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Driving risk cognition of passengers 
in highly automated driving based 
on the prefrontal cortex activity 
via fNIRS
Hong Wang 1,5, Xiaofei Zhang 1,5*, Jun Li 1, Bowen Li 2, Xiaorong Gao 2*, Zhenmao Hao 3, 
Junwen Fu 4, Ziyuan Zhou 1 & Mohamed Atia 4

For high-level automated vehicles, the human being acts as the passenger instead of the driver 
and does not need to operate vehicles, it makes the brain–computer interface system of high-level 
automated vehicles depend on the brain state of passengers rather than that of drivers. Particularly 
when confronting challenging driving situations, how to implement the mental states of passengers 
into safe driving is a vital choice in the future. Quantifying the cognition of the driving risk of the 
passenger is a basic step in achieving this goal. In this paper, the passengers’ mental activities in low-
risk episode and high-risk episode were compared, the influences on passengers’ mental activities 
caused by driving scenario risk was first explored via fNIRS. The results showed that the mental 
activities of passengers caused by driving scenario risk in the Brodmann area 10 are very active, which 
was verified by examining the real-driving data collected in corresponding challenging experiments, 
and there is a positive correlation between the cerebral oxygen and the driving risk field. This initial 
finding provides a possible solution to design a human-centred intelligent system to promise safe 
driving for high-level automated vehicles using passengers’ driving risk cognition.

With the spread adoption of artificial intelligence (AI), the great challenges confronted by intelligent safety have 
gained increasing attention, and become the biggest obstruction to the mass production of high-level automated 
vehicles nowadays. The chief important reason for these accidents happening in recent years is that there are 
functional deficiencies in robustness, generalization and so on, particularly perception algorithm deficiency. Such 
functional deficiencies may lead to the safety of the intended functionality (SOTIF)1,2, which means the absence 
of unreasonable risk due to hazards resulting from functional insufficiencies of the intended functionality or 
reasonably foreseeable misuse by  person1. For example One high-level automated vehicle hit a white overturned 
truck as a result of the white truck is mistakenly identified as a white cloud. In another case, an automated vehicle 
hit one 40-year-old woman who was crossing the street during night, because the decision-making algorithm of 
the vehicle ignored people crossing the road  illegally3.

The unexplained black box properties of AI algorithms make it challenging to overcome its functional defi-
ciencies by improving AI algorithms. It is important to overcome its functional deficiencies using the brain–com-
puter interface technology by studying the relationship between passengers’ mental activity and driving scenario 
risk and implementing the cognition of the most advanced senor-human being into safe driving. The character-
istics of functional near-infrared spectroscopy (fNIRS) technology, such as non-invasiveness, safety, and low-
cost characteristics, make fNIRS own potential as an ideal candidate for monitoring the brain  activity4–12. Some 
researches have been done for looking into the mental activity of drivers on driving simulators or highways for 
different driving  tasks13–19. For improving traffic safety, the current mental workload of drivers has also been 
 investigated20, the data from four regions of interest, i.e, the left anterior dorsolateral prefrontal cortex (DLPFC), 
the left posterior DLPFC, the right anterior DLPFC and the right posterior DLPFC were analyzed. The following 
three points were obtained: (1) All four regions of interest showed significant differences between conditions 
in deoxygenated hemoglobin, and it indicates higher activity during higher subjective workload ratings during 
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city courses than lower subjective workload ratings during country courses. (2) No region of interest showed 
significant differences among the conditions in oxygenated hemoglobin. (3) The left anterior DLPFC region is 
the most sensitive to mental workload changes, and the right middle frontal gyrus might be a suitable region 
for the application of powerful small-area brain–computer interfaces. The relationship between cortical activity 
and the levels of smartphone distraction was  explored14, and it has found that the prefrontal cortical activities of 
drivers are sensitive to mental workload changes and the levels of smartphone distraction. The cognitive processes 
related to driving were explored, and it was noted that additional neural resources are needed in the prefrontal 
cortex during high-speed driving conditions compared to the lower-speed cases during dual task  driving8. A 
study on the relationship between the prefrontal cortex activation and the changes in mental workload during 
simulated driving showed that the increases in the subjective ratings of mental workload are associated with 
increases in the concentration of oxygenated hemoglobin in the prefrontal  cortex19. As stated above, the prefron-
tal cortices are related to driving tasks and mental workload, thus prefrontal cortices are the regions of interest 
for our  study8,14,19,20. Gauvain  Huve21 presented a brain-computer interface system, and this system may analyze 
the brain activity of a user in real time and deduce the current driving mode of the car. This study is important 
to ascertain if a driver is fit to drive at any given time in case the auto-pilot fails, but the  results21 are not appli-
cable to high-level automated vehicles. In high-level automated vehicles, the human being acts as the passenger 
instead of the driver and does not need to operate the vehicle, therefore, it is very meaningful to improve SOTIF 
using the brain-computer interface based on the cortical activities of passengers caused by driving scenario risk.

The choice of data features is also crucial for result analysis, there are four indexes, the changes in the concen-
tration of oxygenated hemoglobin △HbO , deoxygenated hemoglobin △HbR , cerebral blood volume △CBV  and 
cerebral oxygen exchange △COE22–24. Based on these four indexes, the time, frequency and wavelet features can be 
obtained. WeiTa  Chen24 used some features from those four indexes to classify healthy subjects, chronic migraine 
subjects and medication-overuse headache subjects using machine learning. Raul Fernandez  Rojas25 studied 
the classification results of seven machine learning algorithms for identifying a biomarker of human pain using 
fNIRS, and different machine learning algorithms achieved different classification accuracy based on different 
features. The Gaussian support vector machines presented the highest accuracy (94.17%) using only 25 features 
to identify the four types of pain in a database, and this result indicated that the choice of data features is crucial.

△COE is an effective index that can indicate  activity26–28, dictionary learning is a parametric low-dimensional 
representation learning method that can reconstruct high-dimensional input vectors in an unsupervised manner, 
and it is also a typical feature extraction method of machine learning. Compared with regular features, dictionary 
learning owns learning characteristics, and can find the optimal characteristic to reconstruct high-dimensional 
input vectors. Human-centred intelligent system is useful to promise safe driving for high-level automated vehi-
cles. It is a possible and novelty solution to design a human-centred intelligent system using passengers’ driving 
risk cognition. In order to achieve this goal, the influences on mental activity caused on driving scenarios risks 
based on blood oxygen monitoring by fNIRS technology was studied. Firstly, a signal acquisition system and 
challenging driving scenarios are designed by hardware-in-loop equipment and Virtual Test Drive software, an 
experiment which contains different driving scenarios was conducted, 20 participants completed this experiment, 
and a blood oxygen monitoring named OctaMon+ that owns eight channels was used, in this study. Secondly, 
a K-SVD (it does K iterations of singular value decomposition )  dictionary29 learning and mean value methods 
were used to extract features from △COE data. T-test14 and generalized linear mode (GLM)5,30–32 were adopted to 
analyze the sensitive area to driving scenario risk and the quantification relationship between passengers’ mental 
activity and driving scenario risk based on those features. Finally, some possible contributions to improve SOTIF 
based on the conclusion of this paper were introduced.

Results
It is possible and novelty to improve SOTIF by designing a human-centred intelligent system using passengers’ 
driving risk cognition. In this paper, driving scenario is divided into a low-risk episode and a high-risk episode 
based on an objective risk evaluation indicator, and passengers’ mental activities in low-risk episode and high-risk 
episode were compared. This experiment was proceeded on a driving simulator, and 20 participants completed 
this experiment. The data of four challenging driving scenarios were analyzed: lead vehicle autonomous emer-
gency braking in a short distance, lead vehicle cut-in from left lane in a short distance, lead vehicle cut-in from 
right lane in a short distance and pedestrian crossing road from right. The valid sample numbers of lead vehicle 
autonomous emergency braking in a short distance, lead vehicle cut-in from left lane in a short distance, lead 
vehicle cut-in from right lane in a short distance and pedestrian crossing road from right are 267, 531, 480 and 
632. The findings were as follows: (1) The mental activities of passengers caused by driving scenario risk in the 
channel 8 (Brodmann area 10, Left Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, Gray Matter ) were very 
active, and this initial conclusion was also verified by examining the real-driving data collected in correspond-
ing challenging experiments that were performed in the experimental base in Changsha, China. (2) The mental 
activity caused lateral risk is stronger than longitudinal risk. (3) There is a positive correlation between the 
cerebral oxygen exchange and risk field, and this correlation may be modeled as a linear relationship by GLM. 
This difference of mental activity between low-risk and high-risk episodes may be combined with reinforcement 
learning to realize passenger-in-loop decision-making. It provides a possible solution to design a human-centred 
intelligent system to improve SOTIF for high-level automated vehicles using passengers’ driving risk cognition.

Discussion
In this paper, firstly, a signal acquisition system and challenging driving scenarios were designed by hardware-in-
loop equipment and Virtual Test Drive software; Secondly, vehicle states, which may be used to build risk field, 
and △HbO and △HbR of passengers, were collected by the signal acquisition system. Thirdly, cerebral oxygen 
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exchange was divided into low-risk and high-risk episodes based on a risk field; Finally, the mean values about 
risk fields in low-risk and high-risk episodes were compared, the differences of passengers’ mental activities 
between low-risk and high-risk episodes were analyzed using T-value of T-test, and the quantification relationship 
between passengers’ mental activity and driving scenario risk was explored. The flow diagram is showed in Fig. 1.

Risk analysis
Risk field is a safety indicator, it may quantify driving scenario risk, it involves relative longitudinal distance, 
relative speed, and those information is related to time to collision. To analyze the risk field differences between 
low-risk and high-risk episodes, the mean values of the risk field were calculated, and the detailed results are 
shown in Table 1.

The p values of those four challenging scenarios are smaller than 0.1, which indicates that there are significant 
difference about risk field between low-risk episode and high-risk episode. The mean value of high-risk episode 
is higher than that of the low-risk episode. Compared with lead vehicle autonomous emergency braking in a 
short distance, lead vehicle cut-in from left lane in a short distance, lead vehicle cut-in from right lane in a short 
distance scenarios, the risk field change trend of pedestrian crossing road from right scenario is most fastest (it 
completed the change from minimum value to maximum value in 6 s).

Mental activity analysis
In this study, △COE was utilized to indicate mental activity, the differences of △COE between low-risk and 
high-risk episodes were compared using the T-value. Mean method and K-SVD dictionary were used to extract 
feature from raw data. The differences in the T-value based on mean value features between low-risk and high-risk 
episodes are shown in Fig. 2, and the T-values based on mean value features and the T-value based on K-SVD 
dictionary features are shown in Table 2. From the T-value result based on mean value features, the following 
findings can be derived: (1) The T-values of lead vehicle autonomous emergency braking in a short distance, 
lead vehicle cut-in from left lane in a short distance, lead vehicle cut-in from right lane in a short distance and 
pedestrian crossing road from right in the channel 8 are maximum, compared with other channels. The T-value 
for lead vehicle autonomous emergency braking in a short distance is 1.199, the T-value for lead vehicle cut-in 
from left lane in a short distance is 3.205, the T-value for lead vehicle cut-in from right lane in a short distance 
is 2.572, the T-value for pedestrian crossing road from right is 4.439. This indicates that the mental activities of 
passengers caused by driving scenario risk in the Brodmann area 10 is very active. (2) The T-values in channel 
8 of lead vehicle cut-in from left lane in a short distance, lead vehicle cut-in from right lane in a short distance 

Passenger

Machine IntelligenceChallenging scenarios Risk Field

Cerebral oxygen exchange

T-value (T-test)Experimental equipments

scenarios

scenarios
vehicle 

states

split time

mean values

Brodmann area 10

Figure 1.  The flow diagram contains cerebral oxygen exchange and risk field data. Each scenario is divided into 
low-risk and high-risk episodes based on risk field data, the difference of cerebral oxygen exchange between 
low-risk and high-risk episode is analyzed using T-value, which may indicate the mental activity differences 
caused by risk field.

Table 1.  Difference of risk field between low-risk and high-risk episodes. (1) ML indicates the mean values of 
the risk field in the low-risk episode; (2) MH indicates the mean values of the risk field in the high-risk episode; 
(3) DLH indicates the difference of risk field between low-risk and high-risk episodes; (4) p indicates the 
probability of T-test; (5) t indicates the time of episode.

Event ML MH DLH p t

Lead vehicle autonomous emergency braking in a short distance scenario 0.010 0.128 0.118 < 0.01 20

Lead vehicle cut-in from left lane in a short distance scenario 0.013 0.124 0.111 < 0.01 15

Lead vehicle cut-in from right lane in a short distance scenario 0.016 0.162 0.146 < 0.01 10

Pedestrian crossing road from right scenario 0.022 0.116 0.094 < 0.01 6
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Figure 2.  The T-values of △COE based on mean value features between low-risk episode and high-risk episode 
in driving scenarios of lead vehicle autonomous emergency braking in a short distance, lead vehicle cut-in from 
left lane in a short distance, lead vehicle cut-in from right lane in a short distance and pedestrian crossing road 
from right. are shown in (a–d).

Table 2.  The T-test results of △COE between low-risk and high-risk episodes. (1) SAEB stands for 
autonomous emergency braking in short-distance scenario; (2) LCI stands for the vehicle cut in from the 
left lane scenario; (3) RCI stands for the vehicle cut in from the right lane scenario; (4) RPCR stands for the 
pedestrian crossing road from the right scenario.

Scenario Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel8

Mean
Value
Feature

SAEB −1.284 −0.817 −0.181 0.745 −0.844 −0.145 0.426 1.199

LCI −1.181 1.610 1.529 1.884 0.797 0.998 2.690 3.205

RCI −1.120 1.287 0.451 1.907 −1.002 0.888 1.102 2.572

RPCR 1.139 2.343 3.052 4.043 1.075 3.423 1.755 4.439

K-SVD
Dictionary
Feature

SAEB 1.007 −1.941 −1.563 −0.335 −1.382 1.406 −1.879 −4.214

LCI 0.665 1.934 0.306 1.514 −0.717 −0.202 −2.828 −3.609

RCI 0.055 -0.532 0.474 1.832 -1.003 -0.595 -2.088 -2.524

RPCR −0.160 2.394 −3.057 4.052 0.388 3.435 1.769 0.552
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and pedestrian crossing road from right all bigger than the T-value in channel 8 of lead vehicle autonomous 
emergency braking in a short distance. This means that the mental activity caused lateral risk may be stronger 
than longitudinal risk. (3) Compared with other three scenarios, the mental activity in the channel 8 of pedes-
trian crossing road from the right scenario is the most obvious ( the T-values in channel 8 is maximum ), it may 
be related to the risk field change trend (the risk field change trend of pedestrian crossing road from the right 
scenario is most fastest).

K-SVD dictionary learning is a typical feature extraction method of machine learning, it is often used in 
image processing field, so we try to analyze the results based on K-SVD dictionary features. The K-SVD diction-
ary features do not stand for any contents, so the symbol of T-value based on K-SVD dictionary features has no 
significance. However, the absolute T-value may indicate the different degree of △COE between low-risk and 
high-risk episodes. The absolute T-values in channel 8 of lead vehicle cut-in from left lane in a short distance, 
lead vehicle cut-in from right lane in a short distance and lead vehicle autonomous emergency braking in a short 
distance are maximum, compared with other channels. Those results were obtained based on python 3.11.3 and 
numpy 1.24.3. However, the absolute T-values in channel 4 of pedestrian crossing road from right scenario is 
maximum. The reason is that K-SVD dictionary learning depends on singular value decomposition.The essence 
of singular value decomposition result in there are a performance in which the signs of K-SVD dictionary features 
are opposite in two calculations for same data sometimes. So the K-SVD dictionary features are not unsuited for 
analysing the differences of △COE between low-risk and high-risk episodes based on T-test.

The influences on mental activity caused by sex and driving experience
There are 20 participants (mean age standard deviation: 29.45 ± 7.5497; range: 21–46 years), which consist of five 
females and 15 males, and seven participants have valid driving experience. The boxplots of △COE in channel 
8 about driving experience and sex are shown in Fig. 3. The following findings can be derived from Fig. 3. (1) 
The differences in △COE between low-risk and high-risk episodes in lead vehicle cut-in from the left lane in 
a short distance, lead vehicle cut-in from the right lane in a short distance, and pedestrian crossing road from 
right scenarios are more obvious, compared with lead vehicle autonomous emergency braking in a short distance 
scenario. Besides, the p values of autonomous emergency braking in a short-distance scenario, lead vehicle cut-in 
from left lane in a short distance, lead vehicle cut-in from right lane in a short distance, and pedestrian crossing 
road from right in channel 8 are 0.232, 0.001, 0.10 and 0.00001 respectively. The value of autonomous emergency 
braking in short-distance scenarios is greater than the values of three other scenarios. Besides, the values of three 
other scenarios all are smaller than 0.1, which means that there are significant differences between low-risk and 
high-risk episodes. So the boxplot result is consistent with the results about values of the t-test based on mean 
value features, and it indicates that the mental activity caused by lateral risk is stronger than longitudinal risk. (2) 
For lead vehicle autonomous emergency braking in a short-distance scenario, driving experience may influence 
the difference of between low-risk and high-risk episodes. This indicates that driving experience makes people 

Figure 3.  The boxplots of cerebral oxygen exchange in channel 8 about the driving experience and sex. The 
boxplots of autonomous emergency braking in a short distance, lead vehicle cut-in from the left lane in a short 
distance, lead vehicle cut-in from the right lane in a short distance, and pedestrian crossing road from right 
scenarios are shown in (a–d). LN stands for the low-risk episode data about those participants who do not 
have valid driving experience; HN stands for the high-risk episode data about those participants who do not 
have valid driving experience; LY stands for the low-risk episode data about those participants who have valid 
driving experience; HY stands for the high-risk episode data about those participants who have valid driving 
experience; LM stands for the low-risk episode data about those male participants; HM stands for the high-risk 
episode data about male participants; LF stands for the low-risk episode data about female participants; HF 
stands for the high-risk episode data about female participants.
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more sensitive to longitudinal risks. (3) Similarly, it may be concluded that male participants are more sensitive 
to longitudinal risks than female participants.

Quantified cognition of driving risk of passengers
Based on the above discussion, it may be obtained that the mental activities in the channel 8 caused by the driving 
risk of pedestrian crossing road from the right scenario is the most strongest. Therefore the relationship between 
the mental activities in the channel 8 and the risk field of pedestrian crossing road from the right scenario was 
analyzed by GLM, the results are showed in Table 3, and it indicates that there is a positive correlation between 
the cerebral oxygen exchange and risk field, and this correlation may be modeled as a linear relationship by GLM.

An experiment based on real driving scenarios
A driving simulator could not reproduce all factors of real driving scenarios, which means there is still exists a 
difference between simulation and real vehicles. Passenger may be relaxed when a driving simulator is used, so 
the result of the vehicle cut in from the right lane scenario was verified by the data was collected from real driving 
scenarios. This experiment was performed in the national intelligent connected vehicle test area in Changsha, 
China, and a high-level automated vehicle named as E-HS9 from First Automobile Work shop (FAW) was used, 
and it contains one forward looking monocular camera, one forward millimeter wave radar and four angular 
millimeter wave radar. Seven autonomous corresponding challenging cut in from the right lane scenarios were 

Table 3.  Parameter estimation. (1) Dependent variable: risk field; ( 2) model: (Intercept). a  Maximum 
likelihood estimate.

Parameter B Std error

95% Wald 
confidence 
interval Hypothesis test

Lower Upper Wald Chi-square df Sig

(Intercept) 0.069 0.0013 0.066 0.072 2658.780 1 0.00

(Scale) 0.002a 8.9830−5 0.002 0.002

Table 4.  Detailed information of those seven autonomous corresponding challenging cut in from the right 
lane scenarios.

Order number Relative velocity (km/h)
Longitudinal speed of ego vehicle 
(km/h)

Longitudinal speed of target 
vehicle (km/h)

Lateral speed of target vehicle 
(m/s) Relative distance (m)

1 15 60 45 1 10

2 15 60 45 1 8

3 15 60 45 1 6.5

4 15 60 45 1 5

5 15 70 55 0.6 7

6 25 70 45 0.7 12

7 25 70 45 0.9 11

Cerebral oxygen exchangeRisk fIeld
（（Green stands for low field episode, and red stands for high field episode））

Z-value
(Wilcoxon Signed Rank Test)

Cut in Scenario

Automated vehicle Passengerscenarioscenario mean values

vehicle states

Figure 4.  The pieces of equipment which are used in the real driving scenarios experiment contain a high-level 
automated vehicle and a blood oxygen monitoring device. The Z-values of channels 1, 2, 3, 4, 5, 6, 7 and 8 are 
−0.507,−0.169,−0.507,−0.169,−1.521,−1.521,−1.352 , and −1.521.
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designed, and the corresponding cerebral oxygen exchange data were collected, the detailed information is shown 
in Table 4. The process and results are shown in Fig 4. In this experiment, Wilcoxon Signed Rank Test was used 
to analyse the difference in cerebral oxygen exchange between low-risk and high-risk episodes of small samples. 
Firstly, the participant sat at the copilot, and observed in front situations; Secondly, the risk field was built based 
on vehicle state information, raw data was preprocessed by moving average filter, and the corresponding cerebral 
oxygen exchange data was divided into low-risk and high-risk episodes based on risk field data; Finally, the dif-
ference in △COE between low-risk and high-risk episodes was analyzed using Wilcoxon Signed Rank Test. The 
absolute Z-values of Wilcoxon Signed Rank Test in channel 5, 6, 8 are maximum, and this shows that there are 
obvious difference of △COE between low-risk and high-risk episode, compared with other channels.

Methods
Participants
The features of participants are shown in Fig 5. The detailed information about participants is shown in Sup-
plementary Table 1, the final sample consisted of 20 participants (5 female; mean age standard deviation: 29.45 
± 7.5497; range: 21–46 years). Six participants have valid driving experience and no participant stated disease or 
predisposition for simulator sickness. Participation was voluntary, informed consent was obtained after the task 
had been explained, participants were informed that they have an option to end participation in this experiment 
at any time without any type of penalty. This study complied with the Declaration of Helsinki and was approved 
by the Institutional Review Board of Tsinghua University, China.

Figure 5.  The features of the participants, including age, sex and driving experience (n = 20).

Hardware-in-loop equipment Host computer

Image display 

system

Auditory stimulation 

system

Crew status recording system

Matlab/Simulink 

module

Python  module

OxySoft3.4.9

Software

Blood oxygen monitoring device

Scenario

Participant A  signal acquisition system based  on hardware-in-loop equipment

Scenario

VTD data

Stimulation 

time

Crew status

Blood oxygen

Figure 6.  The signal acquisition system based on hardware-in-loop equipment, it can provide scenario 
information for participants and record vehicle states, the states of participants, and the cerebral oxygen 
exchange data of passengers.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15839  | https://doi.org/10.1038/s41598-023-41549-9

www.nature.com/scientificreports/

Experimental paradigm
In this study, the influences on passengers’ mental activities caused by driving scenarios risk was investigated. 
This experiment was performed in driving simulator. Besides, a signal acquisition system based on hardware-in-
loop equipment was designed for this study, it contains Matlab/Simulink module, Python module and OxySoft 
Software, they can record vehicle states which may be used to build risk field, the state of the participant, and the 
cerebral oxygen exchange data of passenger, respectively, and it is shown in Fig. 6. The structure of this human 
factor signal acquisition system is shown in Supplementary Fig. 1. Four kinds of challenging scenarios were used 
in this experiment: lead vehicle autonomous emergency braking in a short distance, lead vehicle cut-in from left 
lane in a short distance, lead vehicle cut-in from right lane in a short distance and pedestrian crossing road from 
right scenarios. In this study, in order to make participants do not always keep stress, other scenarios were added 
in this study, other scenarios contain the scenario in which pedestrian does not cross road, the scenario in which 
vehicle does not cut in and so on. They are not relatively emergency scenarios for driving safety, compared with 
the above scenarios, therefore, the data in other scenarios were not analyzed.

The participants were requested to sit on a driving simulator and to look at the front scenario. Beside, the 
participants were required to press the keyboard when they hear a stimulating sound or they feel dangerous, they 
were not required to do other things. The motivation of adding stimulating sound is to judge whether or not the 
participants are focusing on those task by comparing the time delay in which participants pressed the keyboard 
when they hear a stimulating sound, and its detailed contents are shown in Supplementary Tables 2 and 3. The 
participants were asked to look at four segments in total in one day. When the participants completed a seg-
ment, the participants were asked to rest for 5 min, and it took 3 days for a participant complete this experiment.

In this paper, ego vehicle went straight on a three-lane road at 70 km/h, and the ego vehicle, a target vehicle 
and a pedestrian compose scenarios. For each participant, there were 288 scenarios, which were established 
based on VTD Software; there were 12 VTD segments, and the duration of each segment was approximately 13 
min, each segment contained 24 scenarios and the scenario order was random, but there are no event before 
1000 m in each VTD segment for making participant entry state. The detailed information about 288 scenarios 
is shown in Supplementary Tables 4 and 5. For twenty participants, the total sample numbers of lead vehicle 
autonomous emergency braking in a short distance, lead vehicle cut-in from left lane in a short distance, lead 
vehicle cut-in from right lane in a short distance and pedestrian crossing road from right are 280, 560, 500 and 
660, respectively. But, thirteen autonomous emergency braking in a short distance sample, twenty-nine lead 
vehicle cut-in from left lane in a short distance samples, twenty lead vehicle cut-in from right lane in a short 
distance samples and 28 pedestrian crossing road from right samples were rejected owing to equipment failure. 
Those information is shown in Supplementary Table 6. The sketch maps and risk fields at a moment of four 
scenarios are shown in Fig 7.

Data analysis process
The data analysis process included a data processing part and a data analysis part. Firstly, a stimulus moment was 
obtained based on the risk field, and the data of cerebral oxygen exchange was divided into low-risk and high-
risk episodes; Secondly, low-risk features and high-risk features were extracted by K-SVD dictionary learning 
and mean values from low-risk and high-risk episodes, respectively; Finally, the T-value analysis method was 
used to assess the area sensitive to driving scenario risk in the prefrontal contex of passengers based on fNIRS 
for high-level automated vehicles, and GLM was used to analyze the quantification relationship between pas-
sengers’ mental activity and driving scenario risk. The data was dealt with by MATLAB 2020.b, python 3.11.3 
and SPSS 25.0.

Risk field
Risk field is a safety indicator, it may indicate a dangerous degree of driving scenario. In this study, the kinetic 
energy  field26 was adopted to indicate driving scenario risk, the kinetic energy field is showed in Eq. (1), the 
kinetic energy field involves relative longitudinal distance, relative speed and other information, and those data 
may be obtained by Matlab/Simulink module.

Autonomous Emergency Braking

Relative distance

DecelerationEgo speed

Target speed

Cut-in from the left

Relative distance

Ego speed Target speed

Cut-in from the right

Relative distance

Ego speed Target speed

Pedestrian crossing

Relative distance

Ego speed Crossing speed

Figure 7.  The sketch maps and risk fields at a moment of autonomous emergency braking in a short distance, 
vehicle cut in from the left lane, vehicle cut in from the right lane and pedestrian crossing road from the right 
scenarios.
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where k1, k2 and G are three constants, M2 indicates target vehicle mass, r indicates the distance between target 
vehicle and ego vehicle, v2 represents target vehicle speed, R2 is road friction coefficient, and θ2 indicates the 
angle between r and v2 . In application, G = 0.001 , k1 = 1 , k2 = 0.05 , M = 1705 , R2 = 1 , the episode in which 
Ev > 0.05 is considered as a high-risk episode, and otherwise it is considered as a low-risk episode. Since those 
four scenarios were different, the times of low-risk episode and high-risk episode in autonomous emergency 
braking in a short distance scenario, vehicle cut in from the left scenario, vehicle cut in from the right scenario 
and pedestrian crossing road from the right scenario are 6 s, 15 s, 10 s, and 20 s. The risk field change cures of 
those four scenarios are shown in Fig. 8.

fNIRS recording
△HbO and △HbR were collected using a blood oxygen monitoring device named as OctaMon+, which was 
provided by Artinis, a Dutch company. Those raw data were dealt with by NIRS-KIT33, which is a MATLAB 
toolbox for both resting-state and task fNIRS data analysis. The second-order polynomial detrending method 
was adopted to reduce the influence of data drift, motion artifacts were rectified by Temporal Derivative Dis-
tribution  Repair34, and a band pass IIR filter (0.015 Hz to 0.08 Hz) was used to remove respiration, heart rate, 
blood pressure fluctuations, mayer waves noises, and others noises.Previous studies have shown that △COE is 
an effective index, which may indicate  activity26–28, and it is showed in Eq. (2). In this study, the differences in 
△COE between the low-risk and high-risk episodes were analyzed.

Feature extraction
In this study, a K-SVD  dictionary29 learning and mean value methods were used to extract features. K-SVD 
dictionary learning is a parametric low-dimensional representation learning method that can reconstruct high-
dimensional input vectors in an unsupervised manner. The risk field data and cerebral oxygen exchange data 
were aligned by four events; the cerebral oxygen exchange data was divided into low-risk and high-risk episodes 
based on the risk field. The cerebral oxygen exchange data of all samples were extracted features by using K-SVD 
dictionary learning and mean value.

Data and code availability
The data comes from Tsinghua Intelligent Vehicle Design and Safety Research Institute, it is publicly available as 
it has signed the “ethical statement” file. Please find the data and processing code via https:// github. com/ SOTIF- 
AVLab/ fNIRS or please contact the corresponding author with any further queries regarding data availability.
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