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Utilizing convolutional neural 
networks to classify monkeypox 
skin lesions
Entesar Hamed I. Eliwa 1,2*, Amr Mohamed El Koshiry 3,4*, Tarek Abd El‑Hafeez 2,5* & 
Heba Mamdouh Farghaly 2*

Monkeypox is a rare viral disease that can cause severe illness in humans, presenting with skin lesions 
and rashes. However, accurately diagnosing monkeypox based on visual inspection of the lesions 
can be challenging and time‑consuming, especially in resource‑limited settings where laboratory 
tests may not be available. In recent years, deep learning methods, particularly Convolutional Neural 
Networks (CNNs), have shown great potential in image recognition and classification tasks. To this 
end, this study proposes an approach using CNNs to classify monkeypox skin lesions. Additionally, 
the study optimized the CNN model using the Grey Wolf Optimizer (GWO) algorithm, resulting in 
a significant improvement in accuracy, precision, recall, F1‑score, and AUC compared to the non‑
optimized model. The GWO optimization strategy can enhance the performance of CNN models 
on similar tasks. The optimized model achieved an impressive accuracy of 95.3%, indicating that 
the GWO optimizer has improved the model’s ability to discriminate between positive and negative 
classes. The proposed approach has several potential benefits for improving the accuracy and 
efficiency of monkeypox diagnosis and surveillance. It could enable faster and more accurate diagnosis 
of monkeypox skin lesions, leading to earlier detection and better patient outcomes. Furthermore, 
the approach could have crucial public health implications for controlling and preventing monkeypox 
outbreaks. Overall, this study offers a novel and highly effective approach for diagnosing monkeypox, 
which could have significant real‑world applications.

Monkeypox is an uncommon viral disease caused by the monkeypox virus (MPXV). Its first identification was in 
monkeys in the 1950s in the Democratic Republic of Congo, and later in humans in 1970. The disease is endemic 
in Central and West Africa, with sporadic outbreaks reported in other regions globally, including the United 
States, Europe, and  Asia1,2. The clinical symptoms of monkeypox are similar to those of smallpox and can include 
fever, rash, and pustules. However, monkeypox is generally less severe than smallpox, with a lower mortality  rate3.

The diagnosis of monkeypox is usually made based on clinical presentation and laboratory tests. One of the 
key laboratory tests used for diagnosis is the detection of the virus in skin lesions using polymerase chain reaction 
(PCR) or other methods. However, the interpretation of these tests can be challenging, as other viruses, such as 
varicella-zoster virus and herpes simplex virus, can cause similar  lesions4,5.

Artificial intelligence (AI) techniques, such as machine learning and deep learning, have garnered significant 
attention in recent years for medical image analysis. These techniques have demonstrated promise in various 
applications, including the diagnosis of skin diseases. Among them, Convolutional Neural Networks (CNNs) 
have been particularly successful in image analysis tasks, providing a powerful tool for medical image  analysis6.

The utilization of CNNs in classifying skin lesions poses several  challenges7. First, there is limited availability 
of large and high-quality datasets of monkeypox skin lesions, which makes it difficult to train and validate the 
performance of the CNN models. Second, monkeypox lesions may vary in size, shape, color, texture, and location 
on the body, which can affect the accuracy of the CNN models in correctly identifying the  lesions8,9. Third, some 
lesions may have overlapping features with other skin conditions or diseases, which can result in misclassification 

OPEN

1Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box: 400, 
31982 Al-Ahsa, Saudi Arabia. 2Department of Computer Science, Faculty of Science, Minia University, Minya, 
Egypt. 3Present address: Department of Curricula and Teaching Methods, College of Education, King Faisal 
University, P.O. Box: 400, 31982 Al-Ahsa, Saudi Arabia. 4Faculty of Specific Education, Minia University, 
Minya, Egypt. 5Computer Science Unit, Deraya University, New Minya, Egypt. *email: eheliwa@
kfu.edu.sa; entesar.eliwa@mu.edu.eg; aalkoshiry@kfu.edu.sa; al_koshiry@mu.edu.eg; tarek@mu.edu.eg; 
tarek@deraya.edu.eg; heba.mamdouh@mu.edu.eg

http://orcid.org/0000-0003-1785-1058
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-41545-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14495  | https://doi.org/10.1038/s41598-023-41545-z

www.nature.com/scientificreports/

or confusion by the CNN models. Fourth, the CNN models may require significant computational resources and 
expertise to train and optimize, which can limit their accessibility and usability for researchers and clinicians 
with limited resources or expertise in machine learning. Lastly, the CNN models may require further validation 
and testing on larger and more diverse datasets to ensure their reliability, generalizability, and robustness in 
real-world clinical  settings10.

Aim. The primary aim of this study is to devise a precise and dependable algorithm for the automated clas-
sification of monkeypox skin lesions using CNNs and GWO optimization. The successful classification of mon-
keypox skin lesions can aid in the early detection, diagnosis, and treatment of the disease, ultimately resulting in 
improved patient outcomes.

Objectives. The objectives of this study are to propose a novel approach for classifying monkeypox skin 
lesions using CNNs and to develop a reliable and accurate model for this purpose. The study aims to reduce 
the burden of manual diagnosis of monkeypox skin lesions, which can be time-consuming and prone to errors. 
It also seeks to provide a cost-effective and accessible alternative to traditional diagnostic methods that often 
require specialized training and equipment. By enabling faster and more  accurate diagnosis, the proposed 
approach could improve the early detection and treatment of monkeypox. The study compares the performance 
of the CNN model with and without the GWO optimizer for monkeypox classification and demonstrates the 
effectiveness of  GWO optimization  in improving the performance of CNN models for similar classification 
tasks. The proposed approach using CNNs and GWO optimization significantly improves the accuracy of monk-
eypox skin lesion classification. It has potential benefits for improving the accuracy and efficiency of monkeypox 
diagnosis and surveillance, enabling faster and more accurate diagnosis of monkeypox skin lesions, potentially 
leading to earlier detection and better patient outcomes. The study’s findings could have crucial public health 
implications for controlling and preventing monkeypox outbreaks.

The main contribution of this paper can be summarized as follows:

• Proposal of a novel CNN-based approach for classifying monkeypox skin lesions.
• Development of an accurate CNN model for monkeypox skin lesion classification.
• Reduction of the burden of manual monkeypox diagnosis which can be time-consuming and error-prone.
• Provision of a cost-effective and accessible alternative to traditional monkeypox diagnostic methods.
• Improvement of early monkeypox detection and treatment by enabling faster and more accurate diagnosis.
• Evaluation of the performance of the approach on a test set using metrics such as accuracy, precision, recall, 

and F1-score.
• Comparison of the performance of the CNN model with and without the GWO optimizer for monkeypox 

classification.
• Demonstration of the effectiveness of GWO optimization for improving CNN models for such classification 

tasks.
• Finding that the proposed CNN and GWO approach can significantly improve monkeypox skin lesion clas-

sification accuracy.
• Highlighting the potential benefits of the proposed approach for improving monkeypox diagnosis and sur-

veillance accuracy and efficiency.
• Enabling faster and more accurate diagnosis of monkeypox skin lesions, potentially leading to earlier detec-

tion and better patient outcomes.
• Crucial public health implications for controlling and preventing monkeypox outbreaks.

The organization of the paper includes the related work in “Related work”. The preliminaries and method-
ologies of the proposed monkeypox skin lesions based on the CNN approach is in “Preliminaries” and “Meth-
odology”. The experimental results and discussion are investigated in “Experimental results and analysis” and 
“Discussion”. The future direction and conclusions are demonstrated in “Future direction” and “Conclusion”.

Related work
The world has been hit hard by a multinational monkeypox outbreak, which has come at a time when the world is 
still reeling from the COVID-19 pandemic. By the end of June 2022, there was a sudden and significant increase 
in the number of non-endemic human monkeypox cases, with over 4900 instances reported across the Western 
Hemisphere. The virus has spread from its initial exposure in Africa to human-to-human transmission within 
each affected country. Virologists have identified two distinct variants of the monkeypox virus—the Central 
Africa clade and the West Africa clade. As of now, there is no proper treatment available for the monkeypox 
 virus11,12. While the mortality rates for monkeypox are generally  low13, early detection is crucial for implement-
ing effective containment measures such as patient isolation and contact tracing to prevent its spread. Clinical 
identification of monkeypox can be challenging due to its similarity with other pox viruses. Diagnosis typically 
involves examining skin lesions and evaluating the patient’s exposure history, followed by testing the lesions 
using dermatoscopic images and confirming the diagnosis using polymerase chain reaction (PCR)  testing14.

Physicians can improve their accuracy in diagnosing skin cancer, skin lesions, and psoriasis with the help 
of classification  models9. Deep CNNs have proven to be effective in performing general and highly variable 
tasks across various  categories15,16. Researchers have trained CNNs using large datasets of skin lesion images for 
binary and multiclass classification, achieving performance comparable to or superior to that of board-certified 
specialists and  dermatologists17
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To select optimal parameters for a model, researchers typically perform mathematical modeling and optimi-
zation using an optimization method. Metaheuristic algorithms, including various ensemble techniques, have 
been extensively employed for solving classification problems due to their ability to deal with complex, multi-
dimensional, and ill-behaved optimization problems and provide satisfying results in a reasonable  time18–20.

Various AI models have been proposed for different applications, and combining the attributes of different 
models can create an ensemble prediction model using ensemble  techniques21, 22. Resampling the training set 
is one of the more efficient methods, while others employ different prediction algorithms and adjust predictive 
strategy parameters. To aggregate the predictions, an ensemble of techniques is  utilized23,24.

The Al-Biruni Earth radius (BER) optimization technique has been proposed as a new optimization algorithm 
for solving classification  problems25,26. It’s successful balancing of exploration and exploitation is a significant 
advantage, but it performs worse when more variables are used. To overcome this limitation, the BERSFS algo-
rithm combines the benefits of the BER algorithm with the stochastic fractal search (SFS)  algorithm27, which has 
a simple usage but can experience performance issues with a large number of local optimum solutions.

Doaa Sami et al.14 proposed the use of AI methods to diagnose monkeypox using a digital skin image clas-
sification algorithm. They suggested that artificial neural networks (ANNs) could be particularly effective in 
detecting monkeypox by analyzing and processing skin images. This is because ANNs can learn important 
features from complex data during the training stage, making them ideal for diagnosing skin lesions.

Veysel Harun Sahin et al.28 have developed a mobile system that can automatically detect human monkeypox 
skin lesions. To achieve this goal, they first trained a deep transfer learning-based system using images from the 
MSLD database. In this stage, they retrained various pre-existing networks using the transfer learning approach 
and compared their results. After evaluation, they selected MobileNetv2, which achieved an accuracy of 91.11%, 
as the best-performing network and adapted it into an Android mobile application. The proposed system was 
then compared with other studies that used the same database and was found to produce better results.

Diponkor Bala et al.29 developed an advanced deep learning-based method using a first-ever database called 
"MSID" to detect and classify monkeypox disease early on. They applied an augmentation technique to increase 
the number of images in the dataset and presented a modified DenseNet-201-based deep CNN model called 
"MonkeyNet" for multiclass classification of monkeypox from skin images. The model achieved high accuracy, 
with 93.19% and 98.91% in the multiclass classification of the original and augmented datasets, respectively. The 
proposed model could be implemented in a reliable mobile application to support medical personnel in diagnos-
ing monkeypox disease. The study has the potential to improve knowledge and diagnosis of monkeypox disease, 
and future work could involve expanding the study to include a larger number of clinical data and skin images.

Table 1 shows the detailed results obtained by various Convolutional Neural Networks (CNN) models for a 
specific classification task. The models were compared based on their accuracy, sensitivity, specificity, F1 score, 
training time, and size of model weight file.

Table 2 provides a comparative analysis of the relevant studies of monkeypox detection using deep learning 
methods. The table includes the authors’ names and publication year, the purpose of the study, the proposed 
methodology, key parameters, and the models used in each study. The scores achieved by each study are also 
presented and discussed in detail in the subsequent sections of the paper. The studies included in the table are 
carefully selected to provide a comprehensive overview of the state-of-the-art approaches for detecting mon-
keypox. The comparison highlights the strengths and limitations of each study, and provides insights into the 
effectiveness of different methods and models used for monkeypox detection. The table serves as a useful refer-
ence for researchers and practitioners interested in this area, as it provides a clear understanding of the existing 
approaches and the gaps in knowledge that need to be addressed.

Preliminaries
Convolutional neural network (CNN). CNN36,37 is an advancement of the Multilayer Perceptron (MLP) 
neural network and is specifically designed to process two-dimensional data. Like any neural network, CNN 
has neurons with weights, biases, and activation functions. CNN can learn hierarchical representations of input 
data automatically, which are more robust and expressive than manually engineered features. It is composed of 

Table 1.  Results obtained by CNN  models30.

Models Accuracy Sensitivity Specificity F1 Score Training time Size of model weight file

ResNet-18 98.25% 96.55% 100.00% 98.25% 3 min 32 s 42.7 Megabyte

ResNet-50 96.49% 93.10% 100.00% 96.43% 4 min 33 s 90.0 Megabyte

VGG-16 92.98% 89.66% 96.43% 92.86% 5 min 39 s 512 Megabyte

Densenet-161 96.49% 96.55% 96.43% 96.55% 6 min 52 s 102 Megabyte

EfficientNet B7 94.74% 100.00% 89.29% 95.08% 8 min 27 s 245 Megabyte

EfficientNet V2 96.49% 100.00% 92.86% 96.67% 8 min 57 s 449 Megabyte

GoogLeNet 96.49% 96.55% 96.43% 96.55% 5 min 35 s 512 Megabyte

MobileNet V2 98.25% 96.55% 100.00% 98.25% 3 min 42 s 8.75 Megabyte

MobileNet V3 75.44% 62.07% 89.29% 72.00% 3 min 10 s 5.94 Megabyte

ResNeXt-50 92.98% 100.00% 85.71% 93.55% 5 min 15 s 88.0 Megabyte

ShuffleNet V2 78.95% 65.52% 92.86% 76.00% 3 min 37 s 20.6 Megabyte

ConvNeXt 96.49% 100.00% 92.86% 96.67% 23 min 25 s 748 Megabyte
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multiple layers of neurons, including convolutional layers, activation functions, pooling layers, and fully con-
nected layers. In the convolutional layer, a set of filters or kernels is applied to the input data to generate feature 
maps that capture various aspects of the input. The activation functions introduce non-linearity to the output 
of each convolutional layer, while the pooling layers down sample the feature maps, reducing their size while 
retaining the most important features. Finally, the fully connected layers utilize the output of the previous lay-
ers to perform the final classification or regression. Figure 1 provides an essential visual representation of the 
building blocks of a CNN. It helps to clarify how the CNN architecture extracts features from input images and 
performs classification through multiple convolutional and pooling layers, as well as fully connected layers.

Grey wolf optimization (GWO). GWO is a nature-inspired metaheuristic algorithm used for solving opti-
mization  problems39. It can be applied to solve optimized problems and achieves excellent  results40,41. It is based 
on the social hierarchy and hunting behavior of gray wolves in the wild. To simulate the leadership hierarchy, 
there are four types of grey wolves which are alpha (α), beta (β), delta (δ), and omega (ω). Those four types can 
be used for simulating the leadership hierarchy. The hunting (optimization) is guided by three wolves (α, β, and 
δ). The ω wolves follow  them42. During the hunting process, it is known that grey wolves surround their prey. 
Mathematically, this is modeled by Eqs. (1) and (2) 40, 41:

where s denotes the current iteration, −→B  and −→K  are coefficient vectors, −→Y  n is the vector of the prey position, 
and represents the vector of the grey wolf position. Equations (3) and (4) can be used to calculate the coefficient 
vectors −→B  and −→K  , respectively.

(1)
−→
F =

∣∣∣
−→
K .

−→
Y n(s)−

−→
Y (s)

∣∣∣,

(2)
−→
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Table 2.  A comparative analysis of the relevant studies of monkeypox detection using deep learning methods.

Author/year Purpose Proposed methodology Key parameters Model

Ali et al.,  202231 Monkeypox skin lesion detection Utilizing deep learning models for 
detecting monkeypox skin lesions F1-score VGG-16, ResNet50, and InceptionV3 

models

Situla and Sahahi,  202232 Monkeypox virus detection Detection of monkeypox virus by 
transfer learning methods Accuracy and F1-score Xception, DenseNet

Ahsan et al.,  202033 Detecting monkeypox disease
Image data collection and imple-
mentation of a deep learning-based 
model in detecting monkeypox 
disease

AUC They propose and evaluate a VGG16 
model with D curve

Sahin et al.,  202228 Human monkeypox classification 
from skin lesion images

Human monkeypox classification 
from skin lesion images with deep 
pre-trained network

Accuracy and F1-score
GoogleNet, EfficientNetb0, Nasnet-
Mobile, ShuffleNet, MobileNetv2 
models

Hossain et al.,  202234 Lyme disease from skin lesion 
images

Convolutional neural networks with 
transfer learning to diagnose Lyme 
disease from skin lesion

AUC, sensitivity, accuracy and 
specificity ResNet50

Philippe et al.,  201935 Automated detection of erythema 
migrans

Automated detection of erythema 
migrans and other confounding skin 
lesions via deep learning

AUC and accuracy Resnet50

Proposed method Automated classification of monkey-
pox skin lesions

Automated classification of monk-
eypox skin lesions using CNNs and 
GWO optimization

Accuracy
Precision
Recall
F1 Score
AUC Score

CNNs and GWO

Figure 1.  The basic CNN  architecture38.
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where components of b are gradually reduced from 2 to 0 during the iterations, while  l1, and  l2 are vectors with 
random values within the range of 0 to 1.

To simulate the hunting process of grey wolves, it is assumed that α (the most promising candidate solution), 
δ, and β have greater knowledge about the possible location of prey. Therefore, the three best solutions obtained 
so far are saved, and other search agents (including ω) are required to adjust their positions based on the positions 
of the best search agents. Equations (5), (6), and (7) are utilized to update the positions of the grey  wolves4, 5:

Motivation and problem formulation. In this research, identifying the hyper-parameters of CNN is 
defined as an optimization problem; in which the parameters are represented by a list of real numbers. The 
objective is to optimize the hyper-parameters using  GWO43 and then use them for monkeypox classification to 
achieve more classification accuracy. The objective function is defined as follows

The architecture of CNN is defined by Eq. (8) which takes input vectors, −→P ,
−→
WI ,

−→
TRj , where −→P  , represents 

the hyper-parameter vector of k dimension, −→WI represents the weight vector of CNN,  TRj is some data selected 
from training data. The output of this function is the accuracy of the model. The objective function, defined by 
Eq. (9), seeks to maximize the accuracy of CNN for the given hyper-parameters. The parameter jmaximum , is set 
by the user to control the number of iterations required by CNN for hyperparameter optimization. A larger value 
of   jmaximum will result in longer optimization times, so it is important for the user to set this value carefully to 
balance optimization time and cost-effectiveness.

Methodology
This section presents a discussion on the Monkeypox prediction model, which is composed of four phases: (1) pre-
processing of the Monkeypox data, (2) feature selection to identify the most significant symptoms that can enhance 
the accuracy of Monkeypox diagnosis, (3) Monkeypox prediction using the CNN model, and (4) optimization 
of the CNN hyperparameters with the GWO algorithm. Figure 2 depicts the four phases of the proposed model.

Monkeypox dataset description. This section presents an overview of the Monkeypox dataset used in 
this study. The dataset captures the clinical features of monkeypox infection in humans during the 2022 out-
break in a central London center. The dataset is publicly available on Kaggle at https:// www. kaggle. com/ datas ets/ 
muham mad4h med/ monke ypox- patie nts- datas et and comprises 25,000 instances with 11 features and a target 
variable indicating the presence or absence of monkeypox. The features include Fever, Swollen Lymph Nodes, 
Muscle Aches and Pain, Rectal Pain, Sore Throat, Penile Oedema, Oral Lesions, Solitary Lesion, Swollen Tonsils, 
HIV Infection, and Sexually Transmitted Infection. The description of each column is as  follows44:

• Fever: This column represents whether or not the patient has had a fever at some point during their illness. 
This symptom indicates that the patient body temperature higher than normal.

• Swollen Lymph Nodes: This column represents whether or not the patient has experienced swollen lymph 
nodes (small, bean-shaped structures in the body that help fight infections) during their illness.

• Muscle Aches and Pain: This column represents whether or not the patient has experienced muscle aches 
and pain during their illness. These symptoms are often associated with viral infections like monkeypox.

• Rectal Pain: This column may indicate whether the patient is experiencing pain in the rectal area, which 
could be a symptom of various conditions such as hemorrhoids, anal fissures, or proctitis.

• Sore Throat: This column may indicate whether the patient is experiencing a sore throat, which could be a 
symptom of various conditions such as tonsillitis, strep throat, or pharyngitis.

• Penile Oedema: This column may indicate whether the patient has swelling in the penis, which could be a 
symptom of various conditions such as priapism or balanitis.

• Oral Lesions: This column may indicate whether the patient has any lesions or sores in the mouth, which 
could be a symptom of various conditions such as oral thrush or herpes simplex virus infection.

• Solitary Lesion: This column may indicate whether the patient has a single lesion or sore, which could be a 
symptom of various conditions such as a cyst, abscess, or skin cancer.

• Swollen Tonsils: This column may indicate whether the patient has enlarged or swollen tonsils, which could 
be a symptom of various conditions such as tonsillitis or infectious mononucleosis.

• HIV Infection: This column may indicate whether the patient has been diagnosed with human immunode-
ficiency virus (HIV) infection, which is a viral infection that attacks the immune system.
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• Sexually Transmitted Infection: This column may indicate whether the patient has been diagnosed with 
any sexually transmitted infections (STIs), which are infections spread through sexual contact.

• MonkeyPox: This column may indicate whether the patient has been diagnosed with monkeypox, which is 
a rare viral disease that can cause skin lesions and other symptoms similar to those of smallpox.

The purpose of creating this dataset was to explore the correlations between different factors and the occur-
rence of monkeypox, as well as to develop a predictive model for diagnosing monkeypox based on these factors. 
A sample of the Monkeypox dataset is presented in Table 3, and the distribution of features for each Monkeypox 
class is depicted in Fig. 3.

Figure 3 portrays a clear and distinct separation between the classes of the features, highlighting the pivotal role 
of features in predicting the target class accurately. This finding strengthens the suitability of the selected features 
for monkeypox prediction. The observed separation between the feature classes further confirms that the chosen 
features are essential and informative for the classification of monkeypox. Moreover, the monkeypox dataset exhibits 
a notable absence of outliers, which is highly desirable in statistical analysis and modeling. Outliers can significantly 
impact the results and lead to erroneous conclusions, making their absence a crucial advantage in this study. This 
attribute ensures that the analysis and modeling process is not unduly influenced by extreme values that could skew 
the results and affect the accuracy of the predictions. However, it is important to note that the dataset is not normally 
distributed, which can pose potential challenges in certain types of analyses. Non-normality can affect the validity 
of statistical tests and lead to biased results, making it necessary to address this issue in the data analysis process.

To overcome this challenge, the next subsection of the study outlines the specific steps taken to address 
non-normality in the dataset and ensure appropriate handling and analysis of the data. These steps include data 
transformation and the use of appropriate balance datasets technique that are robust to non-normality, ensuring 
the reliability and accuracy of the study findings.

The pre‑processing of the monkeypox dataset. Cleaning and preprocessing data is crucial in the classifica-
tion process as it helps to eliminate irrelevant information and noise from the dataset, thereby enhancing the accuracy 
and efficiency of the classification model. In the case of the Monkeypox dataset, missing values are removed during the 

Figure 2.  Proposed monkeypox prediction using GWO-based hyperparameter optimized CNN model.
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data cleaning process. However, the dataset is not properly distributed as illustrated in Fig. 4. To balance the data, one 
of the widely used techniques is  SMOTEEN45. This technique combines SMOTE (Synthetic Minority Over-sampling 
Technique) and ENN (Edited Nearest Neighbors) to create a balanced dataset that is less prone to noise.

Feature selection. After preprocessing the monkeypox dataset by removing null values and balancing the 
data using the SMOTEEN algorithm, the selection of most important features is a critical step in developing pre-
diction models as it directly affects the performance of the  models46. Correlation analysis is an effective method to 
identify the dependence among the features of a dataset. By identifying which variables are strongly correlated with 
the target variable, it is possible to select the most important features and reduce the number of variables included 
in the model. This, in turn, can improve the model’s accuracy and reduce overfitting. A correlation matrix is a tool 
used to visualize the correlation coefficients between pairs of variables in a dataset. The heatmap in Fig. 5 shows 
the correlation matrix for the monkeypox dataset. Correlation coefficients range from − 1 to + 1 and indicate the 
strength and direction of the relationship between two variables. A value of + 1 indicates a perfect positive correla-
tion, -1 indicates a perfect negative correlation, and 0 indicates no correlation between the variables.

Monkeypox prediction using CNN. Inspired by the interesting features of deep networks, in this phase, 
the CNN model is utilized for monkeypox prediction. after preprocessing the monkeypox dataset and detecting 
the most frequent features. The CNN architecture is shown in Fig. 6, which consists of an input layer that is A 
1D convolutional layer with kernel size of 2, and ReLU activation function, a hidden layer that is a dense layer 
with ReLU activation function, max pooling layer that is a pooling layer with default pool size of 2, flatten layer 
that is a layer to flatten the output from the previous layer, and output layer that is a dense layer with 1 neuron 
and sigmoid activation function.

In this study, alternative Convolutional Neural Network (CNN) architectures were evaluated. The selection 
of the specific CNN layers employed in the defined architecture was based on the characteristics of the dataset 
utilized in the experiment. The distinct CNN architectures were optimized through the utilization of performance 
metrics, including accuracy, loss, and validation results.

To ensure that the system is not underfitted or overfitted, we employed various techniques during the training 
and evaluation stages of the model. To prevent underfitting, we ensured that the model was complex enough to 
capture the underlying patterns in the data. This was achieved by selecting an appropriate model architecture and 

Table 3.  A sample of the Monkeypox dataset.

Fever
Swollen 
lymph nodes

Muscle aches 
and pain Rectal pain Sore throat

Penile 
oedema Oral lesions

Solitary 
lesion

Swollen 
tonsils

HIV 
infection

Sexually 
transmitted 
infection MonkeyPox

0 0 0 0 1 1 1 0 1 0 0 0

1 0 0 1 0 1 1 0 0 1 0 1

1 0 0 0 1 1 0 0 0 1 0 1

0 0 0 1 0 0 0 1 1 1 0 1

0 1 0 1 1 1 0 0 1 1 0 1

0 1 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 1 0 1

Figure 3.  The distribution of the features with each monkeypox class.
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hyperparameters. We also augmented the dataset with additional samples and performed data preprocessing to 
ensure that the data was representative of the problem domain.

To prevent overfitting, we used techniques such as early stopping and regularization during the training stage. 
Early stopping was employed to stop the training process once the validation error no longer improves, thereby 
preventing the model from memorizing the training data. Regularization was also used to reduce the complexity 
of the model and prevent it from overfitting to the training data. Additionally, we evaluated the performance of 
the model on a separate test set to ensure that it generalized well to unseen data. If the model performed well on 
the test set, it was an indication that it was not overfitted to the training data. A balance between model com-
plexity and generalization performance was sought to ensure that the system was not underfitted or overfitted.

Hyperparameters optimization of CNN using the GWO algorithm. After determining the CNN 
model that we will use in our design, the scores were observed by changing the hyperparameters of the selected 
model. Especially optimal parameters have a direct impact on the accuracy of monkeypox detection as the deep 
learning architecture is represented by parameterized functions. To find the optimal values for various hyperpa-
rameters such as learning rate, batch size, number of layers, and filter size, the GWO algorithm has been applied 
to various optimization problems, including parameter tuning for CNNs. The GWO optimization algorithm can 
be utilized for CNN parameter tuning by defining the search space for each hyperparameter and searching for 
the optimal set of hyperparameters. In this approach, the hyperparameters are considered decision variables, 

Figure 4.  Class distribution.

Figure 5.  The heatmap of the Monkeypox dataset.
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and the objective function is the classification accuracy, which is the performance metric of  CNN47. The GWO 
algorithm commences by initializing a population of grey wolves, each of which represents a potential  solution48. 
The CNN is trained on a training dataset and its performance is evaluated on a validation dataset to determine 
the efficacy of each solution. The position of each grey wolf is then updated based on the performance of each 
solution using a set of formulas that simulate the social behavior of grey wolves in nature. This iterative process 
continues until a stopping criterion is met, such as a maximum number of iterations or a minimal improvement 
in the performance metric. The best solution identified by the GWO algorithm corresponds to the optimal set 
of hyperparameters for the CNN. Algorithm 1 represents the pseudocode of the proposed monkeypox predic-
tion using a GWO-based hyperparameter-optimized CNN algorithm. Figure 7 represents the flowchart of the 
proposed monkeypox prediction using a GWO-based hyperparameter-optimized CNN algorithm.
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Monkeypox model evaluation. Following the completion of the training process of our model, the model 
must be verified and tested. The performance Monkeypox prediction model is validated using known perfor-
mance metrics such as accuracy, recall, precision, F1-score49, the Categorical cross entropy loss (loss) value, and 
the Area Under the Curve (AUC)  score50,51 as in Eqs. (6, 10, 11, 12, 13 and 14) respectively.

where, TP, TN, FN, and FP are truly positive, true Negative, False Negative, and False Positive numbers respec-
tively. n is the number of classes, ẑk is the model predicted value for kth class, zk. is the corresponding target value.

Area Under the Curve (AUC) is a crucial metric used in classification tasks, representing the area under the 
Receiver Operating Characteristic (ROC) curve. A value close to 1.00 implies good classification performance, 
while a score greater than 0.50 is considered acceptable for the model.

Ethical statement. This article does not contain any studies with human participants or animals per-
formed by any of the authors.

Experimental results and analysis
In this section, we have conducted experiments to assess the performance of the monkeypox prediction model. 
As mentioned before, to construct the prediction model the monkeypox patient’s dataset that describes the 
clinical features of monkeypox infection in humans in London. We conducted our experiments on with 3 GHz 
AMD Ryzen 7 computer with 16 GB main memory and a 64-bit Windows 10 operating system. The experiment 
is carried out using the Python programming language.

The effectiveness of a deep learning model is heavily reliant on the quality of data and the methodology 
employed in utilizing the  data52. Consequently, evaluating the impact of data preprocessing on the performance 
of machine learning models is crucial. To enhance the classifier’s performance, we began by eliminating the 
missing values from the Monkeypox dataset. We then assessed the distribution of the entire dataset to verify 
the class distribution. Following that, we investigated how the selection of the most critical features influenced 
classification performance. Finally, we utilized the GWO algorithm to optimize the CNN hyperparameters.

(10)Accuracy =
TP+ TN

TP+ FP+ TN+ FN
,

(11)Recall =
TP

TP+ FN
,

(12)Precision =
TP

TP+ FP
,

(13)F1− score = 2 ∗
(Precision× Recall)

(Precision+ Recall)
,

(14)Loss =
∑n

k=0
zk.logẑkloss = −

∑n

k=0
zk.logẑk,

Figure 6.  The proposed CNN architecture.
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The proposed method for monkeypox prediction was analyzed to obtain a conclusive assessment of the 
trained model. This evaluation process was performed both before and after the application of data preprocess-
ing, feature selection, and hyperparameter optimization using GWO.

Experiment I. The CNN is run in the first experiment without data preprocessing, feature selection, and 
hyperparameter optimization using GWO. Table 4 shows the training performance of the model. The testing 
results are 68.826%, 70.569%, 87.880%, 78.279%, and 0. 61.475% for Accuracy, Precision, Recall, F1 Score, and 
AUC Score, respectively. Accuracy and loss comparisons for the testing and training datasets of monkeypox 
patients are shown in Fig. 8.

The ROC curve obtained after the prediction with the CNN model on the test dataset is shown in Fig. 9. It 
can be seen from the ROC curve that the AUC score of 0.61 suggests that the model is performing better than 
random guessing, but its performance may not be particularly strong.

Experiment II. In the second experiment, the CNN was used after preprocessing the monkeypox dataset 
by removing null values and balancing the data using the SMOTEEN algorithm, then identifying the top most 
frequent features in the dataset and using the GWO algorithm for CNN hyperparameter optimization.

To identify the most significant features that affected the Monkeypox diagnoses decision. The proposed model 
detected the top most frequent features in the dataset, which are HIV Infection Rectal Pain, Fever, Sexually 

Figure 7.  The flowchart of the proposed monkeypox prediction model that utilizes the GWO optimization 
technique to fine-tune the hyperparameters of the CNN.

Table 4.  The performance results for the CNN model on the Monkeypox dataset.

Model

Evaluation metrics

Accuracy Precision Recall F1 score AUC score

CNN 68.826 70.569 87.880 78.279 61.475
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Transmitted Infection, Swollen Lymph Nodes, Sore Throat, Penile Oedema, and Oral Lesions as shown in Figs. 10 
and 11.

After preprocessing the monkeypox dataset and detecting the most frequent features, the CNN model is 
utilized for monkeypox prediction. However, the choice of CNN architecture and hyperparameter settings sig-
nificantly affects accuracy and convergence speed. Manual tuning of these hyperparameters is a time-consuming 
and computationally expensive task. Therefore, an automated approach is required to produce the best CNN 
architecture with minimal human intervention. In this study, we utilized the GWO algorithm to optimize the 
CNN hyperparameters within a predefined search space. The hyperparameters associated with the CNN and their 
ranges used for experiments are shown in Table 5. To investigate the effects of the optimization performance, we 
varied the number of search agents (population size) and a maximum number of iterations.

Table 5 presents the results of using the GWO to optimize the hyperparameters of a CNN for a Monkeypox 
prediction. Three runs of the algorithm were performed with different GWO combinations of population size 
and number of iterations and their corresponding selected CNN parameters and fitness scores.

Table 6 shows the selected hyperparameters of a Convolutional Neural Network (CNN) using three differ-
ent runs of the Grey Wolf Optimizer (GWO) algorithm. The table consists of four columns: GWO parameters, 
Selected CNN parameters, and Fitness Score. In the GWO parameters column, each run of the GWO optimizer 
used different parameters such as population size, learning rate (LR), exploration probability (EP), batch size 
(BS), number of hidden layers (N), and number of neurons in each layer (M). In the Selected CNN parameters 
column, the hyperparameters chosen by GWO for the CNN model are listed. These include LR, EP, BS, N, and 
M, which represent the learning rate, exploration probability, batch size, number of hidden layers, and number of 
neurons in each layer, respectively. Finally, the Fitness Score column shows the performance of the CNN model 

Figure 8.  Accuracy and loss comparisons for the testing and training datasets of the monkeypox patients.

Figure 9.  The ROC curve of the CNN model.
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Figure 10.  Correlation matrix of the most correlated features that affected Monkeypox diagnoses decision.

Figure 11.  Correlation of the most correlated features to the target variable.

Table 5.  Domains of hyperparameters.

Learning rate Number of epochs Batch size Number of filters in the convolutional layer Number of neurons in the dense layer

[0.001, 1.0] [50, 200] [32, 128] [64, 256] [32, 128]

Table 6.  The selected hyperparameters of a CNN using three different runs of GWO optimizer. Where LR 
Learning Rate, EP Epochs, BS Batch Size, N Number of filters in the convolutional layer, M Number of neurons 
in the dense layer.

GWO parameters

Selected CNN parameters

Fitness scoreLR EP BS N M

Run1
Population size = 50

0.001 60 64 85 40 0.94632
No of iterations = 10

Run2
Population size = 60

0.08 60 64 168 32 0.91252
No of iterations = 20

Run3
Population size = 70

0.04 80 50 85 32 0.91948
No of iterations = 30



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14495  | https://doi.org/10.1038/s41598-023-41545-z

www.nature.com/scientificreports/

in terms of its accuracy. The fitness score is a measure of how well the CNN was able to classify the input data, 
with higher scores indicating better performance.

Based on the results in Table 4, it can be observed that the highest fitness value of 0.94632 was obtained 
was achieved with a population size of 50, learning rate of 0.001, 60 epochs, batch size of 64, 85 filters in the 
conventional layer, and 40 neurons in the dense layer with 10 iterations. As we can see from the table, each run 
of the GWO optimizer resulted in different sets of hyperparameters being selected for the CNN model, which 
in turn resulted in different fitness scores. This indicates that the performance of the CNN is highly dependent 
on the hyperparameters selected, and that tuning these hyperparameters using an optimizer such as GWO can 
lead to improved accuracy.

The evaluation metrics for various CNN models with different hyperparameters optimized by the GWO 
algorithm are presented in Table 7. These hyperparameters were optimized using different combinations of 

Table 7.  The performance of the CNN model optimized using the GWO algorithm with different 
combinations of population size and number of iterations.

GWO with different combinations of parameters

Evaluation metrics for CNN model

Accuracy Precision Recall F1 Score AUC Score

Run 1 95.312 95.638 98.145 96.875 92.686

Run 2 93.465 93.806 97.722 95.724 89.256

Run 3 93.276 93.425 97.914 95.617 88.673

Figure 12.  The CNN accuracy comparison for the testing and training datasets of the monkeypox patients after 
applying GWO. (a) The CNN model trained with parameters resulting from GWO with a population size of 50 
and 10 iterations. (b) The CNN model trained with parameters resulting from GWO with a population size of 60 
and 20 iterations. (c) The CNN model trained with parameters resulting from GWO with a population size of 70 
and 30 iterations.
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population size and number of iterations. The performance of the models was evaluated based on several metrics, 
including accuracy, precision, recall, F1 score, and AUC score, as described in Sect. 5.6.

From the results in Table 7, it can be noticed that The CNN model trained with parameters resulting from 
GWO with a population size of 50 and 10 iterations achieved the highest accuracy (95.312%). This model also 
has the highest precision (95.638%) and recall (98.145%) values, indicating that it performed well in correctly 
identifying positive cases and minimizing false positives. Additionally, the model achieved a high F1 score of 
96.875% and an AUC score of 92.686%. The study findings suggest that the hyperparameters selected by GWO, 
namely population size, learning rate, and number of iterations, can considerably influence the CNN’s perfor-
mance. Furthermore, it is noteworthy that the population size and number of iterations used in the optimization 
process can also affect the final outcomes, as seen by the varying fitness scores achieved in each run. Interestingly, 
the research also reveals that increasing the population size and number of iterations did not necessarily result 
in improved fitness values.

A comparison between the CNN model accuracy and loss for the testing and training datasets of monkeypox 
patients is shown in Figs. 12 and 13. The CNN model was applied with different hyperparameters that were 
optimized using the GWO algorithm with different combinations of population size and number of iterations.

Figure 14 shows the ROC curve generated by the CNN model using parameters optimized with the GWO 
algorithm on the test dataset. The GWO algorithm was used with various combinations of population size and 
number of iterations. The ROC curve with an AUC score of 0.93, corresponds to the CNN model trained using 
the GWO optimizer with a population size of 50 and 10 iterations. This result suggests that the model possesses 
high discriminatory capability and can effectively differentiate between positive and negative classes. Additionally, 
the curve’s proximity to the top-left corner of the plot signifies a high true positive rate and a low false positive 

Figure 13.  The CNN loss comparison for the testing and training datasets of the monkeypox patients after 
applying GWO. (a) The CNN model trained with parameters resulting from GWO with a population size of 50 
and 10 iterations. (b) The CNN model trained with parameters resulting from GWO with a population size of 60 
and 20 iterations. (c) The CNN model trained with parameters resulting from GWO with a population size of 70 
and 30 iterations.



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14495  | https://doi.org/10.1038/s41598-023-41545-z

www.nature.com/scientificreports/

Figure 14.  CNN model ROC curve after applying GWO. (a) The CNN model trained with parameters resulting 
from GWO with a population size of 50 and 10 iterations. (b) The CNN model trained with parameters resulting 
from GWO with a population size of 60 and 20 iterations. (c) The CNN model trained with parameters resulting 
from GWO with a population size of 70 and 30 iterations.

Figure 15.  The performance comparison for two models: a CNN model and a CNN model trained with 
parameters resulting from GWO optimizer with a population size of 50 and 10 iterations.



17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14495  | https://doi.org/10.1038/s41598-023-41545-z

www.nature.com/scientificreports/

rate. It can be seen from the ROC curve that the AUC score of 0.61 suggests that the model is performing better 
than random guessing, but its performance may not be particularly strong.

Figure 15 shows the evaluation metrics for two models: a CNN model and a CNN model trained with 
parameters resulting from a GWO optimizer with a population size of 50 and 10 iterations. The CNN model 
was trained with a learning rate of 0.001, 60 epochs, batch size of 64, 85 filters in the conventional layer, and 40 
neurons in the dense layer.

The study results indicate that the CNN model’s performance is lower than the CNN model with GWO 
optimizer. The CNN model has an accuracy of 68.826%, while the CNN model with GWO has an accuracy of 
95.312%. The precision, recall, F1 score, and AUC score of the CNN model with GWO are also significantly 
higher than the CNN model. The findings demonstrate that incorporating the GWO optimizer to the CNN 
model has substantially improved its performance in terms of all evaluation metrics. The accuracy, precision, 
recall, F1 score, and AUC score have all increased when utilizing the GWO-optimized model compared to the 
non-optimized model. Specifically, the AUC score has improved from 61.475 to 92.686, indicating a significant 
improvement in the model’s ability to distinguish between positive and negative classes. The enhancement 
in other metrics such as recall, precision, and F1 score suggests that the GWO optimizer has resulted in bet-
ter performance in accurately identifying and classifying positive instances. Overall, the findings demonstrate 
that GWO optimization can be a valuable approach to improving the performance of CNN models for monk-
eypox classification tasks.

Discussion
While the proposed approach of utilizing CNNs to classify monkeypox skin lesions has shown promise, several 
challenges need to be addressed:

 1. Data availability: The availability of large and diverse datasets of monkeypox skin lesions is limited, which 
can affect the CNN model’s performance.

 2. Data quality: The quality of the available monkeypox skin lesion may vary, which can affect the CNN 
model’s accuracy.

 3. Dataset bias: The dataset used to train the CNN model may not be representative of the overall population, 
which can lead to biased results.

 4. Overfitting: Overfitting can occur when the CNN model learns the training data too well, resulting in poor 
generalization to new and unseen data.

 5. Interpretability: CNN models are often considered to be black boxes, which can make it challenging to 
interpret the model’s decisions.

 6. Transfer learning: The effectiveness of transfer learning, which is used to fine-tune the pre-
trained CNN models, can vary depending on the similarity between the source and target datasets.

 7. Optimization: The optimization of the CNN model, such as selecting the best hyperparameters and opti-
mization algorithm, can be time-consuming and require significant computational resources.

 8. Error analysis: The identification and analysis of errors made by the CNN model can be challenging, mak-
ing it difficult to identify areas for improvement.

 9. Integration with healthcare systems: The integration of the proposed approach with existing healthcare 
systems and workflows may require significant changes and investments.

 10. Cost: The cost of implementing the proposed approach, including the necessary technology and infra-
structure, may be prohibitive in some settings.

 11. Performance in real-world settings: The performance of the proposed approach in real-world settings may 
differ from the results obtained in the study due to various factors such as patient variability and environ-
mental conditions.

 12. Confounding factors: Other factors, such as underlying medical conditions or medication usage, may affect 
the appearance of monkeypox skin lesions, which can impact the CNN model’s accuracy.

 13. Limited generalizability: The proposed approach’s generalizability to other skin diseases or medical condi-
tions that require visual inspection and diagnosis may be limited.

It is possible that the CNN-based approach used in the monkeypox study could be adapted to other types of 
data, such as clinical and images data, to improve disease diagnosis and surveillance. For example, the approach 
could be used to analyze patterns in lung function tests or blood biomarkers to help diagnose and predict the 
progression of lung  diseases53 such as COPD or pulmonary fibrosis, as discussed in the article on screening lung 
diseases. Similarly, the approach could be applied to clinical and images data from chest X-ray images to improve 
the accuracy of machine learning-based diagnosis of COVID-1954, as discussed in the article on a machine 
learning-based framework for COVID-19 diagnosis. However, further research would be needed to determine 
the feasibility and effectiveness of such applications.

Future direction
The potential for utilizing CNNs to classify monkeypox skin lesions is vast, and several avenues for future work 
can be explored. Some of these include:

• Improved data collection and annotation: In this study, we utilized a small clinical dataset with limited 
annotations. Future work can involve larger datasets with better annotations, which can help in improving 
the accuracy of the model.
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• Transfer learning: Transfer learning is a powerful technique that allows the use of pre-trained models for 
new tasks with minimal training data. Future work can involve the use of transfer learning to improve the 
accuracy of the model.

• Multi-class classification: In this study, we focused on binary classification (positive or negative for monkey-
pox). Future work can involve multi-class classification to classify different types of skin lesions and diseases.

• Integration with clinical decision-making: The integration of AI models with clinical decision-making can 
have significant benefits for patient care. Future work can involve the integration of the monkeypox skin 
lesion classification model with clinical decision-making tools to aid in diagnosis and treatment.

• Generalization of other skin diseases: The use of CNNs can be extended to classify other skin diseases. Future 
work can involve the development of models for other skin diseases, such as chickenpox, herpes, and shingles.

• Integration with telemedicine: The use of AI models can be integrated with telemedicine platforms to improve 
access to healthcare, especially in areas with limited access to dermatologists. Future work can involve the 
development of telemedicine platforms that can integrate with the monkeypox skin lesion classification 
model.

• Explainability and interpretability: AI models can sometimes be black boxes, making it challenging to under-
stand the rationale behind the decisions they make. Future work can involve the development of explainable 
AI models that can provide insights into the decision-making process of the model.

Conclusion
Monkeypox is a viral disease characterized by skin lesions and rashes, often challenging to diagnose accurately 
through visual inspection. This study proposes the use of CNNs to classify monkeypox skin lesions. The approach 
was evaluated on a test set using accuracy, precision, recall, F1-score, and AUC score achieving 95.3% accuracy, 
surpassing other methods. Furthermore, the CNN model was optimized using the GWO algorithm, resulting in a 
significant improvement in accuracy, precision, recall, F1-score, and AUC score compared to the non-optimized 
model. The GWO optimization can enhance the performance of CNN models on similar tasks. This approach 
has the potential to improve monkeypox diagnosis and surveillance, particularly in resource-limited settings, 
with crucial public health implications. In summary, the study highlights that CNNs and GWO optimization can 
significantly improve the accuracy of monkeypox skin lesion classification and enhance monkeypox diagnosis 
and control.

Data availability
The data that support the findings of this study are available at https:// www. kaggle. com/ datas ets/ muham mad4h 
med/ monke ypox- patie nts- datas et.
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