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Lifestyle patterns influence 
the composition of the gut 
microbiome in a healthy Chinese 
population
Yi Ren 1, Jiawei Wu 1, Yilin Wang 1, Lanying Zhang 2, Jing Ren 1, Zhiming Zhang 1, 
Binghan Chen 1, Kejian Zhang 1, Baoli Zhu 1, Wei Liu 3*, Sabrina Li 1,2* & Xu Li 1*

High-throughput sequencing allows for the comprehensive analysis of the human intestinal 
microbiota. However, extensive association analyses between the microbiome and lifestyle 
differences in the Chinese population are limited. Here, we carried out an independent cohort study—
the Chinese Healthy Gut Project (n = 483)—where correlations between the gut microbiota and dietary 
and lifestyle variables in a healthy Chinese population are defined. We collected both questionnaire 
data, including basic information and lifestyle and dietary variables, and fecal stools from the enrolled 
volunteers. We then performed 16S rRNA sequencing on the microbial DNA isolated from the stools 
to assess the composition of the intestinal microbiota. We found that Prevotella and Bacteroides were 
the most abundant genera in the healthy Chinese gut microbiome. Additionally, 9 out of 29 clinical 
and questionnaire-based phenotype covariates were found to be associated with the variation in 
the composition of the gut microbiota. Among these lifestyle phenotypes, sleep procrastination, 
negative mood, and drinking habits had the largest effect size. Additionally, an appreciable effect of 
urbanization was observed, resulting in decreased intra-individual diversity, increased inter-individual 
diversity, and an increased abundance of the Bacteroides enterotype. The results of this study provide 
a foundation for assessing the healthy Chinese gut microbiota community structure at baseline in a 
healthy Chinese population. Furthermore, this study also provides insights into understanding how 
distinctive living habits influence the relationships between the Chinese gut microbiome and systemic 
health state.

The human gastrointestinal tract is home to a diverse and abundant microbial community. More than 100 trillion 
microorganisms have been reported to reside within the human  intestine1, with more than 2000 different  species2. 
This intestinal microbial community contains symbiotic, commensal, and pathogenic  microorganisms3, and the 
number of the microorganisms in the human colon can reach  1012–1014, rendering it one of the most densely 
populated microbial  habitats4, 5. The intestinal microbiome encodes more than three million genes and produces 
thousands of metabolites, and as such, is an important factor regulating human  health6. Previous studies have 
highlighted the diverse roles the gut microbiome plays in host health, including digestion, immune homeostasis, 
colonization resistance against pathogens, and the production of vitamins and short-chain fatty acids. Disrup-
tions in the composition and function of the gut microbiome have a direct impact on human diseases, such as 
inflammatory bowel  disease7, 8, type II  diabetes9, and cardiovascular  diseases10. Additionally, several studies have 
reported that restoring the homeostatic balance to the gut flora may prevent specific diseases by changing the 
composition and structure of the gut microbiome (reviewed in)6, 11, 12.

Previous studies have not only shown that thousands of different microbes may collectively comprise the 
human gut microbiota but also confirm a high degree of variation in the composition of the intestinal flora 
between  individuals13–15. Despite this inter-individual variation in microbial taxa, the abundance of microbial 
genes responsible for basic metabolic and housekeeping functions are fairly similar between  individuals13, 15. 
Numerous studies regarding the composition of the intestinal microbiome have demonstrated that several fac-
tors, including geographical location, host genetics, diet, and lifestyle, influence differences across individuals 
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in terms of the diversity, structure, and composition of the gut  microbiota16–22. Taken together, these studies 
suggest that the human gut microbiome is influenced by individual lifestyle variables, and understanding the 
relationships between the gut microbiome and various lifestyles and dietary patterns prior to the onset of disease 
may help guide disease treatment.

The identification of the distribution of bacterial taxa in populations with different genetic backgrounds and 
lifestyle patterns may be useful in understanding mechanisms linking lifestyle patterns with overall health or 
the risk of  disease23–25. Reproducible patterns of microbial variation—bacterial taxa that can be separated into 
clusters termed “enterotypes”26—have been observed in the adult human  gut26–32. To date, most population-
level studies have described differences and associations in the gut microbiome from individuals with specific 
diseases or healthy control cohorts in distinct geographic locations, such as Asia, Europe, and the United States 
of  America18, 20, 21, 26, 33–37. Although a few studies have investigated the gut microbiota characteristics of China, 
they do not adequately reflect the gut microbiota of China as a whole, as these studies had limited participants, 
focused on specific regions, or lacked sufficient lifestyle  data38–41. Thus, large-scale phenotyping studies that inte-
grate gut microbiome profiles with comprehensive lifestyle phenotypes in the Chinese population remain scarce 
and are of great significance for a detailed understanding of the characteristics of the Chinese gut microbiome 
under different sub-health states.

The aim of this study was to compare the gut microbiota in healthy (no apparent diseases) Chinese volunteers 
(n = 483) and to correlate differences in the gut microbiota with various lifestyle variables. We performed 16S 
rRNA sequencing on stools collected from the enrolled volunteers and correlated the results with the demo-
graphic, diet, and lifestyle information provided by the volunteers via a questionnaire. The results of this study 
provide insights into the intricate interplay between dietary and lifestyle variables and the gut microbiota in a 
healthy Chinese population.

Results
Characteristics and distribution of intestinal flora in healthy people. The data presented in this 
study were collected from 483 healthy Chinese people. All participants completed a questionnaire regarding 
basic demographic and lifestyle data. The information collected from the questionnaire is described in the Mate-
rials and Methods section and is presented in Table 1. Feces were collected from 483 participants, and the gut 
microbiomes were assessed using 16S rRNA sequencing. In total, 483 sequencing samples were obtained. The 
participants spanned 11 ethnic groups, had an average age of 36.96 years, an average body mass index (BMI) of 
22.36, were 65.42% female, and were from 62 residential areas (Table 2).

A total of 2408 Amplicon Sequencing Variants (ASV) were identified from the 483 samples, i.e., 10 phyla, 
15 classes, 34 orders, 61 families, 171 genera. Eighteen genera of bacteria previously reported to be beneficial 
to humans, including Bacteroides (30.38%)42, 43, Prevotella (11.72%)44, and Faecalibacterium (9.72%)45–48, were 
identified, while two genera that may exert a negative influence on humans, including Veillonella (0.15%)49 
and Proteus (0.002%)50, 51, were identified.. When combining the ASV annotation results of all 483 samples, we 
found that both Proteobacteria and Firmicutes comprised the majority of the microbial composition in healthy 
Chinese adults (Fig. 1A).

We then grouped the genera based on their detection rate, defined as the sample size of a certain bacterium/
total sample size. We divided 171 bacterial genera into groups based on their abundance frequency—low-fre-
quency flora (detection rate < 10%), medium-frequency flora (detection rate 10–70%), and high-frequency flora 
(detection rate > 70%). After grouping, we identified a total of 38 high-frequency genera, 66 medium-frequency 
genera, and 67 low-frequency genera. The 16 genera of high-frequency bacteria were detected in over 90% of 
the samples, indicating their status as fundamental intestinal microorganisms within the Chinese population 
(Fig. 1B). Notably, eight of these genera were also found in the core gut microbiota of Guangdong  province93, 
six were among the top 9 most abundant fecal genera in another Chinese  cohort94, five overlapped with the top 
20 fecal genera discovered in the Human Microbiome  Project95, and eight were part of the core microbiota in 
a Chinese cohort comprising 2678 healthy individuals from 28  provinces96. And Bacteroides, Blautia and Fae-
calibacterium were overlapped among our study and the studies above. The 38 high-frequency genera in 483 
samples are shown in Fig. 1C.

Analysis of enterotypes in a healthy Chinese population. Previous studies have demonstrated that 
the gut microbiota of various human populations clusters around three primary driver taxa (enterotypes): Prevo-
tella, Bacteroides, and Ruminococcus26, 27. In order to analyze the enterotypes of healthy Chinese people, we 
performed unsupervised clustering on the sequencing results from the 483 stool samples. The clustering results 
showed that the gut bacteria of healthy Chinese people could be divided into two groups, Prevotella (39.54%, 
n = 135) and Bacteroides (38.12%, n = 348) with a significant different gut microbiota structure (weighted unifrac 
distance, Adonis, Pr(> F) = 0.001; Anosim, p = 0.001); a Ruminococcus enterotype was not found (Fig. 2A,B, Sup-
plementary Fig. 1, Supplementary Table 1). This is consistent with a previous study, which demonstrated that 
only Prevotella and Bacteroides were common enterotypes in Chinese  populations52. Thus, enterotypes with 
Prevotella and Bacteroides as the driving taxa are more common in the Chinese population.

Demographic factors and Bacteria. The variables of demographic factors including gender, age, BMI, 
ethnicity and habitation were associated with the composition and structure of the gut  microbiota89. In this 
study, we performed differential analysis of the gut microbiota in five demographic factors variables: (1) gender, 
(2) age, (3) BMI, (4) ethnicity, and (5) habitation.

Gender was reported as one of the strongest associated factors of gut microbiota  structure89. In this study, 
microbiota in female gut (n = 316) showed a distinct pattern in structure and relative abundance in genus-level 
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Characteristics n (%)

Bowel habits (4)

 Intestinal symptoms

Constipation 58 (12.0)

Hematochezia 2 (0.4)

Abdominal pain 1 (0.2)

Diarrhea 41 (8.5)

Abdominal distension 13 (2.7)

Indigestion 12 (2.3)

Normal 356 (73.7)

 Stool texture/shape

Soft blobs with clear-cut edges 16 (3.3)

Separate hard lumps, like nuts 15 (3.1)

Sausage-shaped but lumpy/like a sausage but with cracks on the surface 42 (8.7)

Watery, no solid pieces, all liquid 1 (0.2)

Sausage-shaped, smooth and soft 265 (54.9)

Fluffy pieces with ragged edges, a mushy stool 144 (29.8)

 Stool color

Black/brown 135 (28.0)

Yellow 347 (71.8)

Blood-stained or red 1 (0.2)

 Stool smell

Stinks often 48 (9.9)

Stinks seldom 188 (38.9)

Normal 247 (51.1)

Allergens and health (4)

 Allergies
No 392 (81.2)

Yes 91 (18.8)

 Take antibiotics
No 443 (91.7)

Yes 40 (8.3)

 Whether to take probiotics
No 370 (76.6)

Yes 113 (23.4)

 Presence of mouth sores or pimples

Seldom 246 (50.9)

Often 64 (13.3)

Occasional 173 (35.8)

Eating habits (5)

 Dietary preference

Balance 319 (66.0)

Meat 107 (22.2)

Vegetables 57 (11.8)

 Drink

White tea 3 (0.6)

Water 237 (49.1)

Juice 24 (5.0)

Dark tea 2 (0.4)

Black tea 21 (4.3)

Green tea 97 (20.1)

Yoghurt 54 (11.2)

Sodas 34 (7.0)

Oolong tea 9 (1.9)

Herb tea 2 (0.4)

 Starch intake

Rice 390 (80.7)

Flour 57 (11.8)

Cereals 30 (6.2)

Corn/sweet potato 6 (1.2)

 The frequency of snacking

Never 117 (24.2)

Often 92 (19.0)

Seldom 274 (56.7)

 Protein intake

Eggs 95 (19.7%)

Beans 47 (9.7)

Milk 68 (14.1)

Meat 273 (56.5)

Other living habits (7)

Continued



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14425  | https://doi.org/10.1038/s41598-023-41532-4

www.nature.com/scientificreports/

Table 1.  Lifestyle patterns collected from the questionnaires of 483 healthy Chinese people (n = 483).

Characteristics n (%)

 Exercise frequency

No 233 (48.2)

Yes 250 (51.8)

Yes—once or twice a week 157 (32.5)

Yes—more than three times a week 93 (19.3)

 State of fatigue

Normal 128 (26.5)

Sometimes 283 (58.6)

Always 72 (14.9)

 Alcohol intake

Never 333 (68.9)

Seldom 127 (26.3)

Often 23 (4.8)

 Smoking

No 387 (80.1)

Seldom 44 (9.1)

Often 52 (10.8)

 Sleep deprivation

No 145 (30.0)

Seldom 207 (42.9)

Often 131 (27.1)

 Mysophobia
No 295 (61.1)

Seldom 188 (38.9)

 Negative emotions
No 286 (59.2)

Yes 197 (40.8)

Table 2.  The characteristics of the study participants (n = 483). BMI body mass index

Characteristics n (%)

Gender

 Female 316 (65.4)

 Male 167 (34.6)

Age

 < 20 17 (3.5)

 20–30 141 (29.2)

 30–40 152 (31.5)

 40–50 97 (20.1)

 50–60 57 (11.8)

 60–70 16 (3.3)

 > 70 3 (0.6)

Ethnicity

 Bai 28 (5.8)

 Bouyei 1 (0.2)

 Korean 2 (0.4)

 Hani 1 (0.2)

 Han 418 (86.5)

 Hui 8 (1.7)

 Lisu 1 (0.2)

 Manchu 5 (1.0)

 Miao 4 (0.8)

 Naxi 1 (0.2)

 Yi 14 (2.9)

Habitation

 North 128 (26.5)

 South 355 (73.5)

BMI

 Underweight 38 (7.9)

 Normal weight 352 (72.9)

 Overweight 93 (19.2)
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Figure 1.  The gut microbiota composition and the high-frequency bacteria of 483 healthy Chinese volunteers. 
(A) GraPhlAn diagram of bacterial genera based on amplicon sequence variants (ASVs annotations). According 
to these annotations, two phyla, Bacteriodota and Firmicutes, accounted for the majority of the microbial 
composition in healthy Chinese volunteers. (B) The 16 genera of bacteria were detected in over 90 percent 
of the samples, with Bacteriodes and Faecalibacterium exhibiting the highest relative abundance. (C) Relative 
abundances of 38 high-frequency genera in 483 stool samples. Similarly, Bacteroides (shown in blue), Prevotella 
(red), and Faecalibacterium (green) combined accounted for nearly 80% of the feces of the healthy Chinese 
people.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14425  | https://doi.org/10.1038/s41598-023-41532-4

www.nature.com/scientificreports/

compared with that in male gut (n = 167). The microbiota richness (Chao 1 index, p < 0.001, q < 0.001, K–W test) 
and evenness (Shannon index, p < 0.001, q < 0.001, K–W test) was significant different between the two gender 
groups, and female was seemed to have higher richness and evenness of gut microiota. As to beta diversity, 
clustering by gender was distinguishable on NMDS analysis (weighted unifrac distance, Adonis, Pr (> F) = 0.001; 
Anosim, p = 0.001). 34 bacteria in genus-level showed a significant different between the two gender groups 
(Fig. 3A,B, Supplementary Table 2). After removing the potential confounding factors, Akkermansia (t-test, 
p < 0.001, q = 0.107; MaAsLin, Coef = -0.851, p < 0.001, q = 0.019), Butyricicoccus (t-test, p = 0.013, q = 0.106; 

Figure 2.  The major enterotypes found in the stool samples from the healthy Chinese population. (A) Non-
metric multidimensional scaling analysis (NMDS) of the sequencing results from 483 stool samples showed that 
the intestinal flora in the healthy population of Chinese could be divided into two groups. (B) Heatmap of the 
intestinal flora with significant difference between the two groups in a healthy Chinese population. As shown, 
Bacteroides (38.12%) and Prevotella (39.54%) were the driving taxa in Group 1 and Group 2, respectively.

Figure 3.  Differences in the microbiota alpha diversity, composition, and bacteria in genus-level between 
male (n = 167) and female (n = 316). (A) Female had higher richness and evenness of gut microiota than male. 
(B) Non-metric multidimensional scaling analysis (NMDS) based on unweighted Unifrac distance matric 
showed that the two gender groups had separated microbita composition. (C) Nine bacteria in genus-level were 
significantly different between the two gender groups.
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MaAsLin, Coef = -0.638, p = 0.004, q = 0.038), Coprobacter (t-test, p = 0.027, q = 0.181; MaAsLin, Coef = − 0.596, 
p = 0.012, q = 0.071) and Colidextribacter (t-test, p < 0.001, q = 0.107; MaAsLin, Coef = − 0.554, p = 0.014, q = 0.073) 
were still significant higher in female, while Fusobacterium (t-test, p = 0.031, q = 0.108; MaAsLin, Coef = 1.060, 
p = 0.004, q = 0.038) and Romboutsia (t-test, p = 0.030, q = 0.181; MaAsLin, Coef = 0.637, p = 0.011, q = 0.068) were 
more abundant in male gut (Fig. 3C).

The gut microbiota tends to stabilize after three years of  age97. In this study, we observed significant differ-
ences in gut microbiota structure among five age groups (< 20, n = 17; 20–30, n = 141; 30–40, n = 152; 40–50, 
n = 97; 50–60, n = 57; > 60, n = 19. Unweighted unifrac distance, Adonis, Pr (> F) = 0.006; Anosim, p = 0.002, Sup-
plementary Table 3), and the higher level of Senegalimassilia was identified between 40 and 50 years old (t-test, 
40–50 vs. > 60, p = 0.012, q = 0.393; 40–50 vs. 50–60, p = 0.020, q = 0.700; 40–50 vs. < 20, p = 0.003, q = 0.090; Sup-
plementary Table 4). When age was considered as continuous variable in our study, five genera had a signifi-
cant decreased trend as the age grew including Bifidobacterium (MaAsLin, Coef = − 0.053, p < 0.001, q = 0.005), 
Erysipelatoclostridium (MaAsLin, Coef = − 0.022, p < 0.001, q = 0.009), Sellimonas (MaAsLin, Coef = − 0.017, 
p = 0.002, q = 0.058), Haemophilus (MaAsLin, Coef = − 0.034, p = 0.005, q = 0.130) and Butyricicoccus (MaAsLin, 
Coef = − 0.023, p = 0.017, q = 0.236) (Supplementary Table 5).

The potential relationship between obesity and intestinal flora has attracted the attention of many research-
ers in recent years. In this study, BMI of each volunteer was calculated and included into normal weight group 
(n = 352), overweight group (n = 93) and underweight group (n = 38) according to relevant  standards98–100. Nine 
genera were observed significantly decreased in underweight group and thirteen were decreased in overweight 
group (Supplementary Table 6), and after removing other confounding factors, Oscillibacter (t-test, p = 0.039, 
q = 0.0.545; MaAsLin, Coef = − 0.128, p < 0.001, q = 0.003) and Holdemanella (t-test, p = 0.016, q = 0.344; MaAsLin, 
Coef = -0.067, p = 0.002, q = 0.017) still decreased significantly as the BMI increased (Supplementary Table 7).

Han ethnic group counted for over 85% in this study, and the gut microbial community structure differed 
between Han (n = 418) and other ethnics groups (n = 65) (Chao1 index, p = 0.048, q = 0.048, K–W test, Fig. 4A; 
weighted unifrac distance, Adonis, Pr (> F) = 0.007, Fig. 4B). After partial out other demographic factors, living 

Figure 4.  Differences in the microbiota alpha diversity, composition, and bacteria in genus-level between Han 
ethnic group (n = 418) and other ethnic groups (n = 65). (A) Chinese Han had lower richness of gut microiota 
than other ethnic groups. (B) Non-metric multidimensional scaling analysis (NMDS) based on weighted 
Unifrac distance matric showed the separated microbita composition between Chinese Han and others. (C) 
Parabacteroides and Bacteroides showed a higher level in Chinese Han while Dorea showed a lower relative 
abundance.
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conditions and dietary habits, Parabacteroides (t-test, p < 0.001, q < 0.001; MaAsLin, Coef = -0.852, p = 0.004, 
q = 0.116) and Bacteroides (t-test, p < 0.001, q = 0.040; MaAsLin, Coef = − 0.567, p = 0.005, q = 0.116) were higher in 
Han ethnic group, and Dorea was lower (t-test, p = 0.004, q = 0.113; MaAsLin, Coef = − 0.727, p = 0.004, q = 0.116) 
than the other ten ethnic groups (Fig. 4C, Supplementary Tables 8, 9).

The volunteers enrolled in our study were from 62 residential areas within China (Supplementary Fig. 2), as 
such, habitation location could be a significant factor influencing the gut microbiota. In this study, gut micro-
bial community structure differed between south group (n = 357) and north group (n = 126) (weighted unifrac 
distance, Adonis, Pr (> F) = 0.002, Supplementary Table 10).The abundance of supposedly beneficial bacteria, 
Fusobacterium (MaAsLin, Coef = 0.852, p = 0.015, q = 0.146) in the southern population of China was higher 
than that in the northern population, and the levels of Bifidobacterium (MaAsLin, Coef = − 1.472, p < 0.001, 
q = 0.003), Megasphaera (MaAsLin, Coef = − 1.205, p < 0.001, q = 0.003), and Dialister (MaAsLin, Coef = − 1.270, 
p = 0.006, q = 0.114), were higher in the northern Chinese populationafter removing other confounding factors 
(Supplementary Tables 11, 12).

Different living conditions and bacteria. There are limited studies highlighting the impact of lifestyle 
variables on the composition and structure of the gut microbiota. In order to explore how various lifestyle vari-
ables influence the gut microbiota, we performed differential analysis of the gut microbiota in parallel with six 
lifestyle variables: (1) the degree of sleep deprivation, (2) state of fatigue, (3) appearance of negative emotions, 
(4) occurrence of oral ulcers and skin acne, and (5) smoking frequency.

According to the consensus of the American Academy of Sleep Medicine and Sleep Research Society, adults 
should strive for 7 h of nightly sleep while young adults require 9 h. Insufficient sleep due to occupational or 
recreational activities is classified as sleep  deprivation101. One study has demonstrated a correlation between sleep 
deprivation and the gut  dysbiosis102. In this study, increased sleep deprivation decreased the alpha diversity of 
the gut microbiome (Supplementary Table 13)although the differences were not significant, and the gut micro-
biota structures among the normal sleep (n = 145), more sleep deprivation (n = 131) and less sleep deprivation 
(n = 207) groups showed a significant difference (Binary-jaccard distance, Adonis, Pr (> F) = 0.029, Fig. 5A) The 
abundance of Bifidobacterium in the normal sleep group was significantly lower than that in the more sleep 
deprived (MaAsLin, Coef = 1.367, p = 0.001, q = 0.125) groups, while Parabacteroides showed a significant higher 
relative abundance in less sleep group than that in normal sleep MaAsLin, Coef = 0.738, p = 0.002, q = 0.153, 
Fig. 5B, Supplementary Tables 14, 15).

Fatigue is a prevalent symptom frequently encountered in daily life. It can be classified into two types: acute 
and chronic fatigue. Acute fatigue usually resolves after rest or treatment of the underlying condition, while 
chronic fatigue is an enduring debilitating process. Therefore, they differ at least in terms of frequency of experi-
encing fatigue. Our results showed that as the fatigue level and frequency increased (normal, n = 128; sometimes, 
n = 283, always, n = 72), the level of Sellimonas decreased gradually (t-test, normal vs. always, p = 0.026, q = 0.731; 
sometimes vs. always, p = 0.030, q = 0.766 (Fig. 5C, Supplementary Table 16).

Figure 5.  Differences in the microbiota composition and bacteria in genus-level between people different 
lifestyle conditions. (A) Gut microbiota structures among the normal sleep (n = 145), more sleep deprivation 
(n = 131) and less sleep deprivation (n = 207) groups showed a significant difference. (B) Two bacteria in 
genus-level were identified significantly different among three sleep deprivation groups. (C) T-test revealed the 
difference in relative abundance of Sellimonas in healthy Chinese volunteers with varying degrees of fatigue 
(normal, n = 128; sometimes, n = 283, always, n = 72). (D) T-test revealed the difference in relative abundance of 
Dialister in healthy Chinese volunteers with varying degrees of oral ulcers and acne (seldom, n = 246, sometimes, 
n = 173, always, n = 64).
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Previous studies have shown that the intestinal microbiome plays a role in stress response, inflammation, 
depression and anxiety, but specific changes in microbial composition and structure were not  clear53–55. According 
to the survey conducted in 2021, the most negative emotions experienced by Chinese individuals were anxiety, 
anger, fear and  sadness103.We identified five genera which were significant different in relative abundance, and 
Negativibacillus (t-test, p = 0.001, q = 0.153; MaAsLin, Coef = -0.687, p < 0.001, q = 0.037) showed a significant 
higher level after removing other confounding factors (Supplementary Tables 17, 18). Taken together, our results 
showed that sleep deprivation, the fatigue level, and negative emotions had associations with the gut microbiota 
community structure.

Some unhealthy lifestyle factors may lead to the development of oral ulcers and acne. The underlying mecha-
nism is likely related to proinflammatory  response6, 7, 56. Probiotic therapy has been shown to modulate inflam-
mation and improve symptoms of both oral ulcers and  acne2–5, 8, 9, 57–60. Therefore, it is necessary to character-
ize the gut microbiome in this population. Our results showed that as the frequency of oral ulcers and acne 
increased, the abundance of supposedly beneficial bacteria, Dialister significantly decreased gradually although 
the decrease was not significant after removing the confounding factors (seldom, n = 246, sometimes, n = 173, 
always, n = 64; t-test, seldom vs. always, p = 0.002, q = 0.199; sometimes vs. always, p = 0.023, q = 0.527, Fig. 5D, 
Supplementary Table 19).

A previous study showed that nicotine intake can lead to intestinal flora imbalance in  mice61. The effects 
of cigarette smoking on intestinal disorders include changes in intestinal irrigation and the gut microbiome, 
increases in the permeability of the mucosa, and impaired mucosal immune  responses62, 63. Cigarette smoke 
may influence the gut microbiota by increasing the pH value of the intestinal tract, which could be conducive to 
the growth of some bacteria, leading to the imbalance of the intestinal flora  structure64, 65. Among the smoking-
related phenotypes (never, n = 387; sometimes, n = 44; always, n = 52), we observed significant differences in 
gut microbiota structure (Binary-jaccard distance, Adonis, Pr (> F) = 0.029; Anosim, p = 0.012, Supplementary 
Table 20). An increase in smoking frequency decreased the richness and evenness of the gut microbiome (Chao1 
index, p = 0.007, q = 0.021; Shannon index, p = 0.037, q = 0.112, K–W test, Supplementary Table 21), and the 
relative abundance of Gastranaerophilales (t-test, never vs. sometimes, p < 0.001, q = 0.008; never vs. always, 
p = 0.048, q = 0.217), Catenibacterium (t-test, never vs. sometimes, p < 0.001, q = 0.017; never vs. always, p < 0.001, 
q = 0.013), and Coprobacter (t-test, never vs. sometimes, p = 0.013, q = 0.134; never vs. always, p = 0.041, q = 0.194) 
(Supplementary Table 22). 

Different dietary habits and bacteria. Dietary habits have been suggested to be intimately related to 
the gut  microbiome20, 66–68. In order to explore the impact of different dietary habits on the composition of the 
intestinal flora, we analyzed the impact of three dietary preferences, (1) starch intake (cereal, rice, flour-based 
foods, and high-starch foods), (2) protein intake (bean products, dairy, eggs, and meat), and (3) dietary prefer-
ence (meat-heavy diet, vegetable-heavy diet, or a balanced diet of meat and vegetables), on the structure of the 
gut microbiota in the healthy Chinese volunteers.

In order to assess how various types of starch affect the healthy Chinese gut microbiota, the volunteers were 
grouped according to the predominant starch type consumed (cereal, n = 30; rice, n = 390; flour-based, n = 57; 
high-starch, n = 6), and microbiota was analyzed. We found that healthy Chinese volunteers who intake differ-
ent starch had a significant different gut microbiota structure (Binary-jaccard distance, Adonis, Pr (> F) = 0.024, 
Fig. 6A, Supplementary Table 23). Compared with volunteers who consumed rice or flour-based foods as their 
staple food, the volunteers consuming cereal had a higher gut microbiota community diversity (Shannon index, 
cereal vs. flour-based, p = 0.001, q = 0.008; cereal vs. rice, p = 0.009, q = 0.026, K–W test, Fig. 6B, Supplementary 
Table 24). High-starch consumption was associated with lower relative abundance of Megamonas (t-test, high-
starch vs. flour-based, p < 0.001, q = 0.029; high-starch vs. cereal, p = 0.001, q = 0.168; high-starch vs. rice, p < 0.001, 
q < 0.001) and Bilophila (t-test, high-starch vs. flour-based, p = 0.010, q = 0.355; high-starch vs. cereal, p = 0.026, 
q = 0.690; high-starch vs. rice, p < 0.001, q = 0.011), and rice consumption was associated with a higher level of 
Parabacteroides (t-test, rice vs. flour-based, p = 0.009, q = 0.147; rice vs. cereal, p = 0.045, q = 0.343) compared 
with rice or flour-based foods consumption although these associations were not significant after removing the 
other confounding factors (Supplementary Table 25).

We then grouped the fecal stool samples according to the predominant protein source consumed by the volun-
teers (bean products, n = 47; dairy, n = 68; eggs, n = 95; meat, n = 273), and found that the level of Sutterella (t-test, 
meat vs. bean products, p = 0.002, q = 0.116; meat vs. dairy, p < 0.001, q = 0.033; meat vs. eggs, p = 0.024, q = 0.677) 
and Mitsuokella (t-test, meat vs. bean products, p = 0.011, q = 0.230; meat vs. dairy, p = 0.003, q = 0.193) were 
significantly higher in people who consumed meat as their primary protein source compared to people to who 
consumed other primary protein source. The abundance of Fusobacterium was significantly lower in people who 
consumed dairy as their primary protein source compared to people who derived the majority of their protein 
from meat or eggs (t-test, dairy vs. meat, p < 0.001, q = 0.033; dairy vs. eggs, p = 0.028, q = 0.750) although the dif-
ferent levels were not significant after removing the confounders (Fig. 6C, Supplementary Table 26). These results 
demonstrate that the dietary protein source was associated with the community structure of the intestinal flora.

Next, we were interested in determining how general dietary preference was associated with the gut microbi-
ome of a healthy Chinese population. The stool samples were divided into three groups based on the dietary pref-
erence of a meat diet (n = 107), vegetable diet (n = 57), or a balanced diet of both meat and vegetables (n = 319). 
Several bacteria in genus-level were identified between any two groups, but only [Ruminococcus]_gnavus_group 
showed a significant higher relative abundance in vegetable-diet preference volunteers compared with who pre-
ferred balanced diet after removing the confounding factors(t-test, p = 0.046, q = 0.526; MaAsLin, Coef = 0.977, 
p = 0.001, q = 0.224) (Fig. 6D, Supplementary Table 27).
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Discussion
Numerous studies have shown that several factors, including diet and lifestyle variables, influence the diversity, 
structure, and composition of the gut  microbiota16–22, 69. Delineating the composition of the gut microbiome 
in populations with various genetic backgrounds and lifestyle patterns may be beneficial in understanding the 
mechanisms linking lifestyle patterns and overall health and disease risk. Here, we collected questionnaire data 
and fecal stool samples from 483 healthy Chinese volunteers that spanned 11 ethnic groups and were from 62 
residential areas. We then performed 16S rRNA sequencing on the microbial DNA isolated from the stool samples 
to assess the composition of the gut microbiota in relation to lifestyle and dietary variables.

Our results showed that Bacteroides and Faecalibacterium were the most abundant genera in the healthy 
Chinese gut microbiome, which is consistent with a previous study that assessed the gut microbiota in healthy 
Chinese  volunteers35. This result is consistent with population-level studies conducted in African populations, but 
it differs from studies conducted on European and American populations, in which Bacteroides and Firmicutes 
were the primary  enterotypes18, 70. As reported in previous  studies26, 69, Prevotella- and Bacteroides-rich composi-
tions were found to be relatively non-overlapping in energy obtain. People with a Bacteroides–rich enterotype 
obtain energy from carbohydrates and proteins, while people with a Prevotella-rich enterotype mainly degrade 
mucin glycoproteins existing in the intestinal mucosal layer.

Figure 6.  Differences in the microbiota alpha diversity, composition, and bacteria in genus-level between 
people with different dietary habits. (A) Gut microbiota structures among the different starch intake groups 
(cereal, n = 30; rice, n = 390; flour-based, n = 57; high-starch, n = 6) showed a significant difference. (B) Healthy 
Chinese who took cereal as their staple food had higher level of gut microbita diversity than who consumed 
flour-based foods or rice. (C) T-test revealed the difference in relative abundance of Sutterellas in healthy 
Chinese volunteers with different types of protein intake (bean products, n = 47; dairy, n = 68; eggs, n = 95; meat, 
n = 273). (D) Healthy Chinese who preferred vegetable diet (n = 57) had higher level of [Ruminococcus]_gnavus_
group than who preferred balanced (n = 319) or meat (n = 107) diet.
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Bacteroides is an important and abundant member of the gut microbiome and is a core microorganism of 
common  enterotypes71. In this study, we found that Bacteroides levels increased in Han ethnic group. People who 
consumed eggs as their main protein source, and always occurred to oral ulcers and skin acne had an increased 
relative abundance of Bacteroides, which is consistent with a previous  study75, although the significance disap-
peared after the confounder was removed. In previous studies, Bacteroides was reported to degrade glycans 
and proteins as nutritional  sources43, and Bacteroides levels have been shown to be closely related to dietary 
 habits72. Adjusting Bacteroides levels by modifying the dietary structure may be a way to improve sub-health 
lifestyle patterns. Additionally, it was reported that the nutrients obtained by Bacteroides via glycan degradation 
can be used as an energy source by other microorganisms, and the content of Bacteroides in the gut is related to 
other  microorganisms73. In addition, Bacteroides has been reported to be related to the immune  system74, and 
as such, has been shown to activate  CD4+ cells by producing zwitterionic polysaccharide (ZPS), which triggers 
the immune system..

Prevotella, similar to Bacteroides, is a driving taxon in bacterial enterotypes of the gut microbiome. Hydrolases 
expressed by Prevotella are essential to the degradation of plant  fibers76, which supports previous studies that have 
shown that Prevotella is enriched in populations that consume a non-Western diet and/or fiber-rich  diet18, 21, 77. 
Our results showed that Prevotella abundance was higher in healthy Chinese male volunteers, and the increased 
level of Prevotella in gut was accompanied by elevated BMI. Additionally, Coprococcus, a butyrate-producing 
bacterium involved in dopamine-related biological  pathways78, was found to be significantly lower in volunteers 
who had higher BMI index, which was similar to Prevotella.

Upon further analysis, we speculated that different living habits might affect the structure and composition 
of the gut microbiome in a couple of ways. First, some living habits, such as sleep deprivation, can increase stress 
and gut permeability, which may lead to abdominal distension, stomachache, and inflammation—all of which can 
reduce the diversity of the gut  microbiome79–81. Second, intestinal inflammation will continue to erode the protec-
tive mucosa that protects the intestinal lining from bacterial invasion. Since the stomach wall is thin, microbial 
by-products, and possibly even entire bacteria, may pass through the stomach wall, triggering an inflammatory 
reaction of the immune system, thus forming a vicious circle. Through this process, the inflammatory process 
may induce  fatigue82, 83. From our results, we found that the four staple foods were associated with the growth of 
different kinds of bacteria. Therefore, it can be speculated that a reasonable mode of carbon and water intake is 
to eat an appropriate amount of high-starch food and to choose a variety of staple foods.

There are some limitations in our study. First, although we collected demographic, lifestyle, and dietary 
information from all of the volunteers, our study is limited by the lack of comprehensive physiological indices 
and detailed lifestyle and dietary information. Such information is imperative for fully interpreting the data. 
Furthermore, compared with a previous  study73 that examined 150 host phenotypic features, our research is still 
not detailed enough in regards to phenotypic diversity. Second, while we determined the differential abundance 
of microorganisms in relation to various phenotypes, we did not investigate differences in metabolic pathways 
or metabolites. As such, we were not able to reveal any information regarding the metagenome of the volunteers. 
Nonetheless, the microbial profiles acquired in this study do help elucidate the gut microbiota in the healthy 
Chinese population at baseline. Third, the correlations established in this study cannot determine causal rela-
tionships between the gut microbiota and lifestyle variables. In order to determine causal relationships, animal 
experiments and in vitro experiments, as well as intervention experiments, need to be performed. Fourth, the 
data presented in this study are from 483 healthy Chinese volunteers. However, while our total sample number 
is one of the largest reported in the literature, our sample number per variable is small, and additional samples 
are needed to verify the statistical analysis. In a follow-up study, we hope to further accumulate relevant data to 
improve the dimensional phenotypic analyses. There is no doubt that changing the structure and composition 
of intestinal microorganisms may become an important part of precision medicine in the twenty-first century.

In summary, our study compared the gut microbiota with demographic, lifestyle, and dietary variables in 
healthy Chinese volunteers. We found that the most abundant genera in the healthy Chinese gut microbiome 
were Prevotella and Bacteroides. Additionally, nine clinical and questionnaire-based phenotype covariates were 
found to be associated with the composition of the gut microbiota. The results of this study provide a foundation 
for elucidating the gut microbiome in the Chinese population at baseline. Moreover, understanding the complex 
interactions between the gut microbiome and various lifestyle and dietary variables prior to disease onset may 
help prevent disease or guide disease treatment.

Materials and methods
Study population and research data. After excluding the volunteers who were diagnosed with any ill-
ness, we recruited 483 healthy volunteers ranging in age from 5 to 80 years old. Information was collected from 
each recruited volunteer via an online questionnaire based on their lifestyles over the past week. The question-
naire contained 28 questions grounded on contemporary research that elucidates the factors associated with the 
gut microbiome—7 of which regarded basic information, such as age and gender, and the remaining 21 were 
questions relating to dietary and lifestyle variables divided into three categories: 1) bowel habits (four questions), 
dietary habits (five questions), allergens and health (five questions), and other lifestyle habits (seven questions). 
Detailed information regarding the questionnaire questions is listed in Table 1.

To gain a better understanding of the gut microbiome features among individuals with different lifestyles 
in China, the initial step involves characterizing distinct groups. According to WHO guidelines, adults should 
engage in 150–300 min of exercise per  week104. Participants were classified into three groups based on self-
reported exercise frequency: “No” indicated minimal physical activity, “1–2 times a week” indicated insufficient 
exercise, and “3 or more times” indicated compliance with guidelines. Fatigue was categorized into three groups 
based on responses to the question “Have you experienced recent feelings of tiredness?”: “No” indicated sustained 
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vitality, “Sometimes” indicated recoverable fatigue, and “Always” indicated persistent  weariness105. Personal 
alcohol consumption habits were categorized as “Never,” “Seldom,” (occasional consumption of alcohol in social 
settings) or “Often” (daily alcohol intake). Smoking frequency was classified as “No,” “Seldom” (< 15 cigarettes/
day), or “Often” (≥ 15 cigarettes/day), with insight provided by previous studies on tobacco  dependence106, 107. 
Sleep deprivation was categorized as “No,” “Seldom” (1–2 days/week), or “Often” (≥ 3 days/week) based on self-
reported insufficient sleep (< 7 h/night)108. Participants’ mysophobia was classified as “No” or “Yes,” while negative 
emotions were determined by recent experiences of anxiety, anger, fear, or  sadness89.

This study was performed with the approval of the Ethical Committees of Beijing Institute of Microbiology 
and Epidemiology, and written informed consent from all of the volunteers was obtained. The methods were all 
carried out in accordance with the approved guidelines.

Sample collection and DNA extraction. Approximately 5 mL of feces for each volunteer was collected 
using sterile fecal sampling tubes (SARSTEDT AG & Co. KG, Nümbrecht, Germany) to lower the risk of bias. 
All samples were stored at − 80 °C prior to isolating genomic DNA using the TIANamp Stool DNA Kit (Tiangen 
Angen Biotech (Beijing) Co., Ltd., Beijing, China) following the manufacturer’s instructions. DNA integrity was 
evaluated by agarose gel electrophoresis on a 1.2% agarose gel with 1 × TAE Buffer running at a constant voltage 
of 110 V. A Qubit R3.0 Fluorometer (Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA) was used 
to assess the quality of the DNA and to measure DNA purity and concentration. DNA with an OD260/OD280 
ratio between 1.8 and 2.0 was considered pure, and all of the DNA concentrations were higher than 2.5 ng/μL.

16S rRNA gene sequencing and bioinformatics analyses. Of the 1078 volunteers recruited, 16S 
rRNA sequencing was performed on 856 volunteers. One-step PCR was used to prepare the PCR Illumina 
sequencing libraries in a 25-uL reaction containing template DNA (25 ng), forward and reverse primers for the 
V3–V4 region (333 nmol each), and KAPA Hi-Fi PCR master mix (Kapa Biosystems, Boston, MA, USA). The 
forward and reverse primers used to amplify the V3–V4 region were as follows: forward primer: 5’-CCT AYG 
GGRBGCASCAG-3’ and reverse primer: 5’-GGA CTA CNNGGG TAT CTAAT-3’. The PCR conditions were as 
follows: enzyme activation step at 95 °C for 3 min, followed by 20 cycles of 15 s at 98 °C, 30 s at 50 °C, 40 s at 
72 °C, and 10 min at 72 °C, with a final hold at 10 °C. The cDNA was purified by the addition of Clean Beads 
(Beckman Coulter Inc., Brea, California, USA) and then sequenced on an Illumina HiSeq2500 platform (Illu-
mina, Inc., San Diego, California, USA), which generated approximately 4.5 million reads of 16S rRNA V3–V4 
amplicons comprising the partial C3 region (341F, 17 bp), full V3 region (57 bp), full V4 region (62 bp), and 
partial C5 region (806R, 20 bp). Samples that lacked volunteer data, from a patient that had an illness that may 
have biased the results, or inadequate sequencing data were excluded from the analysis. A total of 483 samples 
remained, all of which were included in the analysis.

Raw data filtering, classification, and annotation. The adaptors and PCR primers were removed 
from the reads, and these paired-end reads were denoised, filtered and joined using the DADA2 software 
 package84 implemented in QIIME  285, and the number of reads from each sample was rarefied to 2000. Rare 
amplicon sequence variants (ASVs) with total frequency less than 5, or was observed in one sample, or relative 
abundance was below 0.1% were removed. Taxonomy was assigned to ASV using the feature-classifier, a classify-
sklearn naive Bayes taxonomy classifier using machine learning against the Silva 138  database86.

Diversity analysis and variation analysis. The QIIME2 diversity alpha plugin produced alpha diversity 
measures (Chao1 richness index and Shannon diversity index), which were used to analyze the alpha diversity 
level of different groups. The differences of alpha diversity was further tested using Kruskal–Wallis analysis (K–W 
test). The unweighted Unifrac, weighted Unifrac, Bray–curtis and Binary-jaccard distance matrices between 
samples were used for non-metric multidimensional scaling analysis (NMDS) at the ASV  level87, 88, and adonis 
and anosim analysis were used to assess the explanatory power of grouping factors on sample dissimilarities.

In order to discover biomarkers with statistical differences, we also applied an inter-group t test (figures were 
generated with DRAW package for Perl). Multivariate analysis by linear models (MaAsLin 2 R package, version 
1.7.3)92 was further used to remove the confounding factors and identify bacterial genera associated with each 
factor. When identifying the biomarkers within one factor groups, the other factors were considered to be con-
founding factors. Only those taxa that were present in more than 10% of samples, and whose relative abundances 
were > 0.01% were included. Benjamini–Hochberg method was used to adjust P-values, given as Q-values, and 
the α level was set at 0.05 (two-sided) throughout all tests.

Methods of bacterial flora classification. We used two methods of bacterial flora classification in this 
study. The first method was based on the detection rate (sample size of a bacterium detected/total sample size). 
The second method was based on cluster  analysis26.

In this study, cluster analysis was achieved via R language. We used the partitioning around the medoids 
(PAM)  algorithm7, which supports any arbitrary distance measure to cluster the abundance profiles. Here, a 
probability distribution distance  metric8 related to Jensen-Shannon divergence (JSD) was applied. The distance 
D(a, b) between samples a and b is defined as
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√
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where pa and pb are the abundance distributions of samples a and b, and KLD
(

x, y
)

 is the Kullback–Leibler 
divergence between x and y, defined as

A pseudocount of 0.000001 was applied to the abundance distributions to avoid zero in the equation. Then, 
using the JSD, we assessed the Calinski–Harabasz (CH) index to evaluate the optimum number of  clusters9; it 
is defined as

where Bk is the squared distance between all points i and j, for which i and j are not in the same cluster, and Wk is 
the squared distance between all points i and j, for which i and j are in the same cluster. The result indicated that 
the CH index reached the maximum when divided into two clusters, so the number of clusters was set to k = 2.

Contingency tables were used for checking the independence between enterotypes and the other phenotypes, 
and the results showed that the distribution of enterotypes was not affected by demographic characteristics and 
phenotypic information (for each phenotype p > 0.05).

Here, we chose the top 35 bacteria in genus-level in abundance to cluster. Last, the clustering quality was 
assessed using the silhouette validation technique. Values derived from the silhouette are located between − 1 
and + 1, and the value in this research was 0.262. In theory, the smaller the gap between the acquired value and 
the value derived from the silhouette, the more accurate the clustering technique.

Data availability
The raw sequence data reported in this paper have been deposited in the Genome Sequence  Archive90 in National 
Genomics Data  Center91, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese 
Academy of Sciences (GSA: CRA009598) that are publicly accessible at https:// ngdc. cncb. ac. cn/ gsa/s/ 87n63 9Hu.
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