression and immunomodulators or meth-
ylation, as shown in Figure S7. The findings indicated that ALKBH5, ELAVL1, and CDH2 exhibited a negative 
correlation with Immunoinhibitors, Immunostimulators, and MHC molecules, as depicted in Figure S7A-C. 
Conversely, WTAP displayed a positive association with the immunomodulator in ovarian cancer, as shown in 
Figure S7A-C. Additionally, significant correlations were observed between the methylation of ALKBH5, WTAP, 
ELAVL1, CDH2 and immunoinhibitors (Figure S7D), immunostimulators (Figure S7E), and MHC molecules 
(Figure S7F) in ovarian cancer using Spearman’s correlation analysis. Simultaneously, we calculated associations 
between the expression of key signatures and molecular subtypes in ovarian cancer using the TISIDB database. 
Our results showed that there were significant associations between the expression of ALKBH5 (Fig. 5B), WTAP 
(Fig. 5C), ELAVL1 (Fig. 5D), and CDH2 (Fig. 5E) and molecular subtypes (including differentiated, immunore-
active, mesenchymal, and proliferative).
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Expression of Immune checkpoint molecules and clinical benefit prediction for immunother‑
apy of ovarian cancer. The levels of expression for PDL1, PD1, and CTLA4 showed a descending trend 
between high and low-risk groups (Fig. 6A). To predict the likelihood of ovarian cancer patients responding to 

Figure 4.  Identification of different immunocyte subtypes infiltration levels in ovarian cancer (A) Use the 
package “pheatmap” in R software (version 3.6.3) to compare the immunoprofiles of ovarian cancer with high, 
medium, and low levels of immune cell infiltration. The distribution of Tumor Purity (B), ESTIMATE Score (C), 
Immune Score (D), and Stromal Score (E) among three clusters.
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immunotherapy, Tumor Immune Dysfunction and Exclusion (TIDE) was utilized. The results demonstrated 
that the proportion of response was highest in the high-risk group (42.85%) compared to the low-risk group 
(24.87%) (Fig. 6B). Subclass mapping analysis was utilized to predict the effectiveness of immune checkpoint 

Figure 5.  The key signatures expression landscape and molecular subtypes. (A) The expression of key 
signatures. Associations between ALKBH5 (B), WTAP (C), ELAVL1 (D), CDH2 (E), expression and molecular 
subtypes across ovary cancer were calculated derived from TISIDB database.
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block therapy for ovarian cancer patients categorized as high or low risk (Fig. 6C). Notably, patients at high risk 
exhibited encouraging responses to anti-PD-1 therapy, whereas those at low risk did not show any response to 
anti-PD-1 therapy. Based on the aforementioned analyses, it is suggested that patients at high risk may exhibit 
greater sensitivity to immune checkpoint block therapy. Additionally, the expression levels of PDL1, PD1, and 
CTLA4 also displayed a decreasing trend across different immune subtypes (Fig. 6D). The response rates to 
immunotherapy were found to be 31.61% for immunity-H, 43.62% for immunity-M, and 5.41% for immunity-L 
(Fig. 6E). Subclass mapping analysis revealed that the immunity-H subtype may be particularly responsive to 
anti-PD-1 treatment (Fig. 6F). All p-values were adjusted accordingly.

Characteristic alteration and synergistic effect of key signatures. The cBioPortal analysis con-
firmed that 205 (12%) of the examined patients had significant changes in key signatures, including copy num-
ber alterations, mutation spectrum, mutations, mutation counts, structural variants, and overall survival. Among 
the alterations, CDH2 showed the most prominent changes (6%) compared to other regulators, including ampli-
fication, deep deletion, truncating mutation, and missense mutations (Fig.  7A). Amplification was the most 
common type of mutation (Fig. 7B). The genes, ALKBH5, WTAP, ELAVL1, and CDH2, which were completely 

Figure 6.  Immune checkpoint molecular expression and clinical benefit prediction in ovarian cancer. (A) 
Expression levels of PDL1, PD1 and CTLA4 between high risk and low risk. (B) The proportion of responders to 
immunotherapy between high and low risk subtype. (C) Subclass mapping analysis for predicting the likelihood 
of a response to immune checkpoint block therapy for the risk subtypes. (D) Expression levels of PDL1, 
PD1 and CTLA4 among different immune subtypes. (E) The proportion of responders to immunotherapy 
among immunity-H, immunity-M and immunity-L subtype. (F) Subclass mapping analysis for predicting the 
likelihood of a response to immune checkpoint block therapy for the immune subtypes. R, response to immune 
checkpoint block therapy (Bonferroni corrected p value < 0.05); noR, no response to immune checkpoint block 
therapy (Bonferroni corrected p value > 0.05).
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overlapping between the Altered and Unaltered groups, have been excluded from the patient-level analysis in 
other tabs (Fig. 7C). Simultaneously, to understand the biology behind the key signatures, the protein expression 
of ALKBH5, WTAP, ELAVL1, and CDH2 in ovarian cancer was analyzed using CPTAC datasets (Figure S8A-
D). The results showed that the gene and protein expression patterns of ALKBH5, ELAVL1, and CDH2 were 
increased in ovarian cancer (Fig. 1A, E and Figure S8A, C, D), while the protein expression of WTAP did not 
match the gene expression (Fig. 1E, F and S8B), suggesting gene transcription and translation may be involved 
in its preservation. The study also explored the expression patterns of these genes in various ovarian cancer cell 
lines using the CCLE database (Figure S8E). Correlation analyses showed a positive correlation between CDH2 
and ALKBH5 (Figure  S8F, S8I), a significant positive correlation between CDH2 and ELAVL1 (Figure  S8H, 
S8K), and a significant negative correlation between CDH2 and WTAP (Figure S8G, S8K).

Figure 7.  Characteristic alteration of Key signatures. (A) The genetic variation, copy number alterations, 
mutation spectrum, mutations, structural variants, overall survival and mutation count connected with the 
key signatures were displayed as a visual summary for ovarian cancer samples from the TCGA database via 
CBioPortal (version 5.3.12, http:// www. cbiop ortal. org/). (B) An overview of the alteration of key signatures for 
ovarian cancer. (C) Patients overlap between Altered group and Unaltered group were excluded from patient-
level analysis in other tabs.

http://www.cbioportal.org/
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Discussion
Prior evidence has indicated that certain EMT and m6A regulators may play a significant role in the progression 
of various types of  tumors25,45,46. However, it is noteworthy that the identical EMT or m6A regulators may exhibit 
diverse functions in distinct  tumors47–49. As a crucial mechanism in the progression of ovarian cancer, EMT has 
been implicated in the development, invasion, metastasis, drug resistance, and recurrence of  tumors12. The onset 
of EMT is orchestrated by multiple transcriptional regulators, including CDH1, CDH2, ZEB1, ZEB2, SNAI1, 
SNAI2, TWIST1, TWIST2, VIM, KLF4, AXL, NANOG, ZNF143, ZNF281, MUC1, PARP1, SOX4, ELF3, and 
 HOXA1050. An increasing number of studies have validated that cells undergoing an intermediate transition state 
during EMT transformation acquire more robust abilities in invasion-migration and anti-apoptosis51. Simul-
taneously, m6A methylation, a dynamic and reversible RNA modification process, is controlled by a complex 
interplay of m6A methyltransferase complex (writers), m6A demethylase (erasers), and m6A reading proteins 
(readers) from catalytic formation to functional  realization20. Being the most prevalent mRNA modification, m6A 
modification impacts tumor occurrence and progression, particularly in terms of self-renewal, differentiation, 
apoptosis, invasion and metastasis, drug resistance, immunosuppression, and other events that involve tumor 
stem  cells29. Hence, the molecules that play a crucial role in m6A modification are anticipated to serve as potential 
molecular targets for cancer diagnosis, treatment, prognostic outcome, and drug development.

As most studies have focused solely on EMT or m6A  regulators52, the co-interaction among multiple EMT 
and m6A regulators in tumors remains not fully understood. In summary, comprehending the influence of EMT 
and m6A-mediated immunological signatures associated with different prognoses on ovarian cancer develop-
ment will aid in further clarifying the impact of the immune microenvironment on prognosis. This, in turn, can 
help in developing more effective immunotherapy strategies.

In our study, we initially identified ten prognostic signatures, namely KIAA1429, WTAP, SNAI1, AXL, 
IGF2BP1, ELAVL1, CBLL1, CDH2, NANOG, and ALKBH5, through LASSO regression analysis, which com-
prehensively assessed their impact on immune infiltrating signatures and final prognostic outcome. Subsequently, 
we used the ssGSEA algorithm and overall survival analyses to identify the key prognosis-related immunological 
signatures in ovarian cancer, which included WTAP, ELAVL1, CDH2, and ALKBH5. Once again, the relevant 
signatures, combined with related immune response and genetic alteration, have demonstrated that the features 
of EMT regulator CDH2 are significantly associated with m6A regulators ALKBH5, ELAVL1, and WTAP, indi-
cating a synergistic effect on the occurrence and development of ovarian cancer.

CDH2, ALKBH5, ELAVL1, and WTAP are the key regulators that exert a critical impact on the development 
and prognosis of ovarian cancer. While CDH2, a member of the cadherin superfamily, is typically expressed in 
neuroectoderm and organs from mesoderm, it is not expressed in normal epithelial  tissues53. However, when 
CDH2 is expressed in epithelial cells, it alters the morphology and biological function of the cells, transforming 
them into mesenchymal cells with increased migration ability. This process is known as  EMT54. The EMT pro-
cess leads to cytoskeleton remodeling, reduced intercellular connectivity and adhesion, altered cell polarity, and 
increased invasion and migration. Consequently, the abnormal expression of CDH2 can enhance the migration 
and invasion ability of tumor cells, promote cell–cell interaction, and play an essential role in tumor progres-
sion and  metastasis55. Moreover, several studies have confirmed the close association of m6A regulatory factors 
ALKBH5, WTAP, and ELAVL1 with the pathological process of tumor invasion and metastasis. For instance, 
in vitro studies have demonstrated that the down-regulation of ALKBH5 can inhibit the growth and invasion of 
endometrial cancer  cells56. Studies have revealed that WTAP can act as an oncogene and facilitate the progression 
of malignant tumors in several cancers, including colorectal cancer and renal cell  carcinoma57,58. Additionally, 
WTAP is located on human chromosome 6Q25.3, which has been linked to ovarian  cancer59. As for ELAVL1, 
it is involved in multiple biopathological processes and is therefore closely associated with the occurrence and 
development of various  cancers60.

In summary, the coordinated regulation of m6A modification and EMT modulators may play a crucial role in 
the progression or evolution of tumors. Furthermore, other experimental evidence has shown that m6A regulator 
METTL3 can enhance the expression of EMT regulator AXL, thereby triggering EMT. Additionally, high expres-
sion of METTL3 has been linked to poor survival prognosis in ovarian cancer  patients61,62. Another study has 
shown that the inhibition of m6A regulator METTL14 in malignant progression may be partially reliant on the 
SOX4-mediated EMT  process63. Hence, it is evident that m6A modification and the biological process of EMT 
may have a synergistic regulatory effect on the occurrence and development of tumors.

Furthermore, it is essential to take note of the limitations of this study, including potential bias in sample 
selection and incomplete clinical characteristics of the samples. As a result, additional relevant experimental 
studies will be necessary to uncover the correlation between m6A modification and EMT regulators involved in 
the physiological and pathological mechanisms of tumors, both in vitro and in vivo.

To summarize, the key regulators have been identified as crucial molecules with prognosis-related immu-
nological signatures for the development of ovarian cancer. The transcription pattern of CDH2 was found to be 
positively correlated with ALKBJ5 and ELAVL1, while negatively correlated with WTAP, indicating that m6A 
modification and EMT process have a synergistic effect on malignant transformation, cancer occurrence, and 
development outcome (Fig. 8), particularly for ovarian cancer. In essence, our studies provide a new perspec-
tive for predicting the prognosis and survival of ovarian cancer patients based on the synergistic regulation of 
m6A and EMT regulatory factors in ovarian cancer transcriptional patterns. This could lead to a novel research 
strategy for the diagnosis, immunotherapy, and prognosis detection of ovarian cancer.
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Data availability
The datasets for this study are available in the TCGA (https:// portal. gdc. cancer. gov) and GETx datasets (https:// 
www. gtexp ortal. org/ home/ datas ets). Meanwhile, all methods were carried out in accordance with relevant guide-
lines and regulations.
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