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A new time‑varying coefficient 
regression approach for analyzing 
infectious disease data
Juxin Liu 1*, Brandon Bellows 1, X. Joan Hu 2, Jianhong Wu 3, Zhou Zhou 4, Chris Soteros 1 & 
Lin Wang 5

Since the beginning of the global pandemic of Coronavirus (SARS‑COV‑2), there has been many 
studies devoted to predicting the COVID‑19 related deaths/hospitalizations. The aim of our work 
is to (1) explore the lagged dependence between the time series of case counts and the time series 
of death counts; and (2) utilize such a relationship for prediction. The proposed approach can also 
be applied to other infectious diseases or wherever dynamics in lagged dependence are of primary 
interest. Different from the previous studies, we focus on time‑varying coefficient models to account 
for the evolution of the coronavirus. Using two different types of time‑varying coefficient models, local 
polynomial regression models and piecewise linear regression models, we analyze the province‑level 
data in Canada as well as country‑level data using cumulative counts. We use out‑of‑sample prediction 
to evaluate the model performance. Based on our data analyses, both time‑varying coefficient 
modeling strategies work well. Local polynomial regression models generally work better than 
piecewise linear regression models, especially when the pattern of the relationship between the two 
time series of counts gets more complicated (e.g., more segments are needed to portray the pattern). 
Our proposed methods can be easily and quickly implemented via existing R packages.

Since the WHO declared the novel coronavirus (COVID-19) outbreak a global pandemic on March 11, 2020, 
impacts of the pandemic on people’s daily life have been profound in many different aspects (e.g., physical 
health, mental health, social impacts). Despite the strong global desire to end the pandemic, the evolving vari-
ants and subvariants of SARS-CoV-2 have posed challenges for predicting what is ahead. Under the pressure of 
co-circulation of viral infections, such as the tripledemic (COVID-19, seasonal influenza, RSV) in the 2022–2023 
influenza season, healthcare systems can be easily over-burdened due to the quickly rising number of cases with 
severe symptoms in need of medical care. Though the currently dominant Omicron subvariants can be less severe 
than the original variant, in early 2023 the Canadian healthcare system remained under the risk of crisis. This 
was due to the risk that the faster transmission/spread of the dominant variants may lead to a larger number of 
people who need to seek medical care within a short time period.

There is a large body of existing literature on predicting/forecasting COVID-19-related deaths and hospitaliza-
tions. According to Avery et al.1, two primary types of modeling are dominant. One type of model is mechanistic 
and focuses on the underlying process of the disease spread. For example, system dynamics models with different 
formulations of state variables have seen numerous applications in COVID-19 modeling. The Centers for Disease 
Control and prevention (CDC) has featured a set of different prediction models for COVID-19 death  forecasting2. 
These models are generally complex and rely on assumptions that are often violated (e.g. homogeneity) or hard 
to verify, as discussed by Avery et al.1 and Li et al.3.

The other primary type of model is phenomenological, usually parameterized through curve-fitting based 
on reported data. This is the type of modeling our proposed work follows. The focus is not the transmission 
dynamics, but rather the relationship between the reported cases and deaths. The majority of the existing work 
on phenomenological modeling considers a single time series of interest (e.g., time series of case counts). To 
name a few, Cascon and  Shadwick4 and Harvey and  Kattuman5 use the Gompertz Function to model cumulative 
pandemic case counts, and Dash et al.6 use a logistic growth model with accommodations for nonlinear trend 
and seasonality. Additionally, Petropoulos et al.7 applied a non-seasonal multiplicative error to a multiplicative 
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trend exponential smoothing model. Change-point models have received a substantial amount of attention to 
capture abrupt changes in a single time series (e.g. Jiang et al.8  and9). Clearly which time series model to use 
should depend on the pattern exhibited by the data to be analyzed.

It is worth noting that artificial intelligence (AI) methods have seen some successful applications in COVID-
19 related  predictions10,11. Nonetheless, it is still not clear when AI methods can be applied  successfully12 or which 
AI methods are best. In contrast, the aim of our proposed modeling is to find a more general and flexible tool 
that can accommodate various kinds of relationships between one time series and another.

There has been quite sparse literature that makes use of the relationship between the different time series 
for prediction. To our best knowledge, Hierro et al.13 is the only paper of this kind. In their work, the so-called 
delayed elasticity method (hereafter referred to as DEM) is used to characterize the relationship between cumu-
lative death counts and cumulative case counts. Intuitively, their method, which is essentially classical linear 
regression models, may work well at the beginning of the pandemic (limited available data) but may not be able 
to fully capture the evolving relationships for a longer study period. We compare our proposed methods to theirs 
in “Data analysis” section and the supplementary document.

Distinct from the existing literature on COVID-19, we aim to build a general and flexible modeling approach 
that can capture the dynamic nature of the relationships between different COVID-19 data series of interest. With 
such a relationship, we can predict future deaths/hospitalizations based on the case counts up to present. It is 
worth noting that our approach can also be used to analyze other infectious disease data or wherever dynamics 
in a lagged dependence relationship is of interest. With this aim in mind, time-varying coefficient regression 
 models14 are a natural choice. Different from the classical linear regression models, the regression coefficients 
are not fixed as constant but rather functions of some other covariate(s) (e.g., time). The fact that Canada, for 
example, has experienced several different waves driven by different coronavirus variants suggests that it would 
be more appropriate to consider the time-varying relationship between case counts and death counts (or hos-
pitalization counts).

To summarize, the novelty of our work is two-fold. First, we introduce an explicit way to account for the 
lagged dependence between the predictor and response variables in the context of varying-coefficient models. 
Moreover, statistical learning is successfully combined with a machine learner that selects the optimal lag based 
on out-of-sample predictability. Second, our method produces inferences for the out-of-sample predictions, while 
most of the existing literature on time-varying coefficient models focuses on regression coefficients.

As explained in Section 2 of the seminal paper by Hastie and  Tibshirani14, time-varying coefficient regres-
sion models have a broad general form and thus include several commonly used models as special cases (e.g., 
generalized linear models, generalized additive models, piecewise linear regression models). In this study, we 
consider two different techniques: local polynomial regression and piecewise linear regression. Influenced by 
the extensive literature on the kernel estimation in time-varying coefficient models, we embarked with local 
polynomial  regressions15,16. Then we realized the smoothness assumption of the regression coefficients may not 
always be valid, especially when there are abrupt changes. For example, when Omicron’s subvariants quickly 
took over the dominance of Omicron in some major cities (or travel hubs), the relationship between case counts 
and deaths/hospitalizations may have changed quickly accordingly. To address this possibility, we also consider 
piecewise linear regression models that (1) bear simple parametric forms and (2) can capture abrupt changes.

We acknowledge the fact that neither the reported case counts nor the reported death counts are truly 
reflecting the underlying true variables, respectively. As such, our objective is to capture the dynamic relation-
ship between reported COVID-19 data. One key novelty in our approach is to identify the lag between different 
reported data series (e.g., death counts and case counts). For details, please see “Models and notation” section.

Models and notation
Modeling the daily counts is a natural choice and has been considered in many studies. Nonetheless, we noticed 
the pattern between cumulative counts is much cleaner. Consider, for example, Fig.  1 for the scatter plots for 
Ontario data between 2021-10-31 and 2022-02-10. As shown in the bottom panel in Fig.  1, there is a very neat 
pattern between cumulative counts. But there is no such clean pattern in the daily counts plot (top panel in 
Fig.  1). The noise level seems to be fairly high so even a time-varying coefficient model may not lead to a good 
fit. It turns out the signal may get strengthened by balancing out the noise in the daily counts when adding them 
up. Therefore, we consider cumulative counts in our modeling but utilize daily counts for model assessment/
comparison. After all, the future trend of daily counts is of our primary interest. We remark that the fitted/
predicted values in cumulative counts can be easily converted to fitted/predicted values in daily new counts by 
taking the difference between any two consecutive cumulative counts.

In the following, we will present two modeling strategies to capture the lagged dynamic relationship, that is, 
local polynomial regression and piecewise linear regression.

Local polynomial regression with lagged dependence. Different from the classical regression mod-
els, the time varying coefficient regression model allows the regression coefficients β ’s to change over some other 
covariate (called smoothing variable). Suppose the data are in form of (Yi ,Xi)

n
i=1 . The time-varying coefficient 

regression model is

where βi,0 = β0(
i

n
) and βi,1 = β1(

i

n
) for some smooth function β = (β0,β1)

′ : [0, 1] → R
2 . We assume 

E(ǫi|Xi) = 0.

(1)Yi+L =βi,0 + βi,1Xi + ǫi , i = 1, . . . , n− L,
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Figure 1.  Scatter plots for Ontario case counts vs death counts (daily counts in the top panel vs cumulative 
counts in the bottom panel) between Oct 31, 2021 and February 10, 2022.
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To reflect the lagged dependence between the death count time series and other time series (e.g., case count 
time series), the outcome variable (Y) in the above model is for time i + L conditional on the value of the predic-
tor (X) at time i. The optimal choice of L is selected based on the criterion of minimizing mean squared predic-
tion errors for out-of-sample daily counts predictions. More details will be given in “Selection of lag” section.

The local constant (also called the Nadaraya-Watson method) and local linear estimation methods are the 
commonly used local polynomial methods for time-varying coefficient regression models. The local constant 
estimates are obtained by minimizing the following objective function, that is,

where Kb(·) =
1

b
K(·/b) is the kernel and b is a bandwidth, and xi = (1, xi)

′ . Obviously the resulting estimator 
depends on the choice of bandwidth b. As stated  in17, the bandwidth is selected by cross validation (leave-one-
out cross-validation by default in tvReg). The triweight kernel is the default choice in tvLM, an R function in the 
R package  tvReg17.

The local constant estimator can be written in the following matrix form that resembles the weighted least 
squares estimator. Let

Then we have the local constant estimator, denoted by β̂,

Similarly, local linear estimators can be obtained by minimizing

where β(1)(t) is the first order derivative of β(t).
Let Ut = diag{1/n− t, . . . , i/n− t, . . . , 1− t} and Ŵt = (X,UtX) . Therefore, the local linear estimator can 

be expressed in the following matrix form

Piecewise linear regression model with lagged dependence. As explained in “Introduction” sec-
tion, the smoothness imposed for the time-varying coefficients may not be able to capture some abrupt changes. 
Therefore, we consider piecewise linear regression models as an alternative.

where

with k defined as a breakpoint. We also assume E(ǫi|Xi = xi) = 0.
In our data analysis, the R package “segmented”18 is used to implement the model estimation for piecewise 

linear regression models. The restarting bootstrap  method19 is implemented in “segmented” to handle spurious 
local minima (e.g., flat segments). The segmented package also provides an automatic  option20 for determin-
ing the number and location of the breakpoints. We found the automatic option over-estimated the number of 
breakpoints, which led to worse performance for out-of-sample prediction. Therefore, we don’t recommend the 
use of the automatic option because out-of-sample prediction is of our primary interest. In the following data 
analysis with the piecewise linear regression method, we selected the starting values of breakpoints by examin-
ing the scatter plot.

Selection of lag
In this subsection, we discuss how to determine the lag for the dependence between the response variable and 
the covariate. For the response variable, we consider Yt+l with l = Lmin, Lmin + 1, . . . , Lmax with varying lag l. 
In our data analysis, we use Lmin = 5 and Lmax = 21. The optimal lag that best captures the lagged dependence, 
denoted by L, is selected to be the one that gives smallest mean squared prediction error for out-of-sample daily 
counts prediction.

To explain, for each l ∈ {Lmin, . . . , Lmax} , we fit the model (either local polynomial regression or piecewise 
linear regression) for the same training data. Suppose the maximum date of the data is Tm , then the training data 
set consists of data up to date Tm − 2Lmax . Then we predict the cumulative death counts for the time window 
[n− 2Lmax + 1, n− 2Lmax + l] . We refer to the next section for details about how to conduct out-of-sample 

β̂(t) = argminθ

n
∑

i=1

(

yi − x′iθ
)2
Kb(i/n− t), t ∈ [0, 1],

y = (y1, . . . , yn)
′,

X = (x1, x2, . . . , xn)
′,

Wt = diag (Kb(1/n− t),Kb(2/n− t), . . . ,Kb(i/n− t), . . . ,Kb(1− t)).

(2)β̂(t) =(X′WtX)
−1X′Wty.

(β̂(t), β̂
(1)
(t)) = argminθ0,θ1

n
∑

i=1

(

yi − x′iθ0 − x′iθ1(i/n− t)
)2
Kb(i/n− t),

(3)(β̂
′
(t), β̂

(1)′
(t))′ =(Ŵ′

tWtŴt)
−1X′Wty.

(4)Yi+L =β0 + β1xi + β2(xi − k1)+ + . . .+ βp+1(xi − kp)+ + ǫi , i = 1, . . . , n− L,

(xi − k)+ =

{

xi − k, if xi − k ≥ 0
0, if xi − k < 0.
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prediction. By subtracting any two consecutive cumulative counts, we get the predicted daily counts for the time 
window [n− 2Lmax + 2, n− 2Lmax + l] . Therefore, we can calculate the mean squared prediction error (MSPE) 
for daily death counts reported during [n− 2Lmax + 2, n− 2Lmax + l] for each l. The optimal lag is the value of 
l that yields the smallest MSPE.

Prediction
One immediate potential application of the lagged dependence structure discussed in “Models and notation” 
section is for prediction. In piecewise linear regression models, the prediction is fairly straightforward conditional 
on the estimated breakpoints. Basically we make use of the simple linear regression model for the segment that 
the new observations of the predictor fall into.

In the local polynomial regression setting, we consider the Direct-recursive hybrid multi-step  forecast21 and 
can be implemented in the function forecast() in the R package tvReg. Here is the outline of how the prediction 
can be done. 

 Step 1. Apply the local polynomial regression method to the data until time point n.
 Step 2. Predict Yn+1 by using the estimate of the regression coefficient βn from Step 1, that is, Ŷn+1 = β̂

′

nxn+1.
 Step 3.  Predict Yn+2 by treating Ŷn+1 as if it were the actual observation at time n+ 1 and implementing the 

local polynomial regression method to the augmented data (xi , yi), i = 1, . . . , n+ 1 where yn+1 = Ŷn+1 . 
Then we repeat Steps 2 and 3 until L future predictions is done, where L is the lag discussed in the 
previous section.

The potential problem with this prediction strategy is that it uses the predicted values as if they were the real 
observations. If the regression coefficients change very slowly over a short prediction time window, such a 
prediction strategy may not be a big problem. As shown in all the figures except Fig. 2, local constant regres-
sion models seem to be the winner for the out-of-sample daily counts prediction. It is worth noting that the 
propagated error in using the predicted values may lead to unreliable results. As shown in Fig. 5, the predicted 
daily deaths based on local linear method tends to deviate more from the reported counts near the end of the 
out-of-sample prediction window.

In the following, we present bootstrap methods for calculating point-wise and simultaneous confidence bands 
for out-of-sample predictions in time-varying coefficient regression models. The assumption is i.i.d. random 
error terms in time-varying coefficient regression models.

Point‑wise confidence bands for out‑of‑sample predictions. The 100(1− α)%(0 < α < 1) point-
wise confidence bands of Y(u), u ∈ [

n+ 1

n+ L
, 1] are defined by

[Ŷ(u)− cα/2 × sd(Ŷ(u)|D), Ŷ(u)+ cα/2 × sd(Ŷ(u)|D)],

0
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Figure 2.  Out-of-sample Prediction for daily deaths in BC based on the input data from December 5, 2021 to 
April 1, 2022. The Mean Squared Prediction Errors (MSPE) for the out-of-sample predictions and selected lags 
(in brackets) are listed as follows. Local Constant: 17 (20 days), Local Linear: 16 (21 days), Piecewise Linear: 13 
(20 days), DEM: 7 (9 days).
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where D = (z1, z2, . . . , zn,X1,X2, . . . ,Xn) . Please note that zi = i/n,Y(zi) = Yi , and X(zi) = Xi . Using a similar 
rational as that  in22 for constructing confidence intervals for regression coefficients, we implement the following 
steps to construct the confidence intervals for the predicted values. 

 Step 1. For available data (say up to time n), we fit a time-varying regression model and produce the fitted 
values ŷi and residuals ei = yi − ŷi , i = 1, . . . , n.

 Step 2. Generate synthetic data y∗i = ŷi + e∗i , where e∗i = ηi ẽi , and ẽi = ei
1

n

∑n
i=1 ei , that is, the centred resid-

uals. Re-fit the time-varying regression model based on the synthetic data and use the built-in R function 
forecast() to predict the future L observations, denoted by ŷ∗n+1, . . . , ŷ

∗
n+L , or equivalently, 

ŷ∗(
n+ 1

n+ L
), ŷ∗(

n+ 2

n+ L
) . . . , ŷ∗(1).

 Step 3. Repeat Step 2 for B times and obtain B bootstrap predicted values for the future L observations. For 
u ∈ [

n+ 1

n+ L
, 1] , the estimate of sd(Ŷ(u)|D) is the sample standard deviation of bootstrap samples 

{ŷ∗(b)(u) : b = 1, . . . ,B} and is denoted by sd∗(Ŷ(u)).
 Step 4. For each b = 1, . . . ,B , we calculate 

 The estimate of cα/2(u), u ∈ [
n+ 1

n+ L
, 1] is the upper α/2 percentile of {Q∗(b)(u)}.

Simultaneous confidence bands for out‑of‑sample predictions. Since the point-wise confidence 
bands only provide interval estimates for each given future time point, we here discuss simultaneous confidence 
bands that allow us to infer all future time points simultaneously. As such, one can make inference about the 
trend of future predictions based on such confidence bands. Following the bootstrap methods proposed  by23, we 
construct the simultaneous confidence bands as outlined below.

Let

where D = (u1, . . . , un,X(u1), . . . ,X(un)) with ui =
i

n
.

The 100(1− α)% simultaneous confidence band for {E(Y(u)|D)} for u ∈ [
n+ 1

n+ L
, 1] is in the form of

The last two terms after the ± can be estimated from the bootstrap methods. 

 Step 1. Fit a time-varying coefficient regression model. Denote the predicted values by ˆy(u), u ∈ [
n+ 1

n+ L
, 1]. 

The predicted values can be directly calculated by using the built-in R function forecast() in the R package 
tvReg.

 Step 2. For each i = 1, . . . , n , generate a bootstrap sample 

 where ẽi = ei −
1

n

∑n
i=1 ei , that is, centred residuals; ηi

i.i.d.
∼ N(0, 1).

 Step 3. Repeat Step 2 m times to get a size m sample for 
(

ŷ(
n+ 1

n+ L
), ŷ(

n+ 2

n+ L
), . . . , ŷ(1)

)

 , denoted by 

 Based on the m samples, we estimate sd(Y(u)|D) by the corresponding sample standard deviations, 
denoted by sd∗(Y(u)|D).

 Step 4. Repeat Step 2 M times to get a size M sample for 
(

ŷ(
n+ 1

n+ L
), ŷ(

n+ 2

n+ L
), . . . , ŷ(1)

)

 . Calculate 

 Please be noted that Q∗
s  are bootstrap sample of Q.

 Step 5. Use the upper α/2 sample percentile of {Q∗
s : s = 1, 2, . . . ,M} to estimate Cα/2 , the upper α/2 percentile 

of Q.

Q∗(b)(u) =
ŷ∗u,b − ŷu

sd∗(ŷ∗u)
.

Q = sup

u∈

[

n+ 1

n+ L
,1

]

| ˆy(u)− y(u)|

sd( ˆy(u)|D)
,

ˆy(u)± sd(Y(u)|D)Cα/2.

y∗i = ŷi + ẽiηi ,

(

ŷ∗(k)(
n+ 1

n+ L
), ŷ∗(k)(

n+ 2

n+ L
), . . . , ŷ∗(k)(1)

)

, k = 1, 2, . . . ,m.

Q∗
s = sup

u∈[
n+ 1

n+ L
,1]

|ŷ∗(s)(u)− ŷ(u)|

sd∗(Ŷ(u)|D)
, s = 1, 2, . . . ,M.
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Data analysis
Provincial data in Canada. We use the publicly available data resource maintained by the COVID-19 Can-
ada Open Data Working  Group24. We consider the time window near to the first Omicron wave for provinces in 
Canada. Please note that the time window is different for different provinces. For each of Figs.  2, 3, 4, we plotted 
out-of-sample predictions for daily new deaths using local polynomial and piecewise linear regression mod-
els. The actual reported deaths were overlayed in each plot so the prediction accuracy can be easily visualized. 
The general impression is that local constant regression and piecewise linear regression produced better daily 
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Figure 3.  Out-of-sample Prediction for daily deaths in Quebec based on the input data from Oct 31, 2021 to 
April 1, 2022. The Mean Squared Prediction Errors (MSPE) for the out-of-sample predictions and selected lags 
(in brackets) are listed as follows. Local Constant: 43 (7 days), Local Linear: 102 (17 days), Piecewise Linear: 69 
(7 days), DEM: 56 (9 days).
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Figure 4.  Out-of-sample Prediction for daily deaths in Ontario based on the input data from Oct 31, 2021 to 
April 1, 2022. The Mean Squared Prediction Errors (MSPE) for the out-of-sample predictions and selected lags 
(in brackets) are listed as follows. Local Constant: 25 (7 days), Local Linear: 541 (5 days), Piecewise Linear: 20 
(21 days), DEM: 16 (7 days).
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predictions. Local linear regression tends to be more sensitive to aberrant data points (such as negative values of 
some daily new deaths due to retrospective re-assessment), as suggested by Fig. 4. Moreover, local linear regres-
sion did not work for some provinces (e.g., Saskatchewan) due to some singular fits. It is likely related to the 
sparsity in the data due to rareness of deaths in such provinces. It is also worth noting that the starting values for 
the breakpoints affects the predictive performance of the piecewise linear models. In Fig. 3, the piecewise linear 
regression performed the worst. Because we did not set up the last breakpoint properly; the segmented package 
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Figure 5.  Out-of-sample Prediction for daily deaths in Japan based on the input data from January 10, 2022 
to December 31, 2022. Mean Squared Prediction Errors (MSPE) for the out-of-sample predictions and selected 
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Figure 6.  Out-of-sample Prediction for daily deaths in South Korea based on the input data from January 30, 
2022 to December 31, 2022. The Mean Squared Prediction Errors (MSPE) for the out-of-sample predictions 
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does not allow the value of breakpoints go beyond 95% percentile of the predictor values (when the sample size 
is larger than 20). For such circumstances, we recommend local polynomial methods.

World‑wide data: reported death counts. We use the publicly available  data25 for analyzing country-
level data. COVID-19-related deaths and hospitalizations in select countries were investigated using data span-
ning from the start of the Omicron wave in each country until December 31, 2022 or the last date for daily 
death/case counts being reported (whichever comes earlier). Cumulative counts of reported cases, deaths and 
hospitalizations are used in model development to reduce differences between countries with different reporting 
periods and frequencies. The starting value of breakpoints for the piecewise-linear models (needed for using the 
segmented function) were manually determined by visual inspection of the scatter plot of cumulative deaths 
versus cumulative cases.

Both local polynomial regression and piecewise-linear regression produce strong predictive accuracy when 
used to predict COVID-19-related deaths in Japan and South Korea (Figs.  5 and  6). The success of predictions 
in these countries is likely due to the high quality of the data: Japan and South Korea report death counts daily 
and small day-to-day variation is reported.

Unlike Japan and South Korea, most other countries do not report death counts daily. The irregular spac-
ing between observations degrades the performances of both types of models. For more data analyses on other 
countries, please refer to the supplementary document.

Using the bootstrapping methods mentioned in “Point-wise confidence bands for out-of-sample predictions” 
and “Simultaneous confidence bands for out-of-sample predictions”, we calculated the pointwise and simulta-
neous confidence bands for cumulative death counts for Quebec and South Korea, respectively. As shown in 
Figs. 7 and 8, the simultaneous confidence bands based on local constant and local linear methods can be very 
wide (like trumpet near the end of the prediction window). For such a case, the trend of future data cannot be 
inferred from the simultaneous confidence bands.

Summary and discussion
In this paper, we have proposed two different types of time-varying coefficient models to characterize the dynamic 
nature of the lagged dependent relationship between the time series of cumulative death count and the time 
series of cumulative case count. The value of the lag in the dependence is selected based on minimizing the 
mean squared prediction error for daily death counts. Both local polynomial regression and piecewise linear 
regression work well when the relationship exhibits simple patterns (such as one change point in the piecewise 
linear regression setting). Caution should be exercised when using the local linear method for data sets con-
taining outliers (e.g., the negative reported daily death counts in Ontario data). The predictive performance of 
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local linear method seems to be more sensitive to outliers, as shown in Fig. 4. Thus the proposed methods can 
provide a potential prediction approach as a complementary tool to the existing literature on predicting deaths/
hospitalizations. The R scripts for implementing the proposed methods are posted on GitHub (https:// github. 
com/ Juxin Liu/ COVID- 19- data- analy sis).

When the pattern gets more complicated (e.g., when the study period is longer or some rapid changes hap-
pen), local polynomial regression works better in terms of smaller out-of-sample prediction errors. We make 
just a quick note here that the estimation for piecewise linear regression models was implemented by using the 
R package segmented. The performance of the model estimation relies on the choice of the starting values for 
the breakpoints to be estimated.

We also compared the proposed methods with the Delayed Elasticity  Model13. Based on the MSPE, our meth-
ods outperform DEM for most regions (more data analysis results are given in the supplementary document). 
For regions where DEM performs slightly better (Ontario and BC), the selected lag, i.e., prediction window is 
pronouncedly shorter.

In summary, we have developed a general and flexible modeling approach for death predictions. Model fit can 
be easily implemented by an R package tvReg. Based on our data analyses, the proposed method works well for 
most regions. Nonetheless, there are some limitations of our approach, which lead to some potential directions 
for future work. First, our proposed methods were designed for regular time series (e.g., daily or weekly) without 
missing values. But often real-world data contain missing values. For example, the Saskatchewan government 
changed the frequency of reporting from daily to weekly to monthly. Second, our proposed methods rely on 
the assumption of independent and identically distributed random error terms. If the examination of residuals 
show evidence of violation of such an assumption, more realistic models are needed to account for dependent 
random errors. Third, the confidence bands (either pointwise or joint/simultaneous) in our work refer to pre-
dicted cumulative counts. Ideally we will need to convert the current prediction bands (pointwise or joint) to 
the prediction intervals for future daily counts. An alternative way could be building the models for daily counts 
and then naturally the prediction is for daily counts as  well9.

Data availability
The datasets analysed in this manuscript are publicly available in the following repositories: https:// github. com/ 
ccodwg/ Covid 19Can ada and https:// ourwo rldin data. org/ coron avirus.
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Figure 8.  Out-of-sample prediction for cumulative deaths with pointwise and joint confidence bands.
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