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Identification of  m5C‑related 
lncRNAs signature to predict 
prognosis and therapeutic 
responses in esophageal squamous 
cell carcinoma patients
Yuan Ma , Yuchen Sun , Xu Zhao , Jing Li , Xing Fu , Tuotuo Gong * & Xiaozhi Zhang *

Esophageal squamous cell carcinoma (ESCC) has a dismal prognosis because of atypical early 
symptoms and heterogeneous therapeutic responses. 5‑methylcytosine  (m5C) modification plays 
an important role in the onset and development of many tumors and is widespread in long non‑
coding RNA (lncRNA) transcripts. However, the functions of  m5C and lncRNAs in ESCC have not been 
completely elucidated. Herein, this study aimed to explore the role of  m5C‑related lncRNAs in ESCC. 
The RNA‑seq transcriptome profiles and clinical information were downloaded from the TCGA‑ESCC 
database. Pearson analysis was used to identify  m5C‑related lncRNAs. Then we established the  m5C-
related lncRNAs prognostic signature  (m5C‑LPS) using univariate Cox and least absolute shrinkage 
and selection operator (LASSO) regression analysis. Then, the prognostic value of  m5C‑LPS was 
evaluated internally and externally using the TCGA‑ESCC and GSE53622 databases through multiple 
methods. We also detected the expression of these lncRNAs in ESCC cell lines and patient tissues. 
Fluorescence in situ hybridization (FISH) was used to detect the prognostic value of specific lncRNA. 
In addition, clinical parameters, immune status, genomic variants, oncogenic pathways, enrichment 
pathways, and therapeutic response features associated with  m5C‑LPS were explored using 
bioinformatics methods. We constructed and validated a prognostic signature based on 9  m5C‑related 
lncRNAs (AC002091.2, AC009275.1, CAHM, LINC02057.1, AC0006329.1, AC037459.3, AC064807.1, 
ATP2B1-AS1, and UBAC2-AS1). The quantitative real‑time polymerase chain reaction (qRT‑PCR) 
revealed that most lncRNAs were upregulated in ESCC cell lines and patient tissues. And AC002091.2 
was validated to have significant prognostic value in ESCC patients. A composite nomogram was 
generated to facilitate clinical practice by integrating this signature with the N stage. Besides, 
patients in the low‑risk group were characterized by good clinical outcomes, favorable immune 
status, and low oncogenic alteration. Function enrichment analysis indicated that the risk score was 
associated with mRNA splicing, ncRNA processing, and DNA damage repair response. At the same 
time, we found significant differences in the responses to chemoradiotherapy between the two 
groups, proving the value of  m5C‑LPS in treatment decision‑making in ESCC. This study established 
a novel prognostic signature based on 9  m5C‑related lncRNAs, which is a promising biomarker for 
predicting clinical outcomes and therapeutic response in ESCC.
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HPA  Human Protein Atlas
IC50  Half-maximal inhibitory concentration
KEGG  Kyoto Encyclopedia of Genes and Genomes
K–M  Kaplan–Meier
LASSO  Least absolute shrinkage and selection operator
lncRNAs  Long non-coding RNA
m5C  5-Methylcytosine
m5C-LPS  m5C-Related lncRNAs prognostic signature
OS  Overall survival
PPI  Protein–protein interaction
qRT-PCR  Quantitative real-time polymerase chain reaction
ROC  Receiver operating characteristic
ssGSEA  Single-sample gene set enrichment analysis
TCGA   The Cancer Genome Atlas

Esophageal cancer (EC) ranks eighth and sixth in terms of incidence and mortality worldwide,  respectively1. 
Among primary esophageal cancers, approximately 88% are classified as esophageal squamous cell carcinoma 
(ESCC), which exhibits a relatively low 5-year survival rate ranging from 5 to 25%2–5. Currently, extensive 
research on molecular mechanisms has yielded promising precision cancer treatment strategies for numer-
ous  cancers6. Recently, growing research has highlighted the role of RNA post-transcriptional modifications 
5-methylcytosine  (m5C) on tumor  development7,8. Several studies have provided evidence that  m5C can influ-
ence the development of  ESCC9,10. However, the precise impact of  m5C on ESCC remains unclear and needs 
further investigation.

The reversible RNA post-transcription modification  m5C, similar to N6-methyladenosine  (m6A), has got 
enormous attention and can dynamically regulate RNA stability, translation, splicing, and  exportation7,8,11. The 
 m5C is a type of cytosine methylation that involves the addition of a methyl group to the fifth carbon position and 
is regulated by several enzymes including “writers” (methyltransferases: NSUN1-7, DNMT1, DNMT2 also named 
TRDMT1, DNMT3A, and DNMT3B), “erasers” (demethylases: TET1-3), and “readers” (YBX1 and ALYREF)12–14.

Mounting evidence suggests that dysregulated expression of long non-coding RNAs (lncRNAs) plays a critical 
role in tumor development and response to  therapy15–17. For instance, lncRNA CASC9 has been shown to promote 
ESCC  metastasis18. While  m5C was initially found in tRNA and rRNA, emerging evidence suggests that it is also 
widespread presence in mRNAs and non-coding  RNAs19–21. And the methylation density around the transcrip-
tional start site of lncRNAs is higher than that of protein-coding  genes21. Upregulated NSUN2-mediated NMR 
methylation in ESCC, resulting in cancer metastasis and drug  resistance22, which suggested that  m5C-methylated 
lncRNAs can regulate the biological function of cancer. However, the evidence for  m5C in regulating lncRNAs 
in ESCC is limited and requires further research.

In this study, we aimed to investigate the function of  m5C-related lncRNAs in ESCC and construed 
 m5C-related lncRNAs prognostic signature  (m5C-LPS) based on the TCGA-ESCC cohort. Additionally, we 
also explored the relationship between the  m5C-LPS and clinical prognostic, immune status, genomic variants, 
enrichment pathways, as well as drug sensitivity in ESCC.

Methods
Patients cohorts. We have included patients diagnosed with ESCC in The Cancer Genome Atlas (TCGA) 
program (https:// portal. gdc. cancer. gov/ repos itory? facet Tab= cases). Patients without complete clinical informa-
tion and transcriptome profiling, or diagnosed with esophageal adenocarcinomas were excluded. Finally, the 
transcriptome, clinicopathologic, and somatic mutation data of 80 ESCC and 11 adjacent normal tissues were 
downloaded. Additionally, RNA microarray profiles and corresponding clinical information of 60 ESCC patients 
were downloaded from the Gene Expression Omnibus database (GSE53622, https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= gse53 622). The clinicopathological parameters of TCGA-ESCC and GSE53622 cohorts were 
summarized in Table S1. Immunohistochemical staining images of normal esophageal tissues were obtained 
from the Human Protein Atlas (HPA) (https:// www. prote inatl as. org/). And this study started in February 2022 
and finished in July 2022.

Paraffin embedded sections of 54 ESCC patients were obtained from the First Affiliated Hospital of Xi’an 
JiaoTong University. Tissues were collected during surgery and were used for Fluorescence in situ hybridization 
(FISH) examination. And 14 ESCC and corresponding normal tissue samples were collected for the detection 
of lncRNA expression.

Identification of regulators of  m5C and co‑expression lncRNAs. We identified 16  m5C regulators 
from previous literature and extracted their expression from RNA-seq profiles of ESCC and adjacent normal 
tissues. Then, the differential expression of 16  m5C regulators was determined in the ESCC tissues versus adja-
cent normal tissues. The differential expression of these regulators was analyzed, and their interrelationships 
were visualized using the ‘corrplot’ R package. A protein–protein interaction (PPI) network of  m5C regulators 
was constructed using the STRING database (https:// cn. string- db. org/) with the gene interaction score ≥ 0.523. 
We selected the lncRNAs existed in both TCGA-ESCC and GSE53622 cohorts for widespread use of  m5C-LPS. 
Pearson correlation coefficient was calculated between the expression of 16  m5C regulators and lncRNAs using 
the built-in function ‘cor.test’ in R. We identified 4279  m5C-related lncRNAs with |correlation coefficient| > 0.35 
and the p-value < 0.01 for further analysis.

https://portal.gdc.cancer.gov/repository?facetTab=cases
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse53622
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse53622
https://www.proteinatlas.org/
https://cn.string-db.org/
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Construction and validation of  m5C‑related lncRNA prognosis signature. We used the ‘sur-
vival’ R package to perform univariate Cox regression analysis on the candidate  m5C-related lncRNAs, filtering 
out those with significant prognostic value (p < 0.05). Then, we used the least absolute shrinkage and selec-
tion operator (LASSO) regression analysis with the ‘glmnet’ R package to establish a prognostic signature and 
calculate the coefficients for each  lncRNA24–26. These coefficients were used to generate a risk score formula: 
Risk Score =

∑
i coefficient of m5C related lncRNAi × lncRNAi expression level . Patients were stratified into 

high- and low-risk groups based on their calculated risk scores. Kaplan–Meier (K–M) analysis was performed to 
assess the overall survival (OS) of different groups, and time-dependent receiver operating characteristic (ROC) 
curve analysis was used to evaluate the predictive value of the risk score with the ‘survivalROC’ R package.

Clinical relevance investigation. A Sankey diagram was used to illustrate the one-to-one match between 
the  m5C genes,  m5C-related lncRNAs, and the corresponding risk types. Furthermore, a correlation circle graph 
was generated using the ‘corrplot’ and ‘circlize’ R package to visualize the co-expression status of the 9 identi-
fied lncRNAs. We also investigated the association between  m5C-LPS and clinicopathological parameters. Both 
univariate and multivariate Cox regression analyses were conducted to investigate the independent value of the 
 m5C-LPS and other parameters. Based on the significant prognostic variables, we constructed a nomogram to 
predict 1-, 2-, and 3-year survival rates using the ‘rms’ R package. And calibration curves were used to verify the 
agreement between nomogram-predicted survival and actual survival probabilities. Additionally, we evaluated 
the prognostic value of clinicopathological features by using ROC curves and calculating the area under the 
curve (AUC).

Evaluation of signaling pathways enrichment. We conducted functional enrichment analyses based 
on gene ontology (GO)27, Kyoto Encyclopedia of Genes and Genomes (KEGG)28, and  Reactome29 databases to 
explore the biological functions and pathways associated with  m5C-LPS through ‘clusterProfiler’30 and ‘Reac-
tomePA’ R package.

Estimation of the tumor microenvironment signatures. Estimate31, single-sample gene set enrich-
ment analysis (ssGSEA)32,  Cibersort33, and  xCell34 algorithms were utilized to estimate the relative abundance of 
immune and stromal cells in the tumor microenvironment. We also calculated the Pearson coefficients between 
risk scores and immune checkpoint genes and immunomodulators, such as chemokines, receptors, MHC, 
immunoinhibitors, and immunostimulators, which were obtained from the TISIDB  database35.

Characterization of genetic alteration. The ‘maftools’ R package was utilized to identify the top 20 
mutated genes based on the mutation rate across low- and high-risk  groups36. Subsequently, we further inves-
tigated the fraction of affected samples and pathways based on alterations in 10 canonical oncogenic signaling 
pathways for different risk  groups37.

Drug sensitivity analysis. We employed the ‘pRRophetic’ R  package38 to predict the half-maximal inhib-
itory concentration (IC50) for each patient using three publicly available drug sensitivity databases (Cancer 
Genome Project (CGP)39, Cancer Therapeutics Response Portal (CTRP)40, and Genomics of Drug Sensitiv-
ity in Cancer (GDSC)41). Additionally, we utilized the genomic-adjusted radiation dose (GARD)  model42 to 
predict the radiotherapy response of each patient, with higher GARD values indicating increased sensitivity to 
radiotherapy.

Cell lines and reagents. The human normal esophageal cell line HET-1A was purchased from Ameri-
can Type Culture Collection (ATCC, Virginia, USA), and the human ESCC cell lines TE-1 and KYSE150 were 
purchased from the Cell Bank of the Chinese Academy of Sciences Typical Culture Preservation Committee 
(Shanghai, China). HET-1A was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibico, USA) sup-
plemented with 10% fetal bovine serum (FBS, Gibco, USA), while TE-1, and KYSE150 were cultured in Roswell 
Park Memorial Institute (RPMI) 1640 medium (Gibico, USA) supplemented with 10% FBS. All cells were cul-
tured in a 5%  CO2 incubator at 37 °C.

Total RNA extraction and real‑time quantitative PCR. Total RNA was extracted using the RNA-
fast200 kit (Fastagen, China) according to the manufacturer’s instructions. RNA concentration was quantified 
using NanoDrop 3000 (ThermoFisher, USA). Then, 1.0 μg of total RNA in a 20 μl reaction system was reversely 
transcribed into cDNAs using Evo M-MLV RT Kit with gDNA Clean for polymerase chain reaction (PCR, Accu-
rate Biotechnology, China). Quantitative real-time PCR (qRT–PCR) was performed using 2 × RealStar Green 
Fast Mixture (GeneStar Technology, China). GAPDH expression was used as an internal reference. The relative 
expression level of lncRNAs was calculated using the  2−ΔΔCT method. Each experiment was performed in tripli-
cate. The primer sequences used in this study are listed in Table S2.

FISH assay. The FISH probe of lncRNA AC002091.2 was synthesized by Servicebio (Wuhan, China). Paraf-
fin embedded sections were dewaxed, rehydrated, digested, and dehydrated with dimethylbenzene, graded etha-
nol, protease K. Then the FISH probe was added to the hybridization mixture and incubated overnight. Next, 
the section was washed in the dark with washing buffer containing saline sodium citrate and PBS. Sections were 
stained with DAPI for 10 min and then visualized by fluorescence microscope.
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Statistical analysis. All statistical analyses were performed using R software (version 4.1.1) and Graph-
Pad Prism (version 8.0, USA). The differences between the two groups were compared using student’s t-test, 
while one-way analysis of variance (ANOVA) was used for multiple groups. Fisher’s exact test was used to com-
pare categorical variables. The correlation between two continuous variables was analyzed using Pearson’s test. 
p-value < 0.05 was considered statistically significant.

Ethics approval and consent to participate. This study was approved by the Ethics Committee of The 
First Affiliated Hospital of Xi’an Jiaotong University (Approval Number: 2017-146).

Results
To facilitate the comprehension of the study, a schematic diagram is presented in Fig. S1.

Expression patterns of  m5C regulators in ESCC and normal esophageal tissue. We extracted the 
expression profiles of 16  m5C regulators in the TCGA-ESCC cohort and subsequently compared their expression 
levels between 80 ESCC tumor samples and 11 normal adjacent samples. Our analysis revealed that the expres-
sion of most genes, including DNMT3B, NOP2, DNMT1, ALYREF, NSUN2, NSUN5, TET2, TET3, DNMT3A, 
TET1, and YBX1 were significantly higher in ESCC tissues than in normal adjacent tissues (Fig. 1A). Moreo-
ver, the immunohistochemical staining images of normal esophageal tissues from HPA showed that 10 of 15 
 m5C regulators were not more than medium expression, while NSUN3 and NSUN5 were not detected (Fig. S2). 
To investigate the interrelationships among these 16  m5C regulators, we obtained a PPI network using the 
STRING database. After setting the minimum interaction score as 0.5, we identified the PPI network contains 
all  m5C genes and 90 edges (Fig. 1B). And TRDMT1 was found to be the hub gene of the network with 11 edges 

Figure 1.  The expression pattern and interactive landscape of the  m5C regulators in the TCGA-ESCC database. 
(A) Heatmap presenting the expression of 16  m5C regulators in normal esophageal (N) and ESCC (T) tissues 
from TCGA-ESCC database. p < 0.1, *p < 0.05, **p < 0.01, and ***p < 0.001. (B) Protein–protein interaction (PPI) 
network showing the interaction between  m5C regulators. (C) Heatmap showing the Pearson correlation among 
16  m5C regulators.
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(Table S3). In addition, the correlation analysis revealed significant positive correlations between TRDMT1 and 
other 8  m5C genes. Interestingly, all  m5C regulators showed a general positive correlation, with DNMT1 exhibit-
ing the highest correlation with ALYREF (r = 0.67) (Fig. 1C).

Construction of the  m5C‑LPS in the TCGA database. Subsequently, we performed Pearson analysis 
based on the lncRNAs and  m5C regulators in TCGA-ESCC profiles, and a total of 4279 lncRNAs were signifi-
cantly correlated with  m5C regulators (|Pearson coefficient| > 0.35 and p < 0.01). After filtering lncRNAs with 
the sum expression < 0.01, univariate Cox regression analysis was conducted to further explore the  m5C-related 
lncRNAs associated with prognosis. Finally, we identified 41 lncRNAs that were significantly associated with the 
OS of ESCC patients (Table S4).

To eliminate the collinearity of variables and minimize estimation variance, LASSO regression analysis was 
applied to establish a prognostic signature using the 41 aforementioned lncRNAs. Subsequently, an  m5C-LPS 
comprising 9 lncRNAs was identified based on the optimal λ value (Fig. 2A,B). Subsequently, the risk score was 
calculated based on the coefficients of the nine identified lncRNAs and their corresponding expression levels, 
yielding a concordance index (C-index) of 0.83, indicating strong discriminatory power (Fig. 2C,D). Besides, 
the model exhibited a sensitivity of 0.880, specificity of 0.643, positive likelihood ratio of 2.464, negative likeli-
hood ratio of 0.187, positive predictive value of 0.524, and negative predictive value of 0.923. The  m5C-LPS 
f o r m u l a  w a s  c a l c u l a t e d  a s  f o l l o w s :  Risk Score = (−1.45488)× ATP2B1− AS1+ 0.78504×

LINC02057+ (−3.09357)× UBAC2− AS1+ 0.09339× CAHM + (−1.19951)× AC064807.1+ (−2.22323)

×AC037459.3+ 0.87974× AC002091.2+ (−0.60497)× AC006329.1+ 0.2869× AC009275.1.

Subsequently, we categorized the 80 ESCC patients into low- and high-risk groups based on the median risk 
score. And the vital status and expression levels of the corresponding 9 lncRNAs in the cohort from TCGA-ESCC 
have presented in Fig. 2E. K–M analysis revealed that the patients in the high-risk group had relatively poorer 
OS and disease-free survival (DFS) compared with the low-risk group (OS: p < 0.0001, DFS: p = 0.064, Fig. 2F,G). 
Moreover, time-dependent ROC curves implied that  m5C-LPS exhibited a promising ability to predict prognosis 
in the TCGA-ESCC cohort (1-year AUC = 0.839, 2-year AUC = 0.919, 3-year AUC = 0.898; Fig. 2H).

Validation of  m5C‑LPS in the cohort from the GEO database. To validate the prognostic value of 
 m5C-LPS, we calculated risk scores for another 60 ESCC patients from the GSE53622 cohort using the same 
formula. ESCC patients were divided into low- and high-risk groups according to the medium value. The dis-
tribution of the risk score, survival status, and lncRNAs expression showed that patients with higher risk scores 
had shorter OS and higher mortality status (Fig. 2I). Consistent with the findings in the TCGA-ESCC cohort, 
patients in the high-risk group presented significantly poorer prognoses (p = 0.012, Fig. 2J). And the AUC of the 
 m5C-LPS was 0.7 at 2 years, 0.715 at 3 years, and 0.79 at 4 years (Fig. 2K).

Co‑expression status and differential expression of  m5C‑related lncRNAs. We examined the co-
expression status and differential expression of the 9  m5C-related lncRNAs. The Sankey plot showed one-to-one 
matches between the 7  m5C genes (5 writers: DNMT1, NSUN3, NSUN5-7; 2 erasers: TET1-2) and the 9 lncRNAs 
used in constructing the  m5C-LPS. Additionally, the Sankey plot also depicted the risk type of each lncRNA (risk 
lncRNAs: AC002091.2, AC009275.1, CAHM, and LINC02057.1; protect lncRNAs: AC0006329.1, AC037459.3, 
AC064807.1, ATP2B1-AS1, and UBAC2-AS1, Fig. 3A). Moreover, the correlation circle plot revealed a general 
positive correlation among these  m5C-related lncRNAs, except for CHAM and AC037459.3 had negative rela-
tionship with AC009275.1 and LINC02057, and UBAC2-AS1 showed negative correlation with AC002091.2 
(Fig. 3B). Then, we compared the expression levels of these lncRNAs in normal esophageal and ESCC samples 
and observed that 7 lncRNAs were upregulated and 1 lncRNA was downregulated in ESCC samples (Fig. 3C).

Subsequently, we performed qRT-PCR using normal esophageal cell line HET-1A and ESCC cell lines TE-1 
and KYSE150. The boxplot revealed that the upregulation of LINC02057, UBAC2-AS1, CAHM, AC002091.2, 
AC006329.1, and AC009275.1 in ESCC cells, while AC037459.3 was downregulated in ESCC cells (Fig. S3A). 
And we also detected the expression of these lncRNAs in ESCC and adjacent normal tissues and found that 
most of lncRNAs were upregulated in ESCC tissues (Fig. S3B). These results indicated that the expression pat-
terns of  m5C-related lncRNAs are consistent with the findings from the TCGA database. Since AC002091.2 was 
upregulated in ESCC cell lines and tissues and was of great prognostic value for ESCC patients, we subsequently 
investigated the relationship between the expression of AC002091.2 and patients’ survival. The FISH results 
showed that AC002091.2 was located in the cytoplasm (Fig. 3D). And K–M plot revealed that patients with 
higher AC002091.2 expression had relatively poor prognosis (Fig. 3E, p = 0.0028).

Correlation of the risk score acquired from  m5C‑LPS and clinicopathological parameters. To 
evaluate the clinical significance of  m5C-LPS, we assessed its association with various clinicopathological param-
eters of ESCC. Subgroup analysis stratified by T stage revealed a significantly higher risk score in T4 ESCC 
patients compared to T3 ESCC patients (p = 0.038, Fig. 4A). Stratification by M stage indicated an increased risk 
score in M1 patients, although the difference did not reach statistical significance (p = 0.15, Fig. 4B). No signifi-
cant differences were observed between age, gender, race, tumor location, histologic grade, N stage, stage, reflux 
history and risk score (p > 0.05, Fig. S4A–G, Fig. 4C). Besides, ESCC patients with alcohol history exhibited a 
significantly elevated risk score than those without alcohol history (p = 0.022, Fig. 4D), while ESCC patients 
with or without smoking history had similar risk score (p = 0.71, Fig. S4H). In subgroup analysis stratified by 
adjuvant postoperative therapy, there was a trend towards a higher risk score in the pharmaceutical therapy and 
radiotherapy subgroup, although statistical significance was not achieved (p = 0.069 and 0.19, Fig. 4E,F). And 
ESCC patients with or without complete response after radiotherapy exhibited comparable risk scores (p = 0.47, 
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Figure 2.  Identification and validation of the  m5C-related lncRNAs prognostic signature  (m5C-LPS) based on the cohort of 
TCGA-ESCC and GSE53622. (A,B) The minimum criterion of the LASSO regression algorithm was used to identify the most robust 
prognostic  m5C-related lncRNAs. (C) Forest plot presenting the hazard ratio (HR) and 95% confidence interval (CI) of the 9 lncRNAs 
by the multivariate Cox regression. (D) The coefficients of the 9 lncRNAs contained in the  m5C-LPS formula. (E) The distributions of 
the risk score, vital status, overall survival (OS), and expression levels of the 9  m5C-related lncRNAs in low- and high-risk groups in 
the cohort from TCGA-ESCC. (F) Kaplan–Meier (K–M) analysis demonstrated that patients with higher risk scores exhibited worse 
overall survival in the cohort from TCGA-ESCC. (G) K–M analysis demonstrated that patients with higher risk scores exhibited 
worse disease-free survival in the cohort from TCGA-ESCC. (H) The area under the curve (AUC) of the time-dependent ROC curves 
measures the predictive value of the risk score in the cohort from TCGA-ESCC. (I) The distributions of the risk score, vital status, 
overall survival (OS), and expression levels of the 9  m5C-related lncRNAs in low- and high-risk groups in the cohort from GSE53622. 
(J) K–M analysis demonstrated that patients with higher risk scores exhibited worse overall survival in the cohort from GSE53622. (K) 
AUC of the time-dependent ROC curves measuring the predictive value of the risk score in the cohort from GSE53622.
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Fig. S4I). Furthermore, ESCC patients with tumor presence, recurred/progressed, and deceased status had sig-
nificantly increased risk scores (p < 0.05, Fig. 4G–I), consistent with previous results highlighting the value of 
 m5C-LPS as a valuable prognostic marker.

Evaluation of the prognostic value of  m5C‑LPS and construction of a nomogram. Univariate 
and multivariate Cox regression analyses were conducted to determine the independent prognostic value of 
 m5C-LPS and other clinicopathological parameters for ESCC patients. The forest plots showed that the N stage 
and risk score were independent factors for the poor prognosis (p < 0.05, Fig. 5A,B). Subsequently, we used time-
dependent ROC curves to evaluate the prognostic potential of the risk score, age, gender, grade, stage, and TNM 
stage. The AUC values of the risk score were higher than those of other clinicopathological factors for 1-, 2-, and 

Figure 3.  Co-expression status and expression level of  m5C-related lncRNAs in TCGA-ESCC database and 
ESCC cell lines. (A) Sankey plot showing one-to-one matches between  m5C genes,  m5C-related lncRNAs, and 
their risk type. (B) Circle plot presenting the co-expression status of the 9  m5C-related lncRNAs with coefficients 
annotated. (C) The expression level of  m5C-related lncRNAs in normal esophageal and ESCC tissues based on 
TCGA-ESCC database. (D) Representative Fluorescence in situ hybridization (FISH) images of AC002091.2 in 
ESCC tissues. Scale bars represent 50 μm. (E) K–M plot for overall survival grouped by AC002091.2 expression 
in 54 ESCC patients. *p < 0.05, **p < 0.01, ***p < 0.001.
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3-year survival (Fig. 5C). These findings highlight the significant value of the risk score in predicting patient 
prognosis. Meanwhile, a nomogram was constructed based on the risk score and N stage of each ESCC patient, 
which could be a quantitative tool to predict 1-, 2-, and 3-year survival probability (Fig. 5D). Moreover, the cali-
bration curves showed partial agreement between the predicted and observed survival probabilities (Fig. 5E).

Exploration of immune microenvironment affected by  m5C‑LPS. We further investigated the rela-
tionship between the immune microenvironment and the risk score obtained from  m5C-LPS. The relative abun-
dance of immune and stromal cells of each sample was estimated using Estimate, Cibersort, ssGSEA, and xCELL 
algorithms. The heatmap revealed the different distribution patterns of various cell types between the low- and 
high-risk groups (Fig. 6A). Comparison of the Cibersort results revealed significant enrichments of  CD8+ T 
cells, memory activated  CD4+ T cells, and T follicular helper cells in the low-risk group, while M2 macrophages 
were found to be enriched in the high-risk group (Fig. 6B). The ssGSEA results showed that central memory 
 CD8+ T cell, gamma delta T cell, macrophage, NK cell, plasmacytoid dendritic cell, Tregs, and T follicular helper 
cell were significantly enriched in the high-risk group (p < 0.05, Fig. S5A). However, there were no significant 
differences in stromal cells between the low- and high-risk groups (Fig. S5B). The correlation heatmap identified 
three main clustering modules: function immune cells, resting immune cells, and stromal cells (Fig. S6A). Fur-
thermore, the correlation coefficient indicated a negative association between the risk scores and multiple well-
known immune checkpoint molecules, except for IDO1 (Fig. 6C). The histogram and heatmap revealed inverse 
relationships between the risk score and most immunomodulators, including chemokines, receptors, MHC, 
immunoinhibitors, and immunostimulators (Fig. 6D, Fig. S6B). These findings indicated that the activation of 

Figure 4.  The discrepancy in risk scores between different subgroups: T stage (A), M stage (B), stage (C), 
alcohol history (D), adjuvant postoperative pharmaceutical therapy (E), adjuvant postoperative radiotherapy 
(F), neoplasm status (G), disease free status (H), and overall survival status (I).
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Figure 5.  Verification of the independent prognostic value of  m5C-LPS and construction of nomogram. 
Univariate (A) and multivariate (B) Cox regression analyses of the prognostic value of risk scores and 
other clinical parameters. (C) The ROC curves show the predictive value of the risk score and other clinical 
characteristics. (D) Nomogram composed of N stage and risk score was constructed to predict 1-, 2-, and 
3-year survival rates. (E) Calibration plots were used to evaluate the nomogram for predicting 1-, 2-, and 3-year 
survival rates.
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Figure 6.  Investigation of immune status in different risk groups. (A) Heatmap revealing the immune and 
stromal cells infiltration in ESCC immune microenvironment. (B) Box plots showing the infiltration of the 
immune cells based on the Cibersort algorithm in different risk groups; *p < 0.05 and **p < 0.01. (C) Estimation 
of the coefficients for risk score with immune checkpoint genes. (D) Histogram showing the relationships 
between risk score and chemokines, receptors, MHC, immunoinhibitors, and immunostimulators.
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immune components in the tumor microenvironment may contribute to better outcomes for patients in the 
low-risk group.

Comprehensive analysis of enriched pathways between different risk groups. To elucidate the 
biological functions of the differentially expressed genes associated with  m5C-LPS, we performed GO, KEGG, 
and Reactome enrichment analyses. The prominent GO terms in molecular function (MF), cellular component 
(CC), and biological process (BP) were catalytic activity acting on RNA, nuclear speck, and ncRNA metabolic 
process, respectively (Fig.  S7A). Furthermore, the top five enriched KEGG terms included spliceosome, cell 
cycle, ribosome biogenesis in eukaryotes, RNA degradation, and Homologous recombination (Fig. S7B). The 
three main key modules identified in the Reactome analysis were rRNA processing, mRNA splicing and process-
ing, and DNA damage repair response (Fig. S7C).

The genomic alteration difference between two  m5C‑LPS groups. By analyzing the MuTect2 
mutation annotation files, we identified the top 20 most frequently mutated genes in the low- and high-risk 
groups, as illustrated in Fig. S8A,B, respectively. The waterfall plots revealed that TP53, TTN, and KMT2D were 
most frequently mutated in both groups. However, the ranking of mutated genes showed slight changes between 
the two groups. For example, the mutation frequency of MUC16 was ranked third in the high-risk group (20%), 
but it dropped out of the top 20 mutated genes in the low-risk group. Furthermore, the mutation rates of seven 
oncogenic pathways (NOTCH, WNT, PI3K, MYC, TP53, TGF-beta, Cell-Cycle) were higher in the high-risk 
group compared to the low-risk group (Fig. S8C,D). These findings suggested that ESCC patients in the low- and 
high-risk groups may have different mutation driver genes and pathways.

m5C‑LPS predict therapeutic response in ESCC patients. Given that chemotherapy and radiother-
apy are crucial in ESCC treatments, and DNA damage repair response plays a pivotal role in regulating chemo-
radiotherapy response, we attempted to evaluate the therapeutic response of the low- and high-risk groups. We 
estimated the IC50 levels of several commonly used chemotherapeutic drugs in each patient using CGP, CTRP, 
and GDSC-derived drug response data. The heatmap showed that the estimated IC50 levels of these drugs were 
reduced in the low-risk group, indicating that patients in low-risk group were more sensitive to chemotherapy 
(Fig. 7A). Boxplots further demonstrated that patients in the low-risk group exhibited greater sensitivity to five 
CGP-derived compounds (5-fluorouracil, cisplatin, docetaxel, vinorelbine, and etoposide), two CTRP-derived 
compounds (docetaxel and gemcitabine), and four GDSC-derived compounds (docetaxel, paclitaxel, oxalipl-
atin, and vinorelbine). And significant differences in the IC50 level of docetaxel were observed among three 
database-derived results (Fig. 7B–D). Besides, the radiation-sensitivity index (RSI) increased in the high-risk 
group, suggesting that patients in the high-risk group might require a higher radiotherapy dose, although there 
was no statistical significance (p = 0.23, Fig. 7E).

Discussion
ESCC accounts for about 90% of the incidence of EC annually with a dismal 5-year survival rate of 5–25% 
 worldwide1,3,43. To date, molecular-related target therapy had emerged as new therapeutic strategies for prolong-
ing patients’ prognosis. In recent years, RNA post-transcriptional methylation modification, including  m6A,  m5C, 
and  m1A, has arrested substantial attention among researchers  worldwide44,45. Over the past decade, numerous 
 m5C regulators have been found to play pivotal roles in regulating gene expression and disease progression, 
including  cancer46,47. For instance, NSUN2, which plays crucial roles in tissue homeostasis, spindle stability, and 
early embryogenesis as a nucleolar protein, is overexpressed and possesses prognostic survival value in various 
 tumors48,49. While the function of  m5C modification in other cancers has been extensively  studied12,50,51, its effect 
on ESCC has not been fully explored. In the present study, we observed the upregulation of 11  m5C regulators 
in ESCC tissues compared to normal adjacent tissues (Fig. 1A). Thus, we aimed to investigate the role of  m5C 
in ESCC further.

Existing evidences have testified that  m5C methylated lncRNA can regulate the occurrence and development 
of  cancer20. The “writer” NSUN2 modifies the lncRNA H19 and recruits the oncoprotein G3BP1 in hepatocellular 
carcinoma, suggesting that  m5C modifications are involved in malignant tumor  progression52. Furthermore, as 
dysregulation of lncRNAs plays a crucial role in tumor development, and they can be detected in easily accessible 
bodily fluids like urine, saliva, and serum, they have great potential as prognostic biomarkers and therapeutic 
targets for  tumors53. We believe that investigating the interplay between  m5C regulators and lncRNAs will become 
a promising area for identifying prognostic markers and therapeutic targets for cancers. Nonetheless, the role of 
lncRNAs involved in  m5C regulation in ESCC remains unclear. To our knowledge, this is the first comprehensive 
analysis of the function of  m5C-related lncRNAs in ESCC.

In this study, we evaluated the prognostic value of  m5C-related lncRNAs in ESCC patients. A prognostic 
model based on 9  m5C-related lncRNAs was constructed using univariate and LASSO Cox regression analyses, 
and a formula for the calculation of risk score was established. The prognostic value of  m5C-LPS was then tested 
in both training (TCGA-ESCC) and validation (GSE53622) datasets (Fig. 2). These results suggest that  m5C-LPS 
could serve as a powerful tool for predicting the prognosis of ESCC patients.

Limited information is currently available on the lncRNAs identified in our study. However, the functions 
that have been reported for CAHM, ATP2B1-AS1, and UBAC2-AS1 provide important insights into the potential 
roles of these 9 novel  m5C-related lncRNAs. The well-established functions of CAHM, which is also known as 
colorectal adenocarcinoma hypermethylated, as a prognostic biomarker in colorectal and thyroid  carcinoma54,55, 
and its regulation by DNMT1 in glioma cells, suggest its involvement in glioma grade, subtype, malignant 
behavior, and  prognosis56. Similarly, the involvement of ATP2B1-AS1 in the NF-kappa-B signaling pathway, 
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Figure 7.  Identification of therapeutic response features of different risk groups. (A) Heatmap revealing IC50 
for chemotherapeutic agents and radiation-sensitivity index (RSI) for radiotherapy. Box plots showing the 
sensitivity of selected chemotherapeutic agents for patients in low- and high-risk groups based on CGP (B), 
CTRP (C), and GDSC (D) databases. (E) Boxplot showing the radiotherapy sensitivity for patients in low- and 
high-risk groups.
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which plays a crucial role in tumorigenesis, particularly in gastrointestinal  cancers57,58, suggests its potential as 
a target for therapeutic intervention. Furthermore, the close association between UBAC2-AS1 and autophagy 
genes highlights its potential involvement in cancer-related processes and its possible therapeutic  implications59. 
Our study has revealed the overexpression of these lncRNAs in ESCC. However, further research is needed to 
elucidate the precise functions and mechanisms of these lncRNAs. Nonetheless, our study provides a foundation 
for exploring these lncRNAs as potential therapeutic targets in cancer treatment.

Due to the association between  m5C-LPS and immune status being weak, we further investigated the signaling 
pathways and biological functions related to  m5C-LPS. Our analysis revealed a significant enrichment of functions 
associated with mRNA and ncRNA processing, as well as DNA damage repair response. These findings align with 
the established functions of  m5C and lncRNAs previously reported in the  literature14,60–62. For instance, the mRNA 
and translation levels enhanced when NSUN6-targeted mRNAs were  methylated63. TRDMT1–FMRP–TET1-
mediated  m5C regulation can promote transcription-coupled homologous  recombination64. And TRDMT1 can 
mediate  m5C mRNA methylation at DNA damage sites and regulate homologous  recombination60. Besides, DNA 
damage repair response can regulate the response effectiveness of  chemoradiotherapy65,66, which is the mainstay 
for ESCC  treatment43,67, we evaluated the therapeutic response of ESCC patients in the TCGA-ESCC cohort. Our 
analysis demonstrated that patients in the low-risk group exhibited a higher sensitivity to chemoradiotherapy. 
Additionally, studies in leukemia have shown that NSUN3 and DNMT2 can regulate the chromatin structures by 
directly binding hnRNPK and further modulating 5-Azacitidine  response68. These observations provide valuable 
insights into the potential role of  m5C-LPS as a predictive marker and highlight the need for further exploration 
of  m5C function in cancer treatment.

This study has several limitations that should be acknowledged. Firstly, the small sample size, retrospective 
nature, and non-uniform patient source and race of the TCGA-ESCC and GSE53622 cohorts may have influenced 
the results. And the absence of an independent clinical cohort limits the validation of the prognostic signature. 
Thus, more high-quality cohort data are needed in the future to validate the prognostic value and chemoradio-
therapy response of  m5C-LPS. Secondly, although we detected the expression of the 9 identified lncRNAs in 
 m5C-LPS in ESCC and normal esophageal cell lines, further in vitro and in vivo experiments are required to 
support our in silico results.

In this study, we constructed and validated a prognostic signature based on 9  m5C-related lncRNAs for 
ESCC patients. And we found that stratification of ESCC patients based on  m5C-LPS is associated with different 
clinical features, immune status, genomic variants, oncogenic pathways, enrichment pathways, and therapeutic 
responses. In summary, our study provides a valuable tool for understanding the potential role of  m5C-related 
lncRNAs and guiding personalized management of ESCC.

Data availability
The data presented in this study can be found in TCGA (https:// portal. gdc. cancer. gov/ repos itory? facet Tab= cases) 
and GSE53622 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= gse53 622) databases.
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