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Functionalization 
of octaspherosilicate 
 (HSiMe2O)8Si8O12 
with buta‑1,3‑diynes 
by hydrosilylation
Kinga Stefanowska 1, Jakub Nagórny 1,2, Jakub Szyling 1 & Adrian Franczyk 1*

Hydrosilylation with octaspherosilicate  (HSiMe2O)8Si8O12 (1) has provided hundreds of molecular and 
macromolecular systems so far, making this method the most popular in the synthesis of siloxane‑
based, nanometric, cubic, and reactive building blocks. However, there are no reports on its selective 
reaction with 1,3‑diynes, which allows for the formation of new products with unique properties. 
Therefore, herein we present an efficient protocol for monohydrosilylation of symmetrically and 
non‑symmetrically 1,4‑disubstituted buta‑1,3‑diynes with 1. The compounds obtained bear double 
and triple bonds and other functionalities (e.g., Br, F, OH,  SiR3), making them highly desirable, giant 
building blocks in organic synthesis and material chemistry. These compounds were fully characterized 
by 1H, 13C, 29Si, 1D NOE, 1H–13C HSQC NMR, FT–IR, and MALDI TOF MS, EA, UV–Vis, and TGA analysis. 
The TGA proved their high thermal stability up to 427 ℃  (Td

10%) for compound 3j.

Polyhedral oligospherosilicate  (HSiMe2O)8Si8O12 (1) is a commercially available compound which, thanks to 
its unique three-dimensional, cubic, and nanometric structure, its physicochemical, and biological properties, 
and the possibility for its functionalization by hydrosilylation reactions, is of great interest to researchers from 
academia and  industry1–11. This is highlighted by the huge number of scientific and patent publications on it, 
which currently exceeds five hundred. The literature describes 1 as a reactive platform for the synthesis of multi-
functional, hybrid (inorganic–organic) molecules or macromolecules which have been applied in many different 
 fields12–24. The most recognized works focus on the preparation of liquid  crystals25–29, coating  materials30–33, 
electrolytes for lithium  batteries34–36, gate dielectric for organic thin film  transistors37,38, materials for imprint 
 lithography39–42, anticancer drug  carriers43, optoelectronic  materials44–59, dental  materials60,61,  dyes62,63, detectors 
for  explosives64, surface acoustic wave  sensors65,  surfactants66,67,  catalysts68,69, Janus  particles70,  nanoreactors71,72, 
self-healing  materials73–75,  polymers76–80,  membranes81,82, and functional porous materials for gas  transport83 or 
proton  exchange84. Such a wide application of 1, especially in comparison to its structural analog polyhedral 
oligosilsesquioxane (POSS)  H8Si8O12, results from a much higher activity of 1 in the hydrosilylation process. 
In the case of  H8Si8O12, the close proximity of the silicon-organic cage to the Si–H bond, as well as its poor 
solubility in organic solvents, makes it much less reactive and thus less often used. Both compounds should be 
considered as representatives of the same POSS family, since they meet the general formula  (RSiO3/2)n (where 
for octaspherosilicate 1 R =  OSiMe2H) typical for POSS, and as a consequence, they possess a cubic cage in their 
structure. Therefore, the differentiation of their properties will depend only on the type of eight R groups. The 
modification of 1 led to novel systems that were obtained mainly by industrially applied hydrosilylation reaction, 
which facilitates the functionalization of systems containing Si–H bonds with reagents possessing carbon–carbon 
double (C=C) or triple bonds (C≡C)85–87. One invaluable advantage of this process results from the fact that 
it is tolerant to a wide spectrum of functional groups. This makes it a powerful and versatile approach. By the 
application of one compound (in this case 1), hundreds of products with distinctly different physicochemical 
and biological properties can be obtained. Although hydrosilylation of alkenes and alkynes with 1 has been 
well  studied88–95, there are no reports focusing on the hydrosilylation of C≡C bonds in symmetrically and 
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non-symmetrically 1,4-disubstituted buta-1,3-diynes. The development of an octaspherosilicate 1 functionaliza-
tion method is justified primarily due to the fact that it produces new products with novel and unique properties, 
especially those applied in optoelectronics. Additionally, using 1,3-diynes in synthesis, it is possible to introduce 
both the unsaturated C=C bond (similar to the reaction with alkynes) and the C≡C triple bond into the product 
structure in a single reaction step. The C≡C triple bond can be subsequently modified in e.g., hydrosilylation or 
hydroboration reactions, providing new compounds with unique properties.

The lack of reports on the hydrosilylation of conjugated 1,3-diynes96 with 1 might be caused by the fact that 
their selective transformation is a challenging task. Due to the presence of two C≡C bonds in the 1,3-diyne struc-
ture and at the same time, eight Si–H bonds in octaspherosilicate 1, the formation of many products is possible 
(silylated 1,3-enynes, 1,3-dienes, allenes, polymers, and cyclic compounds), and a complex mixture of various 
products is often  obtained97–105. To carry out the hydrosilylation in a regio- and stereoselective manner, many 
factors, such as the type of catalyst, the structure of reagents, and the process conditions, need to be carefully 
selected. While the hydrosilylation of alkynes with silanes or silsesquioxanes, including 1, has been described in 
several  papers88–95, there are only a few examples of the hydrosilylation of buta-1,3-diynes98,99,101,106–110, among 
which two have described the reaction with silsesquioxanes  (HSiMe2O)(i-Bu)7Si8O12 and  (HSiMe2O)3R′7Si7O9. 
The first research was focused on the hydrosilylation of 1,4-symmetrically substituted 1,3-diynes with mono-
functional silsesquioxane  (HSiMe2O)(i-Bu)7Si8O12 in the presence of Pt catalysts (Karstedt’s catalyst  (Pt2(dvs)3), 
Pt(PPh3)4,  PtO2, or Pt/SDB (SDB- styrene-divinylbenzene copolymer))99. It was found that the process selec-
tivity depended on the catalyst type and the reagent structure and its concentration. Hydrosilylation of steri-
cally hindered buta-1,3-diynes (2,2,7,7-tetramethylocta-3,5-diyne, 2,7-di(trimethylsiloxy)-2,7-dimethylocta-
3,5-diyne using equimolar quantities of reagents in the presence of Karstedt’s catalyst led to the formation 
of silsesquioxane-substituted 3-en-1-ynes with high selectivity (93–100%). Meanwhile, the monohydrosilyla-
tion of linear hexa-2,4-diyne and less bulky diynes e.g., 1,4-diphenylbuta-1,3-diyne, 1,4-dibromophenylbuta-
1,3-diyne, 1,6-bis(morpholino)hexa-2,4-diyne, and 10,12-docosadiyndioic acid dimethyl ester using the same 
catalyst resulted in a mixture of mono- and bishydrosilylated products. Bisadducts were successfully synthesized 
through the hydrosilylation of less sterically hindered 1,3-diynes with silsesquioxane  (HSiMe2O)(i-Bu)7Si8O12 
applying a molar ratio of reagents of 2:1 in the presence of Karstedt’s catalyst. The second article discusses the 
hydrosilylation of both symmetrical and unsymmetrical buta-1,3-diynes with trifunctional incompletely con-
densed silsesquioxanes (IC-POSSs  (HSiMe2O)3R′7Si7O9 with i-Bu (R′ = i-C4H9) or i-Oct (R′ =  (H3C)3CH2C(H3C)
HCH2C) substituents. The reactions were performed in the presence of Karstedt’s  catalyst106. For symmetrically 
substituted 1,3-diynes (1,4-diphenylbuta-1,3-diyne, 1,4-di(4-fluorophenyl)buta-1,3-diyne, and 1,4-bis(thiophen-
3-yl)buta-1,3-diyne), an excess of diyne (6–12 mol) to silsesquioxanes was required. On the other hand, using a 
stoichiometric amount of 1,3-diyne in the hydrosilylation of unsymmetrical diynes with Si(i-Pr)3 groups led to 
the formation of monohydrosilylated products with a very high selectivity of 99%.

The excellent results from the above-described research encouraged us to take one step further and investi-
gate a much more challenging reagent 1 with eight Si–H bonds. The selective addition of eight Si–H bonds of 
octaspherosilicate 1 to only one of two C≡C bonds in 1,3-diynes is much more complex, and experience gained 
from simpler models seemed to be essential to accomplish this task. Moreover, the advantage of using octas-
pherosilicate over mono- and trifunctional silsesquioxanes is that we can introduce up to 16 identical or differ-
ent functional groups into a hybrid, cubic structure in a single reaction step. Additionally, the physicochemical 
properties of the resulting compounds will be determined by the type of substituents attached to the C=C and 
C≡C bonds, as well as the inorganic core. In mono- and trifunctional systems, 7 alkyl groups also have a strong 
impact on how they are defined. Keeping in mind very rich applications of alkenyl-octaspherosilicates59, the 
octaspherosilicates with 3-en-1-yl groups obtained here or their derivatives are highly desirable and can become 
systems with similar advantages applicable in similar fields of science. Therefore, herein we present efficient 
synthetic methods for obtaining new octaspherosilicates with 3-en-1-yl groups.

Results and discussion
For the study, we conducted reactions of thirteen, structurally different 1,3-diynes (2a–m) with octaspherosilicate 
 (HSiMe2O)8Si8O12 (1) (Fig. 1, Table 1). The processes were carried out in the presence of commercially available 
Karstedt’s catalyst and Pt(PPh3)4 in an air atmosphere, without any purification of the acquired chemicals, at 
different temperatures (r.t-100 ℃). The progress of the hydrosilylation process was monitored in real-time by 
in situ FT-IR spectroscopy (by tracking changes in the area of the band at 880–930  cm−1, assigned to stretching 
vibrations of the Si–H bond). The representative illustration of the measurements provided by in situ FT-IR 
showing the lowering of the intensity of signals from the Si–H group during the hydrosilylation process is 
presented in Fig. 2. The decay in the band was observed with time and on this basis, the conversions of 1 in the 
appropriate reactions were determined. As a result, kinetic plots for hydrosilylation of 1,3-diynes 2b–c (Fig. 3) 
and 2e–m (Fig. 4) were obtained. On the other hand, the process selectivity was calculated using 1H and 29Si 
NMR analysis. All these analytical methods allowed us to examine the influence of the 1,3-diyne structure and 
various reaction conditions on the stereoselectivity and progress of the hydrosilylation process. The use of in situ 
FT–IR spectroscopy was crucial for determining the time required to obtain the total conversion of the reagents. 
The collected data is summarized in Table 1.

First, we investigated the hydrosilylation of symmetrical 1,4-bis(trimethylsilyl)buta-1,3-diyne (2a) with 
octaspherosilicate (1) in the presence of Karstedt’s catalyst and Pt(PPh3)4 (Table 1, entries 1–10). The reac-
tion in the presence of Karstedt’s catalyst (8 ×  10–3 mol of Pt per mol of SiH, the ratio [1]:[2]  = 1:8, at 100 ℃, in 
toluene) required only 30 min to reach complete conversion but resulted in a complex mixture of mono- and 
bisadducts, as well as other side-products (Table 1, entry 1). The same set of reagents tested in the presence of 
Pt(PPh3)4  (10–2 mol of Pt per mol of SiH, similar reaction conditions (Table 1, entry 10)) gave a complex mixture 
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of products after 24 h. Thus, both catalysts turned out to be non-selective for the hydrosilylation reaction of 2a 
under the tested conditions at 100 ℃ and reagents ratio of [1]:[2]  = 1:8. To optimize the hydrosilylation of 2a 
with 1, we started by lowering the reaction temperature to room temperature, using the Karstedt’s catalyst at a 
concentration of 8 ×  10–3 mol of Pt per mol of SiH (Table 1, entry 2). This led to the formation of product 3a with 
a selectivity of 95%, although the conversion of 1 after 24 h was only 77%. Product 3a was selectively obtained in 
the presence of Karstedt’s catalyst using a reagent ratio of [1]:[2]  = 1:16, but the conversion was still incomplete 
(82%), even after 96 h (Table 1, entry 4). It was proved that room temperature was crucial to achieving high 
process selectivity to product 3a when Karstedt’s catalyst was used. At 100 ℃, even with a four-fold excess of 
diyne 2a, a mixture of compounds was observed (Table 1, entry 5). Similar findings were observed using less 
active Pt(PPh3)4. The lower the temperature, the higher the selectivity was observed (72% toward product 3a at 
40 °C), (Table 1, entries 6–7). Notably, the higher catalyst concentration of 2 ×  10–1 mol of Pt per mol of Si–H 
was used in this reaction. Product 3a was selectively obtained with a reaction yield of 94% by carrying out the 
process for 72 h at 40 ℃ and using a two-fold excess of 1,3-diyne 2a per Si–H bond (Table 1, entry 9). Optimized 
conditions allowed the desired product 3a to be obtained with a very good 80% of isolated yield. It transpired that 
the use of a high concentration of Pt(PPh3)4 (which is less active than Karstedt’s catalyst) at a low temperature 
and a small excess of 1,3-diyne was the solution for the highly selective formation of the targeted product. We 
would like to underline that selectivity was the overriding goal for our studies, as the formation of by-products 
makes the separation of targeted compounds very difficult, due to their structural similarity to products 3 and 
their high molecular weights. In the next step of our research, the hydrosilylation of more sterically crowded 
1,4-bis(tri(isopropyl)silyl)buta-1,3-diyne (2b) and 2,2,7,7-tetramethylocta-3,5-diyne (2c) with 1 was performed. 
The processes were carried out in the presence of Karstedt’s catalyst (8 ×  10–3 mol of Pt per mol of SiH) with the 
use of reagents ratio [1]:[2] = 1:8 at 100 ℃, leading to the products 3b and 3c with the 96% and 95% of selectivity, 
respectively (Table 1, entries 11 and 14). The progress of hydrosilylation of diyne 2b with 1 was controlled by 
the in situ FT-IR spectroscopy and showed that the reaction took 7 h and 20 min, while for diyne 2c, 48 h were 
needed for the total conversion of the reagents. To increase the selectivity of the processes with 2b and 2c, the 
reactions were carried out using a little excess of 2 ([1]:[2]  = 1:10). The processes provided products 3b and 3c 
exclusively. The reaction with 2b was carried out for 24 h, while the process with 2c was completed in 16 h and 
20 min (Table 1, entries 12 and 15).

In addition, the kinetics of the hydrosilylation processes of 2b with octaspherosilicate 1 were compared for 
both catalysts  Pt2(dvs)3 and Pt(PPh3)4 under the same reaction conditions (Fig. 3a and b). It turned out that the 
process carried out in the presence of Pt(PPh3)4 also resulted in the formation of product 3b with lower selectivity, 
and it took an additional 40 h compared to the application of a more active Karstedt’s catalyst. Another example of 
hydrosilylation involved a symmetrical 1,4-diphenylbuta-1,3-diyne (2d). Due to the fact that the use of Karstedt’s 
catalyst led to the formation of a complex mixture of products, based on the above-described optimized reac-
tion conditions for 1,3-diyne 3a, the hydrosilylation of 2d with 1 was carried out in the presence of Pt(PPh3)4 

Figure 1.  Hydrosilylation of buta-1,3-diynes 2a–m with octaspherosilicate 1. Isolated yields of obtained 
products are presented in brackets.
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Table 1.  Hydrosilylation of buta-1,3-diynes 2a–m with octaspherosilicate 1. Reaction conditions:  ms(1)/
Vtol. = 50 mg  mL−1 (where  mS(1) is mass of the substance 1). Conversion of reagents was determined by in situ 
FT-IR and confirmed by 1H NMR and FT-IR. The selectivity for all experiments was determined by 1H, 13C, 
and 29Si NMR. For selected products, 1D NOE, 1H-13C HSQC NMR was made. a The reaction time was not 
determined based on in-situ FT–IR experiments.

Entry Diyne R1 R2 [1]:[2]:[Pt] [Pt] Temp. [℃] Reaction time Conv. of SiH [%]
Selectivity of 
3/4 [%]

1

2a SiMe3 SiMe3

1:8: 8 ×  10–3

Pt2(dvs)3

100 30 min  > 99 Complex 
mixture

2 24 h 00 min 77 95/5

3
1:16: 8 ×  10–3 r.t.

24 h 00  mina 79  > 99/0

4 96 h 00  mina 82  > 99/0

5 1:32: 8 ×  10–3 100 24 h 00  mina  > 99 Complex 
mixture

6
1:8:2 ×  10–1

Pt(PPh3)4

40

24 h 00  mina 73 72/28

7 72 h 00  mina  > 99 72/28

8
1:16:2 ×  10–1

24 h 00  mina 77  > 99/0

9 72 h 00  mina 94  > 99/0

10 1:8:8 ×  10–2 100 24 h 00  mina  > 99 Complex 
mixture

11

2b Si(i-Pr)3 Si(i-Pr)3

1:8:8 ×  10–3

Pt2(dvs)3 100
7 h 20 min  > 99 96/4

12 1:10:8 ×  10–3 24 h 00  mina  > 99 99/1

13 1:8:8 ×  10–3 Pt(PPh3)4 100 47 h 30 min  > 99 93/7

14
2c t-Bu t-Bu

1:8:8 ×  10–3

Pt2(dvs)3 100
48 h 00  mina  > 99 95/5

15 1:10:8 ×  10–3 16 h 20 min  > 99  > 99/0

16 2d Ph Ph 1:16:2 ×  10–1 Pt(PPh3)4 40 96 h 00  mina  > 99  > 99/0

17
2e SiMe3 Ph

1:8:8 ×  10–3 Pt2(dvs)3 100 31 h 10 min  > 99 98/2

18 1:8:8 ×  10–2 Pt(PPh3)4 100 48 h 00  mina  > 99 97/3

19
2f Si(i-Pr)3 Ph

1:8:8 ×  10–3 Pt2(dvs)3 100 17 h 00 min  > 99  > 99/0

20 1:8:8 ×  10–3 Pt(PPh3)4 100 26 h 00 min  > 99  > 99/0

21 2g Si(i-Pr)3 PhBr-4 1:8:8 ×  10–3 Pt2(dvs)3 100 22 h 45 min  > 99  > 99/0

22 2h Si(i-Pr)3 PhCF3-4 1:8:8 ×  10–3 Pt2(dvs)3 100 27 h 00 min  > 99  > 99/0

23 2i Si(i-Pr)3 Ph-t-Bu-4 1:8:8 ×  10–3 Pt2(dvs)3 100 26 h 30 min  > 99  > 99/0

24
2j Si(i-Pr)3 Thienyl

1:8:8 ×  10–3 Pt2(dvs)3 100 10 h 30 min  > 99  > 99/0

25 1:8:8 ×  10–3 Pt(PPh3)4 100 26 h 00 min  > 99  > 99/0

26 2k Si(i-Pr)3 C6H13 1:8:8 ×  10–3 Pt2(dvs)3 100 5 h 40 min  > 99  > 99/0

27 2l Si(i-Pr)3 CH2OPh 1:8:8 ×  10–3 Pt2(dvs)3 100 11 h 00 min  > 99  > 99/0

28 2m Si(i-Pr)3 C(CH3)(OH)C2H5 1:8:8 ×  10–3 Pt2(dvs)3 100 10 h 30 min  > 99  > 99/0

Figure 2.  Hydrosilylation of deca-1,3-diyn-1-yl-tri(isopropyl)silane (2k) with 1 monitored by in situ FT-IR.
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at 40 °C, using an excess of diyne ([1]:[2]  = 1:16). The total conversion of reagents and excellent selectivity to 
3d was observed after 96 h (Table 1, entry 16). Subsequently, the hydrosilylation of a series of unsymmetrically 
substituted diynes 2e-2m with one tri(isopropylsilyl) group in the structure with octaspherosilicate 1 was studied 
(Table 1, entries 17–28). The processes were carried out in the presence of Karstedt’s catalyst (8 ×  10–3 mol of Pt 
per mol of SiH) with the ratio of reagents [1]:[2]  = 1:8 at 100 ℃, leading selectively to products 3. The reactions 
were monitored using in situ FT-IR spectroscopy, which showed that the rate of hydrosilylation of the C≡C 
bond was strongly dependent on the structure of the 1,3-diyne. For reagent 2k, the reaction finished in 5 h and 
40 min, while for 2j, 2l, and 2m, 10–11 h were necessary to observe full conversion. In the case of hydrosilyla-
tion of (phenylbuta-1,3-diyn-1-yl)tri(isopropyl)silane (2f), the process was completed in 17 h. Lower reaction 
rates (22–31 h) were found for hydrosilylation of diynes 2e, 2g–i. The kinetic plots obtained from the in situ 
FT–IR measurements (Fig. 4a and b) illustrated that after the addition of the catalyst to the reaction mixture and 
heating, the fast consumption of reagents took place (62–76%), and finally, the reaction rates decreased slightly 
due to the lower concentration of the reagents. Similar trends were observed for the hydrosilylation of diynes 
2b and 2c. In contrast, the hydrosilylation of 2e was characterized by a short initiation period, where 40% of 
Si–H conversion was observed in just 33 min, followed by moderate consumption of the reagents throughout 
the reaction. The hydrosilylation of diynes 2f and 2j with octaspherosilicate 1 was also tested in the presence of 
Pt(PPh3)4 (Table 1, entries 20 and 25). However, due to the steric hindrances in the structures of both the catalyst 
and reactants, the time required to achieve full conversion of the Si–H bond was increased by 9 h for 2f and 
15 h and 30 min for 2j compared to the same reactions carried out using  Pt2(dvs)3 as a catalyst. Nonetheless, the 
kinetic plots for both processes were consistent with those for reactions carried out in the presence of Karstedt’s 
catalyst. Products 3e–m were isolated in 58–95% yields. The synthetic procedures described above were both 
efficient and straightforward, allowing for the preparation of octafunctional spherosilicates that possess eight 
alkenyl substituents, each with functional groups like 4-bromophenyl, thienyl, silyl, and hydroxyl. These systems 
are prone to further modification via hydrosilylation, hydroboration, or other chemical reactions occurring on 
both unsaturated bonds and functional groups (polymerization reactions, Suzuki–Miyaura, Sonogashira, Heck, 
and Hiyama couplings or for the preparation of molecular and macromolecular star-shaped hybrids or reactive 
or unreactive nanofillers).

All the products obtained were fully characterized by 1H, 13C, 29Si, 1D NOE, 1H–13C HSQC NMR, FT–IR, 
EA, UV–Vis, and MALDI TOF MS, which confirmed their structures. In the case of MALDI TOF MS, during 
ionization, both positive and negative ions can be formed (mainly  H+,  Na+,  K+, a mixture of different adducts). 
For the octaspherosilicates with 3-en-1yl groups obtained here primarily ions stabilized by metal cations (usually 

Figure 3.  Kinetic plots for hydrosilylation of buta-1,3-diyne 2b-c with 1 in the presence of Karstedt’s (0.8 mol% 
Pt) catalyst and Pt(PPh3)4 (0.8 mol% Pt, marked with an asterisk) determined by in situ FT-IR. (a) Full times of 
the processes are presented, (b) the first 30 min of the processes are presented.

Figure 4.  Kinetic plots for hydrosilylation of buta-1,3-diyne 2e-m with 1 in the presence of Karstedt’s 
(0.8 mol% Pt) catalyst and Pt(PPh3)4 (0.8 mol% Pt, marked with an asterisk) determined by in situ FT-IR. (a) 
Full times of the processes are presented, (b) the first 30 min of the processes are presented.
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sodium) were detected. As a result, the molecular weights observed in the spectrums were higher by the mass 
of sodium ([M +  Na]+). The same results were found for the previously characterized octaspherosilicates with 
alkenyl  substituents92. The representative MALDI TOF spectrum of compound 3f is presented in Fig. 5. The 
MALDI TOF MS spectra for all products are included in ESI.

The results from UV–Vis measurements showed that the tested compounds (3d, 3i, 3j, 3k, 3m) absorb only in 
the UV range (200–400 nm), which is typical for molecules containing conjugated C–C bonds in their structures 
(Fig. 6). The spectra for products 3k and 3m, which possess only alkyl groups in their structures, were nearly the 
same. Product 3k exhibited absorption peaks at 246 and 257 nm, while product 3m showed absorption peaks at 
246 and 258 nm. The presence of additional phenyl rings in the structures of 3d and 3i caused these compounds 
to absorb at slightly longer wavelengths. Specifically, compound 3d exhibited absorption at 248 and 310 nm, while 
compound 3i showed absorption at 309 nm. Product 3j, with thienyl substituents, showed a similar absorption 
pattern to 3d, with peaks observed at 238 and 299 nm.

The thermal properties of selected products were characterized using thermogravimetric analysis (TGA) 
performed in an inert atmosphere. The TGA results indicated that octaspherosilicates 3 are generally stable up 
to 300 ℃ (as shown in Fig. 7). The most thermally stable products were those obtained via the hydrosilylation of 
deca-1,3-diyn-1-yl-tri(isopropyl)silane (2k) (3k,  Td

5% = 365 °C), tri(isopropyl)(thiophen-3-ylbuta-1,3-diyn-1-yl)
silane (2j) (3j,  Td

5% = 360 °C), and 2,2,7,7-tetramethylocta-3,5-diyne (2c) (3c,  Td
5% = 357 °C). 10% weight loss for 

3j was observed at 427 °C and for 3c and 3k at 389 °C. On the other hand, compound 3h was identified as the 
least thermally stable  (Td

5% = 207 °C). The sample residue was in the range of 40 to 50%. The lowest residue was 
observed for compound 3m and the highest for 3i and 3k.

Figure 5.  MALDI TOF MS spectrum of product 3f.

Figure 6.  Normalized absorbance spectra of products 3d, 3i, 3j, 3k, and 3m in the solution (DCM).
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Conclusion
New synthetic protocols for the selective and efficient monohydrosilylation of symmetrically and non-symmetri-
cally 1,4-disubstituted buta-1,3-diynes (2a–m) with octaspherosilicate (1) were successfully developed for the first 
time. The proposed approaches were based on the application of commercially available platinum catalysts and 
did not require the use of an inert atmosphere, or a special preparation or purification of reagents and catalysts. 
Moreover, the actual reaction times were measured, and in situ FT-IR and 1H NMR spectroscopies were used to 
determine the impact of both the buta-1,3-diyne structure and catalyst type on the hydrosilylation progress. It 
was found that hydrosilylation of less sterically crowded 1,3-diynes occurred faster. The 13 novel octaspherosili-
cates with 3-en-1-yl moieties (3a–m) were successfully synthesized with decent or high isolated yields (58–95%). 
The products were fully characterized by 1H, 13C, 29Si, 1D NOE, 1H-13C HSQC NMR, FT-IR, EA, UV–Vis, and 
MALDI TOF MS. The TGA proved the high thermal stability of the products, the most thermally stable product 
was 3j, for which 5 and 10% weight loss were observed at as high a temperature as 360 and 427 °C, respectively.

Because of many applications of alkyl- and alkenyl-octaspherosilicates, the 3-en-1-yl derivatives obtained 
here become systems that can be tested in similar fields. Their greatest advantages are a new structure, as well as 
the possibility of further modification. The primary benefit of using 1,3-diynes in synthesis, compared to other 
unsaturated groups (like alkynes), is the ability to introduce both the unsaturated C=C bond (similar to the reac-
tion with alkynes) and the C≡C bond into the product structure in a single reaction step. Furthermore, the C≡C 
bond can be subsequently modified in the next reaction step, for example, using hydrosilylation or hydroboration, 
which will lead again to the formation of new compounds with unique and as yet uncharacterized properties.

Methods
Buta-1,3-diyne 2b and 2c were synthesized by Glaser homo-coupling of tri(isopropyl)silylacetylene and 3,3-dime-
thyl-1-butyne,  respectively99. Buta-1,3-diynes 2e, 2f–m were synthesized by Cadiot-Chodkiewicz cross-coupling 
 reaction111.

General procedure for hydrosilylation of 1,3‑diynes (2a‑m) with octaspherosilicate 1 in the 
presence of Karstedt’s catalyst or Pt(PPh3)4. The reactions with 1,3-diynes 2c–e, 2f–m were moni-
tored by in situ FT-IR spectroscopy. A solution of spherosilicate 1 (0.1 g, 0.098 mmol) and an appropriate buta-
1,3-diyne (2c–e, 2f–m) (0.784–3.136 mmol) in toluene was heated to 100 ℃ and stirred. Then, Karstedt’s catalyst 
or Pt(PPh3)4 was added in an amount that varied from 8 ×  10−3 to 2 ×  10−1 mol of Pt, depending on the experi-
ment. The reaction was carried out until the full conversion of Si–H was detected by in situ FT-IR spectroscopy. 
For reactions with 1,3-diynes 2a and 2d that were not monitored by in situ FT-IR spectroscopy, Karstedt’s cata-
lyst or Pt(PPh3)4 was added to the mixture of reagents in toluene, and then the system was heated to 100 ℃. The 
conversion of the reagents was determined by 1H NMR spectroscopy after 24, 48, 72, and 96 h (for NMR spectra 
for reactions with 2a and 2d see ESI, pages S37 and S44). After the reaction, the solvent was evaporated in a vac-
uum. The crude product was dissolved in hexane and purified on silica using flash column chromatography in 
hexane/ethyl acetate. Isolated products were characterized by 1H, 13C, 29Si, 1D NOE, 1H-13C HSQC NMR, FT-IR, 
and MALDI TOF analyses. The thermal properties of the selected products were characterized by TGA analysis.

For detailed data, please see the Electronic Supporting Information.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information file.

Received: 20 April 2023; Accepted: 27 August 2023

Figure 7.  TGA curves for compounds 3c, 3f., 3h-k, and 3m. The measurements were conducted under 
nitrogen (flow of 20 mL/min), from 29 to 995 °C at a heating rate of 10 °C/min.
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