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TNFα induces matrix 
metalloproteinase‑9 expression 
in monocytic cells through ACSL1/
JNK/ERK/NF‑kB signaling 
pathways
Areej Al‑Roub 1, Nadeem Akhter 1, Fatema Al‑Rashed 1, Ajit Wilson 1, Fawaz Alzaid 2,3, 
Fahd Al‑Mulla 4, Sardar Sindhu 1,5,6 & Rasheed Ahmad 1,6*

Studies have established the association between increased plasma levels of matrix metalloproteinase 
(MMP)‑9 and adipose tissue inflammation. Tumor necrosis factor α (TNFα) was elevated in obesity 
and is involved in the induction of MMP‑9 in monocytic cells. However, the underlying molecular 
mechanism was incompletely understood. As per our recent report, TNFα mediates inflammatory 
responses through long‑chain acyl‑CoA synthetase 1 (ACSL1). Therefore, we further investigated 
the role of ACSL1 in TNFα‑mediated MMP‑9 secretion in monocytic cells. THP‑1 cells and primary 
monocytes were used to study MMP‑9 expression. mRNA and protein levels of MMP‑9 were 
determined by qRT‑PCR and ELISA, respectively. Signaling pathways were studied using Western 
blotting, inhibitors, and NF‑kB/AP1 reporter cells. We found that THP‑1 cells and primary human 
monocytes displayed increased MMP‑9 mRNA expression and protein secretion after incubation with 
TNFα. ACSL1 inhibition using triacsin C significantly reduced the expression of MMP‑9 in the THP‑1 
cells. However, the inhibition of β‑oxidation and ceramide biosynthesis did not affect the TNFα‑
induced MMP‑9 production. Using small interfering RNA‑mediated ACSL1 knockdown, we further 
confirmed that TNFα‑induced MMP‑9 expression/secretion was significantly reduced in ACSL1‑
deficient cells. TNFα‑mediated MMP‑9 expression was also significantly reduced by the inhibition 
of ERK1/ERK2, JNK, and NF‑kB. We further observed that TNFα induced phosphorylation of SAPK/
JNK (p54/46), ERK1/2 (p44/42 MAPK), and NF‑kB p65. ACSL1 inhibition reduced the TNFα‑mediated 
phosphorylation of SAPK/JNK, c‑Jun, ERK1/2, and NF‑kB. In addition, increased NF‑κB/AP‑1 activity 
was inhibited in triacsin C treated cells. Altogether, our findings suggest that ACSL1/JNK/ERK/NF‑kB 
axis plays an important role in the regulation of MMP‑9 induced by TNFα in monocytic THP‑1 cells.

Matrix metalloproteinases (MMPs) are factors involved in various biological events, including angiogenesis, 
embryogenesis, inflammation, and wound healing. Their role in healthy tissue remodeling has been well-estab-
lished1. Abnormalities in the expression of MMPs result in the development of various inflammatory disorders, 
such as heart diseases, arthritis, cancer metastasis, and atherosclerosis. Among MMPs, MMP-9 is predominantly 
involved in denaturing native type (collagenase) IV, which is a common component of the basement membrane. 
MMP-9 plays a role in the breakdown of various non-extracellular matrix (ECM) molecules, such as substance P, 
IL-1β, and myelin basic  protein2. The overexpression of MMP-9 results in cells migrating to inflammation sites, 
sustaining the survival of target cells, along with promoting macrophages renewal, thereby contributing toward 
the development and progression of chronic inflammatory  diseases3. MMP-9 is mainly secreted by monocytes 
or macrophages, and contributes toward the pathogenesis of obesity-induced inflammation, insulin resistance, 
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and cancer  metastasis4–6. The expression of MMP-2 and MMP-9 is augmented in inflamed tissues during chronic 
inflammatory conditions, such as obesity, arthritis, atherosclerosis, and periodontal disease. These infiltrated 
immune cells overexpress MMP-9, causing degradation of connective tissue and triggering  pathogenesis7–10. 
MMP-9 also induces the degradation of the basement membrane and ECM components, which facilitates the 
trans-endothelial migration of monocytes/macrophages11.

MMP-9 expression is increased by lipopolysaccharide and proinflammatory cytokines such as interleukin-1 
(IL-1)12, IL-613, and tumor necrosis factor α (TNFα)14. Notably, elevated circulating concentrations of TNFα and 
MMP-9 have been found in inflammatory disorders including obesity, cancer, atherosclerosis, and  diabetes15. 
However, the mechanism by which TNFα induces MMP-9 is incompletely understood. Herein, we determined 
TNFα-induced MMP-9 production in monocytic cells, monocytes/macrophages, and the signal transduction 
pathway(s) that were involved in this induction. Since TNFα-mediated immune responses, in part, have been 
induced by Acyl-CoA synthetase 1 (ACSL1)16, we also investigated the role of ACSL1 in TNFα-mediated MMP-9 
secretion. We found that pharmacologic and genetic inhibition of ACSL1 repressed TNFα-stimulated MMP-9 
expression in monocytic cells, along with the activation of JNK, c-Jun, ERK and NF-kB.

Figure 1.  Effect of TNFα on MMP-9 production in monocytes. We cultured monocytic THP-1 cells in 12-well 
plates at 1 ×  106 cells/well. We then treated the cells with vehicle (BSA), TNFα (10 ng/ml), and LPS (positive 
control, 10 ng/ml), separately. After 24 h of incubation, we collected the cells and supernatants. (A) We isolated 
total cellular RNA and determined MMP-9 mRNA expression using real-time PCR. (B) We determined MMP-9 
protein levels in culture media using ELISA (C,D) Primary monocytes were treated with vehicle, TNFα or LPS. 
MMP-9 mRNA expression and protein were determined. (E,F) THP-1 cells were treated with TNFα for different 
time points (2, 4, 6 or 24 h). MMP-9 mRNA expression and protein were determined. Three independent 
experiments were performed with similar results. Data are expressed as mean ± SEM (n ≥ 3). One way ANOVA 
(Dunnett’s Test) for comparing treatments vs control was used. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Material and methods
THP‑1 monocytic cell culture and stimulation. THP-1 cells were obtained from the American Type 
Culture Collection (ATCC) and cultured according to their  recommendation17–19. In brief, cells were maintained 
in RPMI-1640 culture medium supplemented with 10% fetal bovine serum, 2 mM glutamine, 1 mM sodium 
pyruvate, 10 mM HEPES, 100 ug/ml Normocin, 50 U/ml penicillin, and 50 μg/ml streptomycin (Gibco, Life 
Technologies, Grand Island, NY, USA). For experimentation, cells were plated in 12-well plates (Costar, Corning 
Incorporated, Corning, NY, USA) at 1 ×  106 cells/well (unless indicated otherwise). Cells were then stimulated 
for 24 h with 10 ng/ml TNFα (R&D Systems, Minneapolis, MN, USA) or 0.1% BSA as vehicle control. All cul-
tures were incubated under recommended cell culture conditions at 37 °C (with humidity) in 5%  CO2. At the 
endpoint of the experiment, cells were harvested for RNA isolation, and the conditioned medium was used for 
the determination of MMP-9 secreted protein. For NF-kB/AP-1 reporter cells, cells were cultured in complete 
RPMI medium with the addition of zeocin (200 µg/ml) as a selective factor (InvivoGen, San Diego, CA, USA).

Human primary cells. Human peripheral blood (40 ml) were collected in ethylenediaminetetraacetic acid 
(EDTA) vacutainer tubes from healthy donors at the Dasman Diabetes Institute (DDI) and following written 
informed consent of participants and study approval by the research ethics committee of DDI. PBMC were 
isolated using HistoPaque density gradient method. Monocytes were isolated as described  earlier20. Monocytes 
were cultured at 1 ×  106 cells/well and treated with vehicle, TNFα or LPS for 24 h. Monocytes were harvested for 
total RNA isolation for MMP-9 mRNA. Condition media were collected for MMP-9 or MMP-2 determination.

MTT assay. An MTT assay was used to assess the viability of cells. THP-1 cells were seeded in a 96-well plate 
at a density of 5 ×  103 cells/well. After 12 h with different treatments as described in figure legends, MTT solution 
(20 µl) was added to each well according to the manufacturer’s instructions. The cells were then incubated for 
4 h at 37 °C. Finally, DMSO (100 µl) was added to each well, and the absorbance (560 nm) was measured using 
a microplate reader.

Real‑time quantitative polymerase chain reaction (PCR). Total RNA was isolated from cultured 
cells using RNeasy Mini Kit (Qiagen, Valencia, CA, USA), according to the manufacturer’s instructions. cDNA 
synthesis was carried out using 1 μg of the total RNA isolated through the use of a high-capacity cDNA reverse 
transcription kit (Applied Biosystems, Foster City, CA, USA). 500 ng cDNA was then amplified, and the gene 
expression of (MMP-9, Hs00234579_m1; ACSL1, Hs00960561; and GAPDH, Hs03929097_g1) was conducted 
through the use of TaqMan® Gene Expression Master Mix (Applied Biosystems, Foster City, CA, USA) according 
to manufacturer’s  instructions21–24. The threshold cycle (Ct) was normalized to the house-keeping gene GAPDH, 

Figure 2.  ACSL1 inhibition decreases TNFα induced MMP-9 production monocytic cells. We incubated 
THP-1 monocytic cells with triacsin C (5 uM; ACSL inhibitor), a serine palmitoyltransferase inhibitor 
(myriocin, 1 μM) or a carnitine palmitoyltransferase 1 inhibitor (etomoxir, 10 μM) for 1 h and then exposed to 
TNFα for 24 h. We determined MMP-9 mRNA (A) and MMP-9 protein (B) using real-time PCR and ELISA, 
respectively. (C) The effect of TNFα stimulation on THP-1 cells in combination with inhibitors on cell viability 
was evaluated by measuring cell metabolic activity (MTT assay). The effect of TNFα stimulation of THP-1 cells 
in combination with triacsin C (5 uM), myriocin (1 μM) or etomoxir (10 μM) on cell viability. The cell viability 
is expressed as the percentage of cells compared to the condition of Vehicle. Three independent experiments 
were performed with similar results. All data are expressed as mean ± SEM (n ≥ 3). One way ANOVA (Dunnett’s 
Test) for comparing treatments vs control or TNFα in case of inhibitors) were used ***p < 0.001.
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and the expression of the target gene was calculated relatively to control using the ΔΔCt-method25–28. Relative 
mRNA expression was visualized as fold expression over the average of control gene expression, with the control 
treatment assumed to be  129. The data is presented as mean standard error of the mean (± SEM), and statistical 
analyses were deemed significant at p < 0.05.

MMP‑2 and MMP‑9 determination. Quantikine ELISA Kits were used according to the manufacturer’s 
instructions (R&D Systems, Minneapolis, MN, USA) to find MMP-2 and MMP-9 protein in the supernatants 
of treated cells.

Figure 3.  ACSL1 siRNA transfection reduced TNFα-mediated MMP-9 production. We transfected THP-1 
monocytic cells with siRNA targeting human ACSL1 gene expression or scrambled siRNA (a control siRNA). 
(A,B) After 36 h, we performed real-time PCR to measure ACSL1 gene expression or western blotting for 
protein to test the knocking down efficiency. (C) We then incubated ACSL1-deficient cells with TNFα for 
24 h. We determined mRNA expression of MMP-9 by real-time PCR. (D) We determined MMP-9 protein in 
culture media using ELISA. (E) The effect of siRNA transfection in combination with TNFα on cell viability 
was evaluated by measuring cell metabolic activity (MTT assay). The cell viability is expressed as the percentage 
of cells compared to the condition of vehicle control. Three independent experiments were performed with 
similar results. All data are expressed as mean ± SEM (n ≥ 3). t test or onene way ANOVA (Dunnett’s Test) for 
comparing treatments vs control) were used). **p < 0.01, ***p < 0.001.
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siRNA transfections. We performed small interfering RNA (siRNA) transfection, as previously described 
by Al-Roub et al.30. Briefly, we washed THP-1 monocytic cells and resuspended them in nucleofector solution 
(100 µl; Amaxa Nucleofector Kit V). We transfected the cells separately with siRNA against ACSL1 (30 nM; 
OriGene Technologies, Inc., Rockville, MD, USA), scramble siRNA (30 nM; OriGene Technologies, Inc., Rock-
ville, MD, USA), and pmaxGFP (0.5 ug; Amaxa Nucleofector Kit V for THP-1cells, Lonza, Cologne, Germany). 
We performed all transfection experiments with an Amaxa Cell Line Nucleofector Kit V for monocytic cells 
(Lonza, city, Germany) using an Amaxa Electroporation System (Amaxa Inc., Cologne, Germany)17. After 36 h, 
we treated the siRNA transfected cells with TNFα. Next, after 24 h, we harvested the monocytic cells and condi-
tioned media. Lastly, we assessed the gene knockdown level of ACSL1 using real-time PCR.

Western blotting. We performed Western blotting, as described  earlier31. We first harvested treated and 
untreated THP-1 monocytic cells. Then, we treated the cells with lysis buffer (10× Lysis Buffer, Cell Signaling, 
USA) for 30 min. We resolved the lysates by 12% SDS-PAGE, as described  earlier31, and transferred the cellular 
proteins to an Immuno-Blot PVDF membrane (Bio-Rad Laboratories, USA) by electroblotting. We blocked the 
Immuno-Blot PVDF membranes with 5% non-fat milk in phosphate buffered saline (PBS) for 1 h. Immuno-
blots were cut above 76 Kda and below 38 Kda for SAPK/JNK, c-Jun, and ERK1/ERK2 before incubation with 
primary antibodies. Immuno-blots were cut above 102 Kda and below 38Kda for NF-kB before incubation with 
primary antibodies. Immuno blot cut above 100 Kda and below at 50 Kda for incubation ACSL1 primary anti-
body. Same membrane lower part was used for B-actin. We then incubated the membranes with primary anti-
bodies against p-44/42 mitogen-activated protein kinases (MAPK; ERK1/2), p-SAPK/JNK, p-c-Jun, p-NF-κB, 
and the respective unphosphorylated antibodies in 1:1000 dilution overnight at 4 °C. We procured all primary 
antibodies from Cell Signaling (Cell Signaling Technology Inc., Danvers, MA, USA). We then washed the blots 
and incubated them for 1 h with horseradish peroxidase-conjugated secondary antibody (Promega, Madison, 
WI, USA). We developed immunoreactive bands using an Amersham ECL Plus Western Blotting Detection Sys-
tem (GE Health Care, city, UK) and visualized them by Molecular Imager® VersaDocTM MP Imaging Systems 
(Bio-Rad Laboratories, Hercules, CA, USA). Original membranes are not closely cropped as seen in the Sup-
plementary file. Molecular Imager® VersaDocTM MP Imaging Systems read the target bands only. Therefore, in 
most cases background bands were not seen. AMERSHAM, PRN780E, Full range ladder was used.

Statistical analysis. We performed statistical analyses on the GraphPad Prism software (La Jolla, CA, 
USA). Data are presented as mean ± standard error of the mean (SEM). We used unpaired Student’s t-test and 
one-way ANOVA to compare means between groups. p Value < 0.05 was considered significant (*p < 0.05, 
**p < 0.01, ***p < 0.001, and ****p < 0.0001).

Statement. All experiments and methods were performed in accordance with relevant guidelines and regu-
lations. Informed consent was obtained from all individuals, and all methods were carried out in accordance 
with the relevant guidelines and regulations of REC.

Results
TNFα induced MMP‑9 gene expression in human monocytes. We treated monocytic cells with 
TNFα for 24  h and investigated the impact of TNFα on MMP-9 gene expression regulation in these cells. 
Our results demonstrate that the mRNA expression levels of MMP-9 were significantly elevated (sevenfold; 
p < 0.0014) in TNFα-treated THP-1 monocytic cells, as compared to controls, i.e., cells treated with vehicle alone 
(Fig. 1A). MMP-9 mRNA expression in positive control (LPS treated cells) was found to be increased. In con-
cordance, the protein levels of MMP-9 were also significantly elevated in the supernatant of cells stimulated with 
TNFα (26 ng/ml; p < 0.0025; Fig. 1B). MMP-9 protein in positive control (LPS treated cells) was found to be 
increased. A similar elevation of MMP-9 gene and protein expression was observed in primary human mono-
cytes (Fig. 1C,D). MMP-9 mRNA expression and secreted protein were started to increase from 2 h after the 
treatment of the THP-1 cells with TNFα (Fig. 1E,F). We also found that MMP-2 expression was increased when 
THP-1 cells or primary human monocytes were treated with TNFα or LPS (Supplementary Fig. S1A,B). We also 
identified that increase in MMP-9 gene expression and protein secretion was significant from 2 h when THP-1 
cells were exposed to TNFα (Fig. 1E,F).

TNFα‑induced MMP‑9 production is suppressed by the inhibition of ACSL1. Accumulating evi-
dence suggests that ACSL1 participates in TNFα-mediated immune  regulation16, 32. We, therefore, investigated 
whether ACSL1 was involved in TNFα- mediated MMP-9 production by THP-1 cells. ACSL1 activity was inhib-
ited in THP-1 monocytic cells using triacsin C. As per our results, pretreatment of the monocytic cells with 
triacsin C followed by exposure to TNFα resulted in a significant decrease in MMP-9 expression and protein 
secretion (Fig. 2A,B; p < 0.05).

Since the gene expression of MMP-9 is activated by TNFα via ACSL1, which steer fatty acids towards 
β-oxidation33 and ceramide  production34, we next aimed to elucidate whether these factors play a role in TNFα-
mediated MMP-9 production. We therefore incubated monocytes with inhibitors of fatty acid oxidation (eto-
moxir) or ceramide synthesis (myriocin) prior to TNFα exposure. Interestingly, etomoxir and myriocin did not 
reduce the expression of MMP-9 (Fig. 2A,B). Inhibitors (triacsin C, etomoxir or myriocin) in combination with 
TNFα did not affect the cell viability (Fig. 2C).
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ACSL1 deficiency suppresses TNFα‑induced MMP‑9. To further verify if TNFα-induced MMP-9 in 
the THP-1 monocytic cells was dependent on ACSL1, we transfected cells with ACSL1 siRNA that achieved > 50% 
reduction in ACSL1 mRNA or protein levels, as compared to scramble (control) siRNA (Fig. 3A,B). As expected, 
the MMP-9 gene expression was significantly reduced in ACSL1 siRNA-transfected monocytic cells after stimu-
lation with TNFα, when compared to scramble siRNA-transfected monocytic cells (Fig. 3C). Similarly, the pro-
tein expression of MMP-9 was significantly suppressed in TNFα-activated ACSL1-deficient cells (Fig. 3D). Cell 
viability was not affected by siRNA transfections when normalized with control (Fig. 3E). Altogether, the results 
demonstrate that ACSL1 is a key effector in TNFα-mediated MMP-9 production in THP-1 monocytic cells.

ACSL1 is involved in TNFα‑activated MAPKs and NF‑kB signaling pathways in THP‑1 mono‑
cytic cells. MAPK signaling (ERK1/2, p38, JNK) and NF-kB signaling pathways are activated by TNFα35, 36. 
We next investigated if these molecules play a role in the regulation of TNFα-stimulated MMP-9 expression in 
THP-1 monocytic cells. First, we incubated the cells with inhibitors of JNK (SP600125), ERK1/2 (PD98059, 
U0126), or p38 MAPK (SB203580), as appropriate, prior to treatment with TNFα. We found that TNFα-
mediated MMP-9 mRNA expression was reduced (Fig.  4A) after treatment with either JNK (SP600125) or 
ERK1/2 (PD98059, U0126) inhibitor. However, p38 MAPK (SB203580) did not suppress the gene expression of 
MMP-9. Consistent with quantitative reverse transcription (qRT)-PCR results, we found a significant reduction 
in MMP-9 levels in culture supernatants of THP-1 monocytic cells (Fig. 4B). MAPK inhibitors in combination 
with TNFα did not change cell viability when compared with control (Supplementary Fig. S2A). Secondly, we 
preincubated the cells with NF-κB inhibitors (Bay11-7085, Triptolide or resveratrol) before TNFα treatment. 
We found that TNFα-mediated MMP-9 mRNA and protein expression was reduced by inhibition of NF-κB p65 
signaling (Fig. 4C,D). NF-kB inhibitors in combination with TNFα did not show a significant impact on cell 
viability when compared with control (Supplementary Fig. S2B).

To gain further insight into the role of ACSL1 in TNFα-induced activation of MAPK and NF-kB signaling 
proteins in monocytic cells, we treated THP-1 monocytic cells with inhibitors of ACSL1 prior to TNFα expo-
sure. ACSL1 inhibition significantly decreased TNFα-induced phosphorylation of SAPK/JNK (P-p54/46), c-Jun, 
ERK1/2 (P- p44/42), and NF-kB p65 (Fig. 4E,F). These findings suggest that SAPK/JNK, c-Jun, ERK1/2, and 
NF-kB were downstream of TNFα/ACSL1 signaling in monocytic cells. Given that the MMP-9 gene promoter has 
NF-κB/AP-1 binding sites, the loss of NF-κB/AP-1 activation is expected to result in the suppression of MMP-9 
gene  expression37, 38. We used NF-κB/AP-1 reporter cells and treated them with TNFα. We found that TNFα 
induced NF-kB/AP-1 activity in the reporter cells (Fig. 5A). Consistent with NF-κB /AP-1 activity, MMP-9 gene 
expression and protein production were increased in the reporter THP-1monocytic cells (Fig. 5B,C).

Next, we used NF-kB/AP-1 reporter THP-1 monocytic cells to confirm the role of ACSL1 in TNFα-induced 
NF-kB/AP-1 activity on MMP-9 gene expression and protein production. We observed that ACSL1 inhibition 
suppressed the NF-kB/AP-1 activation induced by TNFα in the reporter THP-1 cells (Fig. 5D). Consistent with 
NF-κB /AP-1 activity, MMP-9 gene expression and protein production were increased in the reporter THP-1 
monocytic cells (Fig. 5E,F). Lipid inhibitors in combination with TNFα did not change NF-kB/AP-1 reporter 
THP-1 monocytic cell viability when compared with control (Supplementary Fig. S2C).

Discussion
It is already known that MMP-9 overproduction is involved in the pathogenesis of inflammatory diseases and 
obesity-associated chronic low-grade  inflammation6, 39. In regard to this, our results demonstrated elevated 
MMP-9 levels with increasing duration of diabetes. This supports the previous statement of increased risk of 
diabetes incidence in individuals with high MMP-9  levels39. We also found that TNFα increases MMP-9 pro-
duction; however, the underlying molecular mechanism associated with MMP-9 overexpression by TNFα in 
monocytic cells is yet to be elucidated.

In this study, we investigated a specific mechanism by which TNFα promotes MMP-9 expression in monocytic 
cells. We found that TNFα stimulated MMP-9 expression in THP-1 cells and primary monocytes. The previous 

Figure 4.  ACSL1 inhibition reduces TNFα activated MAPK and NF-kB signaling pathways in the monocytic 
cells. (A–D) We pretreated THP-1 monocytic cells with JNK inhibitor [SP600125, 20 µM/ml)], ERK1/2 
inhibitor PD98059 (10 uM), U0126 (10 uM) or p38 inhibitor (SB203580, 10 uM) for 1 h. Cells pretreated with 
NF-kB inhibitors (Bay 11–7085 10 uM, Triptolide 10 uM, resveratrol, 1 uM) for 1 h. Then pretreated cells were 
exposed to TNFα for 24 h. We determined mRNA and protein levels of MMP9. (E,F) We pretreated cells with 
triascin C, following incubation the cells with TNFα or vehicle for 15 min. We prepared cell lysates and ran 
the samples on denaturing gels. Blots were cut almost above 76 Kda and below 38 Kda in case of SAP/JNK, 
c-Jun, and ERK1/ERK2; Blots cut almost above 102 Kda and below 38 Kda in case of NF-kB. We developed 
immunoreactive bands using an Amersham ECL Plus Western Blotting Detection System (GE Health Care, 
city, UK) and visualized them by Molecular Imager® VersaDocTM MP Imaging Systems (Bio-Rad Laboratories, 
Hercules, CA, USA). (E) Phosphorylated proteins SAPK/JNK (p54/46), c-Jun, ERK1/2 (p44/42). or NF-kB 
p65 are depicted in the upper panels and the total respective proteins are shown in the lower panels. Cropped 
western blot images from full blots (Supplementary Fig. S3A–D). Protein molecular size markings were done 
manually since Molecular Imager® VersaDocTM MP Imaging Systems could not read marker. (F) We quantified 
phosphorylation intensity of JNK, ERK1/2 and NF-kB using Image Lab software (version number, Bio-Rad, 
USA); presented in arbitrary units. Three independent experiments were performed with similar results. 
One way ANOVA (Dunnett’s Test) for comparing treatments vs control) were used. All data are expressed as 
mean ± SEM. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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in vitro studies support that TNFα plays a functional role in MMP-9 regulation in various cell  lines40, 41. There-
fore, our data further strengthen the notion that TNFα is a potential player in the induction of MMP-9 in THP-1 
cells and primary monocytes. MMP-9 is increased in the skin and sera of patients with vitiligo, and MMP-9 
is produced by keratinocytes in response to IFN-γ and TNFα42. MMP-9 is also causal in the establishment of 

Figure 5.  ACSL1 inhibition reduces TNFα induced activation of NF-κB and AP-1 transcription factors. (A) 
NF-κB/AP-1 reporter cells were treated with TNFα for 24 h. Cell culture media were analyzed for SEAP reporter 
activity (degree of NF-κB/AP-1 activation). (B,C) MMP-9 mRNA and MMP-9 protein levels were determined 
in the reporter cells. Reporter cells were pretreated with myriocin, etomoxir or triasicn C, and then incubated 
with TNFα. SEAP reporter activity (degree of NF-κB/AP-1 activation) along with the MMP-9 gene and protein 
expression were determined (D–F). Three independent experiments were performed with similar results. All 
data are expressed as mean ± SEM. One way ANOVA (Dunnett’s Test) for comparing treatments vs control) were 
used. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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colitis in  mice43. Plasma MMP-8, MMP-9, and TNFα, and highly sensitive C-reactive protein were substantially 
higher in cases of metabolic  syndrome44. Moreover, elevated MMP-9 and TNFα levels are correlated with the 
progression of inflammatory disease.

To explore the underlying mechanisms and contexts by which TNFα stimulated the MMP-9 induction, it was 
central to determine whether ACSL1-mediated signaling is involved in TNFα-mediated MMP-9 gene expression 
regulation in monocytic cells. We previously showed that ACSL1 deficiency prevents TNFα-mediated induction 
of cell surface and secretory inflammatory markers in monocytic  cells18, 45. Herein, we used pharmacological 
and genetic approaches to support the evidence that TNFα-induced gene expression and protein production of 
MMP-9 depends on ACSL1. First, we found that MMP-9 production by TNFα is repressed by the pharmacologic 
inhibition of ACSL1 with triacsin C. Next, our results demonstrated that ACSL1-deficient monocytic cells do 
not support TNFα-stimulated gene expression and secretion of MMP-9. In a recent study, it was shown that 
monocytic cells require ACSL1 to facilitate inflammatory marker expression induced by TNFα18. ACSL1 is a 
key enzyme that directs fatty acids towards β-oxidation33 and ceramide  production34, and its deficiency prevents 
TNFα-mediated induction of IL-1β and MCP-118. In addition to these results, when THP-1 cells were treated 
with inhibitors of fatty acid oxidation (etomoxir) or ceramide synthesis (myriocin) prior to TNFα treatment, we 
found that etomoxir and myriocin did not block TNFα-induced MMP-9 production. Interestingly, our results 
suggest that TNFα induces the gene and protein expression of MMP-9 via the involvement of ACSL1, without 
significant impact on β-oxidation and ceramide formation, which is consistent with a previous  report46.

Accumulating evidence states that MAPKs and NF-κB signaling pathways are involved in TNFα stimulation 
of several inflammatory cytokines that contribute to the pathogenesis of various inflammatory  conditions35, 36. 
Additionally, the expression of MMP-9 seems to be highly controlled through MAPKs and NF-κB in numer-
ous cell  types47, 48. It is important to look at the function of ACSL1 in TNFα-induced activation of MAPK and 
NF-κB signaling events. In the present study, we found that the inhibition of ACSL1 suppresses TNFα-mediated 
ERK1/2, JNK, and NF-kB phosphorylation. Furthermore, inhibition of MAPKs and NF-kB decreased MMP-9 
gene expression and protein production induced by TNFα. Cohen et al. reported that TNFα-induced MMP-9 
expression, secretion, and activity were completely blocked by the inhibition of JNK and  ERK49. A study sug-
gests that TNFα-induced MMP-9 expression by osteoblast-like MC3T3-E1 cells was partially blocked by the 
inhibitor of ERK, JNK, or NF-kB50, 51. In addition, it is of interest that the MMP-9 gene is regulated by MAPK 
pathways which are dependent on AP-1 and NF-κB for  transcription52, 53. In human vascular smooth muscle 
cells, the transcription factors NF-κB and AP-1 involved in the ERK1/2-mediated MMP-9 expression in response 
to TNFα have been  investigated53. Consistent with our findings that inhibition of ACSL1 reduces MAPKs and 
NF-κB phosphorylation, ACSL1 inhibition has a significant impact on the TNFα induced activation of AP-1 
and NF-kB. Overall, our findings suggest that ACSL1 acts upstream of MAPK and NF-κB signaling pathways.

Altogether, our results indicate that in monocytic cells, TNFα likely activates two different pathways (MAPKs 
and NF-κB) leading to MMP-9 expression through the involvement of ACSL1. Our results, therefore, provide 
novel insights into the mechanisms of action of TNFα, stating that ACSL1-dependent MAPKs and NF-κB may 
be associated with the upregulation of MMP-9 in monocytic cells.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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