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Single‑step fabrication of fibrous 
Si/Sn composite nanowire anodes 
by high‑pressure He plasma 
sputtering for high‑capacity Li‑ion 
batteries
Giichiro Uchida 1*, Kodai Masumoto 1, Mikito Sakakibara 1, Yumiko Ikebe 1, Shinjiro Ono 2, 
Kazunori Koga 2 & Takahiro Kozawa 3

To realize high-capacity Si anodes for next-generation Li-ion batteries, Si/Sn nanowires were 
fabricated in a single-step procedure using He plasma sputtering at a high pressure of 100–500 mTorr 
without substrate heating. The Si/Sn nanowires consisted of an amorphous Si core and a crystalline Sn 
shell. Si/Sn composite nanowire films formed a spider-web-like network structure, a rod-like structure, 
or an aggregated structure of nanowires and nanoparticles depending on the conditions used in 
the plasma process. Anodes prepared with Si/Sn nanowire films with the spider-web-like network 
structure and the aggregated structure of nanowires and nanoparticles showed a high Li-storage 
capacity of 1219 and 977 mAh/g, respectively, for the initial 54 cycles at a C-rate of 0.01, and a 
capacity of 644 and 580 mAh/g, respectively, after 135 cycles at a C-rate of 0.1. The developed plasma 
sputtering process enabled us to form a binder-free high-capacity Si/Sn-nanowire anode via a simple 
single-step procedure.

Electric vehicles powered by Li-ion batteries are increasingly replacing gasoline-powered vehicles toward the 
realization of a carbon–neutral society, and the development of high-performance Li-ion batteries that have 
high capacity for long-distance driving, high power for rapid charging, and low degradation for long-term use 
is encouraged worldwide1–3. Group-IV Si4–10, Ge11–20, and Sn21,22 are promising anode materials for Li-ion bat-
teries because they have very high theoretical capacities of 4200, 1600, and 993 mAh/g, respectively, which are 
2.6–11 times higher than the 372 mAh/g capacity of commercial carbon. However, the high-capacity Si, Ge, and 
Sn materials suffer large volume expansion during Li alloying reactions, and repeated cycling leads to material 
pulverization from the current collector, resulting in performance degradation.

Researchers have used various approaches to improve the cycling stability of the highest-capacity Si 
anodes23–28. One of the most promising approaches is to create different morphologies such as porous structures, 
nanoparticles, and nanowires, which exhibit better physical and mechanical stability against volume expansions. 
In general, nanomaterials uniformly expand during Li alloying because of their large surface-to-volume ratio, 
reducing physical stress and suppressing material pulverization. In particular, Si anodes with a one-dimensional 
(1D) nanowire morphology have shown enhanced electrochemical properties because their 1D structure bet-
ter accommodates the colossal volume changes without physically fracturing, where the physical strain in the 
nanowires is facilely relaxed by radial and axial expansion25–28.

Si nanowires are prepared through one of two basic approaches: a bottom-up or top-down process9, as sum-
marized in review papers29,30. In the case of bottom-up processes, Si nanowires have been fabricated on substrates 
via (1) physical vapor deposition (PVD) from a solid Si source using laser ablation31–34, vacuum ohmic-heating35, 
or thermal plasma36, (2) chemical vapor deposition (CVD) from SiH4 gas using vacuum ohmic-heating37 or 
low-temperature plasma38, and (3) a solution-based synthesis39. In all of these bottom-up processes, vapor–liq-
uid–solid (VLS) growth is a common mechanism for the synthesis of Si nanowires. Metallic nanodots such as 
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Au are first formed on the substrate, and Si atoms are subsequently supplied to the nanodots, which function 
as a molten metal catalyst40. When Si is supersaturated in the metal alloy, it grows as a nanowire at the Si/metal 
catalyst interface.

Our focus is on the development of a simplified Si VLS growth process using a plasma technique, which can 
potentially enable the fabrication of films at high speed over large areas, as required for industrial applications. 
Nguyen et al. reported Au-seeded Si nanowire film growth by plasma CVD, where a Au catalyst was first depos-
ited onto a stainless steel substrate, followed by SiH4/H2 plasma deposition for the VLS-growth of Si nanowires 
at a substrate temperature of 420 °C38. A Li-ion battery with a Si-nanowire anode maintained a high capacity of 
3100 mAh/g for the first 40 cycles.

Recently, Tanaka et al. reported the single-step production of Si nanorods from a powder feedstock using 
thermal-plasma PVD, where Si and Cu powders were introduced into a thermal plasma and a large number 
of VLS-grown Si nanorods were recovered as product particles36. Tanaka et al. coated a slurry containing the 
synthesized Si nanorods onto metal current collectors and sintered them to form a rigid anode film. A Li-
ion battery with a Si-nanorods anode exhibited a capacity of 500 mAh/g and good cycling capability for 100 
charge–discharge cycles.

In the present study, we propose an alternative plasma bottom-up process to fabricate Si-nanowire films for 
Li-ion-battery anodes using plasma sputtering PVD. The important advantage of our plasma sputtering PVD is 
that it employs a simple single-step procedure that enables the direct fabrication of Si-nanowire films on a metal 
current collector without metal catalyst nanodots or heating of the substrate. Our plasma PVD process, which 
does not use an organic solvent, differs substantially from other methods: (1) Our method enables direct anode 
film formation on a current collector without a binder, whereas other methods use a slurry coating process that 
includes nanowires; (2) unlike other PVD processes such as laser ablation, our method enables film formation 
at scales as large as meter-scale; and (3) our method uses a simple control process for a 1D nanowire structure 
in single-step procedure without precise temperature control, whereas other CVD processes use SiH4 gas and a 
Si solution. In addition, to enhance the electrochemical reaction related to Li+ ions in a high-capacity Si anode, 
another group IV element, Sn, was added to the Si anode film in the present study41. Metallic Sn has a high 
theoretical Li storage capacity of 993 mAh/g, and its electrical conductivity (104 S/cm) is greater than that of the 
intrinsic semiconductor Si (10−6 S/cm). The high performance of Sn as an anode material has been summarized 
in review papers21,42. The plasma sputtering process developed in the present study enables the continuous 
formation of a binder-free Si/Sn nanowire film, making it potentially applicable for the roll-to-roll fabrication 
of 1D nanowire electrodes.

Results and discussion
Effects of the sputtering‑target material and discharge gas on the Si nanostructure.  Figure 1a, 
b show surface and cross-sectional scanning electron microscopy (SEM) images of films deposited via 100 mTorr 
high-pressure Ar and He plasma sputtering with an intrinsic Si target and a SiSn target with a Sn content of 
6 at%, respectively. The film morphology markedly differed depending on the discharge gas. Nanostructured 
grains are observed on the surface of the Si films deposited with Ar discharge gas (left image of Fig. 1a), and a 
dense film structure is observed in the cross-sectional SEM image. However, the Si nanoparticle film deposited 
using He as the discharge gas exhibited a much greater roughness; the average nanoparticle size was estimated to 
be 60 nm from more than 20 randomly selected particles in the SEM image. A porous structure with abundant 
pores was clearly observed in the cross-sectional SEM image of the nanoparticle film (right image of Fig. 1a). 
We evaluated the porosity of the deposited Si nanoparticle films. The mass density ρ of the deposited films 
was measured and subsequently compared with the bulk Si density of 2.32 g/cm3. The porosity, calculated as 
((2.32 − ρ)/2.32)×100 (%), was as high as 17.6%. Here, a ρ of 1.91 g/cm3 was estimated from the mass and volume 
of the deposited Si nanoparticle film; the film mass was derived from the difference in the substrate mass before 
and after the deposition process, and the film volume was estimated from the product of the deposition area and 
the film thickness obtained from the cross-section SEM image.

For the SiSn films in Fig. 1b, we observed a distinct transition from nanoparticle films to 1D nanowire films as 
a result of changing the discharge gas. Porous nanoparticle films were fabricated under Ar discharge gas, where 
the average nanoparticle size was as large as 202 nm and a cauliflower-like shape due to particle aggregation 
was observed. By comparison, in the film prepared under He discharge gas (right image of Fig. 1b), abundant 
Si nanowires longer than 10 μm were deposited in a wiggly and tangled form on the substrate in a single-step 
procedure, where the average diameter was 287 nm and the Sn content in the Si-nanowire films was 4.8%, as 
determined by SEM–energy-dispersive X-ray spectroscopy (EDX) analysis. As the He-gas pressure was increased 
from 100 to 300 and 500 mTorr, the diameter of the Si nanowires decreased from 287 to 155 and 136 nm, 
respectively (Fig. 2a). The thin Si nanowires exhibited a more fibrous form with a spider-web-like network. In 
the fibrous film deposited at 500 mTorr, numerous thinner wires were observed to branch from a main nanowire 
and a small sphere was observed at the top of the thinner wire (see the magnified region of the 500 mTorr SEM 
image in Fig. 2a). Interestingly, we also observed that Si nanowires vertically align on the substrate, as evident 
in the 300-mTorr cross-sectional image (Fig. 2a).

We also reduced the target–substrate distance z from 20 to 10 mm. When the z distance was reduced to 
10 mm, the wire morphology changed from the fibrous form to the rod-like form with a larger average diameter 
of 605 nm and a longer inter-rod distance of a few micrometers (Fig. 2b). The SEM image of the Si rod-like film 
surface shows a cauliflower-like pattern and indicates that the rods are composed of aggregated nanoparticles. On 
the basis of morphological analysis by SEM, we identified three nanostructure patterns: (1) a porous nanoparticle 
film, (2) a fibrous 1D nanowire film with the spider-web-like network, and (3) a 1D rod-like film composed of 
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nanoparticles. Thus, in the present study, we successfully fabricated 1D nanostructured films in a single step 
under the special plasma sputtering conditions of a SiSn(6 at%) target and high-pressure He discharge gas.

To clarify the detailed structure of the Si nanowires, we conducted TEM analysis. Figure 3a, b show TEM 
images of nanowires fabricated under He discharge-gas pressures of 100 and 300 mTorr, respectively. Elemental 
mapping images of wires were acquired by EDX, where blue and green indicate Si and Sn atoms, respectively. 
As evident in the TEM image of Fig. 3a (top), nanoparticles with sizes of 40–50 nm are arranged on the wire 
surface; the nanoparticles were shown by EDX analysis to be composed of Sn (green). Many Sn nanoparticles 
smaller than 40–50 nm were also observed on the Si core surface (blue), and the nanowire exhibited a core–shell 
structure consisting of a Si core covered with a Sn shell layer (middle image of Fig. 3a). We also carefully observed 
the top of the nanowire and found that the nanospheres were not concentrated at the tip but rather distributed 
randomly on the Si core surface (bottom image of Fig. 3a).

For the higher-pressure condition of 300 mTorr, thinner nanowires were found tangled with each other (top 
image of Fig. 3b). Interestingly, we observed that the thin nanowires had a neck structure composed of Si and 
Sn spherical parts and that the nanoparticles appeared to be arranged in a row, resembling beads (middle image 
of Fig. 3b). Similar to the nanowires formed under the 100 mTorr condition, nanowires formed under the 300 
mTorr condition did not have nanospheres concentrated at their tip (bottom image of Fig. 3b).

Details of the crystal structure of the Si/Sn composite nanowire were obtained by X-ray diffraction (XRD) 
analysis. Numerous sharp signals were observed in the 2θ range from 25° to 70° in the patterns of both the 
100- and 300-mTorr films (Fig. 3c); these peaks were assigned to the crystalline β-Sn phase, which exhibits high 
electrical conductivity. However, XRD peaks attributable to crystalline Si were not detected and the Si core was 
identified as amorphous. It is reasonable that the crystallization of Si under our experiment conditions without 
a heated substrate is difficult because of the melting point of Si (1410 °C), which is much higher than that of Sn 
(231 °C). On the basis of the whole structure analysis, we concluded that the nanowires consist of an amorphous 
Si core with a high Li-ion capacity and a crystalline Sn shell with high electrical conductivity.

Growth mechanism of Si nanowires.  To understand the growth mechanism in the single-step nanowire 
fabrication process that does not involve complicated preparation of metal catalyst nanodots, we conducted two 
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Figure 1.   Effects of sputtering-target material and discharge gas on Si nanostructured anodes. SEM surface and 
cross-sectional images of films deposited at a He or Ar gas pressure of 100 mTorr, where the distance between 
the sputtering target and substrate was 20 mm: (a) sputtering target of Si. (b) Sputtering target of SiSn with a Sn 
content of 6 at%.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14280  | https://doi.org/10.1038/s41598-023-41452-3

www.nature.com/scientificreports/

additional experiments on the films to evaluate (1) the effect of the deposition time and (2) the effect of the Sn 
content. First, Fig. 4 shows SEM surface images of films deposited for 5, 10, and 20 min. In the SEM image of the 
film deposited for 5 min, spherical particles with various sizes, which appear white in the image, were observed. 
At 10 min after the start of deposition, wiggly shaped wires grew sparsely on the substrate and the spherical 
particles appeared to be the starting point of nanowire growth via a common VLS mechanism. After 20 min of 
deposition, a fibrous nanowire film as thick as ~ 20 μm was observed. During initial particle formation on the 
film, the solubility of Sn in the Si material is low according to the binary phase diagram; Sn therefore precipi-
tates as dots from the SiSn mixed film43–46. The particles could be in the droplet state in our high-pressure He 
sputtering system because the thermal conductivity of He gas is one order of magnitude higher than that of Ar 
gas. Under He, the heat of the sputtering target is therefore efficiently transferred to the reaction field both in 
the gas plasma and on the substrate surface. To confirm this effect, we roughly measured the substrate surface 
temperature with a thermocouple probe, where the plasma and the He neutral gas directly flowed to the small tip 
surface of the sensor placed on the substrate. The thermocouple temperatures rapidly increased with increasing 
deposition time until the deposition time reached 4 min (i.e., 254 °C under He discharge and 98 °C under Ar 
discharge gas) and then remained almost constant. At the shorter z distance of 20 mm under highly thermally 
conductive He gas, the temperature of the sensor tip increased, which we attributed to (1) efficient heat transfer 
from the sputtering target at an RF input power of 15.7 W/cm2 (80 W) via the flowing He gas and (2) physical 
and chemical reactions involving impinging ions from the plasma on the surface47. The melting point of Sn is 
as low as 231 °C, and the increase in temperature to greater than 254 °C explains the Sn droplet formation from 
a thermal perspective. In addition, the melting point of the nanoparticles is expected to decrease with decreas-
ing particle size48. The low melting point of the Sn or Sn/Si nanoparticles plays an important role in automatic 
VLS growth without substrate heating; the precipitation and droplet-dot formation of Sn are followed by Si wire 
growth via continuous irradiation of Si and Sn atoms.

In addition to the heating effect attributed to He gas, the Sn content also affects the single-step fabrication 
of the 1D nanostructures. Figure 5a, b show SEM images of films deposited using targets with Sn contents of 3 
and 10 at%, respectively. In the films deposited using the 3 at% Sn target and 100 mTorr of He gas, nanowires 
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Figure 2.   Effect of He gas pressure and sputtering-target/substrate distance on Si nanowire anodes. SEM 
surface and cross-sectional images of films deposited using a SiSn sputtering target with a Sn content of 6 at%. 
(a) He gas pressure of 300 and 500 mTorr; the distance between the sputtering target and substrate was 20 mm. 
(b) He gas pressure of 300 mTorr; the distance between the sputtering target and substrate was 10 mm.
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are distributed with a very low density and clearly grow perpendicular to the substrate surface. This result is 
reasonable because a smaller amount of Sn atoms in the gas phase leads to a lower density of Sn catalyst dots on 
the substrate surface, and these dots are the trigger points of nanowire growth. Interestingly, we also found that 
nanowires clearly branch off and grow perpendicular to a main wire (see the magnified part of the 100 mTorr 
SEM image in Fig. 5a), which is evidence of secondary VLS growth on the Si-core surface. In our sputtering 
system, Si and Sn atoms are simultaneously supplied during the deposition process. As a result, the precipitation 
and droplet-dot formation of Sn, followed by Si-wire growth, occurs repeatedly not only on the substrate surface 
but also on the grown-wire surface. Thus, the proposed plasma process enables the formation of a fibrous 1D 
nanowire film with a spider-web-like network by random repetitive VLS growth. As the He-gas pressure was 
increased to 300 mTorr at a low Sn content of 3 at%, the wire structure was no longer observed; thus, an appro-
priate combination of He-gas pressure and Sn content is important to transition the nanostructure morphology 
from 3 to 1D.
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Figure 3.   Structure analysis of Si/Sn composite nanowires by TEM and EDX. Nanowires were fabricated using 
a SiSn sputtering target with a Sn content of 6 at% and a sputtering-target-to-substrate distance of 20 mm. (a) 
TEM images of nanowires and TEM–EDX mapping images of Si (blue) and Sn (green); the He gas pressure was 
100 mTorr. (b) TEM images of nanowires and TEM–EDX mapping images of Si (blue) and Sn (green); the He 
gas pressure was 300 mTorr. (c) XRD patterns of Si/Sn nanowires fabricated at a He gas pressure of 100 and 300 
mTorr.
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By contrast, the nanowire shape markedly changed at the higher Sn content of 10 at% (Fig. 5b); nanowires 
with a larger diameter and shorter length were formed when the gas pressure was 100 mTorr, whereas aggregation 
of high-density nanowires and nanoparticles was observed when the gas pressure was 300 mTorr. Abundant Sn 
atoms in the gas phase led to the formation of Sn dots with a larger diameter or a higher density on the surface, 
which created two unique wire structures of the extremes described above.

In a similar study involving Sn catalyst dots, Yu et al. reported the growth of Sn-catalyzed VLS Si nanowires 
via SiH4-plasma CVD, where the SnO2-film substrate was first treated with H2 plasma at 300 °C to form Sn 
nanodots and then Si atoms from SiH4 plasma were supplied to the Sn droplet nanodots on the substrate at 
300–600 °C49–53. A major difference between our work and that of Yu et al. is the structure of the wires. In their 
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Figure 4.   Effect of deposition time on Si/Sn composite nanowire anodes. SEM surface images of films 
deposited for 5, 10, and 20 min. The distance between the sputtering target and substrate was 20 mm under the 
condition of a He gas pressure of 300 mTorr; the Sn content of the SiSn sputtering target was 6 at%.
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Figure 5.   Effect of Sn content in Si/Sn nanowire anodes. SEM surface and cross-sectional images of films 
deposited with a sputtering-target-to-substrate distance of 20 mm and a He gas pressure of 100 and 300 mTorr. 
(a) SiSn sputtering target with a Sn content of 3 at%. (b) SiSn sputtering target with a Sn content of 10 at%.
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two-step procedure, typical VLS growth resulted in Si nanowires with a vertically aligned structure with a Sn 
dot at the top. By contrast, in our single-step PVD procedure, random repetitive VLS growth results in Si/Sn 
composite nanowires with a spider-web-like network structure.

Performance of Li‑ion batteries with Si/Sn composite nanowire anodes.  We tested the perfor-
mance of Li-ion batteries with Si/Sn composite nanowire anodes. Figure 6a–c show the gravimetric capacity 
of a Si/Sn-nanowire film with the spider-web-like network structure, the nanowire–nanoparticle aggregation 
structure, and the rod-like structure, respectively, as a function of the number of charge–discharge cycles. The 
gravimetric capacity was calculated by dividing the observed capacity (mAh) of the Li-ion battery by the mass 
(g) of the Si nanowire film as the active anode material. The charge–discharge current was varied from a 0.01-C 
to a 5-C rate at certain cycle intervals. Here, a 1-C rate refers to the test current required to fully charge the bat-
tery in 1 h; the test current at a 0.01-C rate for a high-capacity Si anode (4200 mAh/g) is approximately the same 
as that at a 0.1-C rate for a commercial graphite anode (372 mAh/g). First, under a 0.01-C rate for a Si anode 
(4200 mAh/g), a high gravimetric capacity greater than 1000 mAh/g was observed for all the Si-anode cells, and 
a Coulombic efficiency greater than 95% was achieved in the first 4–10 cycles. Here, the Coulombic efficiency 
was calculated as the ratio between the integrated discharge current and the integrated charging current at 
each cycle. The charge–discharge voltage profile and corresponding differential capacity (dQ/dV) curves were 
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analyzed in detail for the first 10 cycles. As shown in the voltage profiles (middle graphs of Fig. 6a, b), a plateau 
region was observed at ~ 2.3 V in the first charge cycle. In general, an organic electrolyte reacts with the surface 
of a Si anode to form a solid electrolyte interphase (SEI) layer during the initial operation at high voltage54. In 
the Si/Sn composite anodes composed of the narrower 155- and 133-nm diameter nanowires (Fig. 6a, b, respec-
tively), extensive decomposition of the electrolyte proceeds on an abundant wire-surface area for the initial SEI 
formation, which leads to a continuous high potential in the constant-current first charging process54,55. By 
comparison, no plateau region was observed in the profile for the Si/Sn composite anode with the larger 605-nm 
diameter nanowires (Fig. 6c); the total surface area of the Si nanowire anode and the related SEI formation pro-
cess influence the first stable voltage profile without the plateau. To suppress the observed high-potential plateau 
phenomena, a systematic investigation of the optimal wire diameter and density and the optimal film thickness 
for stable SEI formation is needed.

In the dQ/dV curves, distinct peaks appeared at 0.20–0.26 V during Li alloying, and at 0.27–0.30 V and 
0.43–0.46 V during Li de-alloying in the first 10 cycles; the phase transformation between amorphous Si and 
LixSi was successfully repeated for all the Si nanowire anodes after the 10 cycles55–58. After 10 cycles, the battery 
cells with the spider-web-like network structure (a) and the wire-particle aggregation structure (b) showed very 
stable behavior, without capacity fading, for 54 cycles; the capacity retention was greater than 98%. For the cells 
with a rod-like structure (c), the highest capacity of 1700 mAh/g at cycle 5 decreased to 1174 mAh/g at cycle 54; 
the capacity retention was 68%. At 65 cycles, the charge–discharge current was increased tenfold (to 0.1-C) and 
the capacity decreased from 1193 to 1085 mAh/g for the spider-web-like network structure (a), from 973 to 646 
mAh/g for the wire-particle aggregation structure (b), and from 1174 to 796 mAh/g for the rod-like structure 
(c). Finally, the battery cells with anodes prepared using the Si/Sn composite nanowires with the spider-web-
like network structure (a), the wire–particle aggregation structure (b), and the rod-like structure (c) showed 
capacities of 644, 580, and 347 mAh/g after 199 cycles, respectively, and exhibited capacity retentions of 59%, 
90%, and 43%, respectively, for 135 cycles at a 0.1-C rate. Notably, the capacity of 580–644 mAh/g observed for 
the cells with the spider-web-like network and aggregation structures was 1.5–1.7 times greater than that for a 
commercial graphite anode (372 mAh/g).

To summarize the performance of the Li-ion batteries, the Si/Sn narrower nanowire anode with a spider-
web-like network structure (average wire diameter: 155 nm) and the wire–particle aggregation structure (aver-
age wire diameter: 133 nm) (Fig. 6a, b, respectively) show stable behavior at a 0.01-C rate for the first 54 cycles. 
By comparison, the performance of the Si/Sn nanowire anode with a rod-like structure (average wire diam-
eter: 605 nm) markedly decreased with increasing number of charge–discharge cycles. This result is reasonable 
because McDowell et al. have pointed out that fracture can occur during lithiation of crystalline Si spheres larger 
than ~ 150 nm in diameter and during lithiation of crystalline Si pillars larger than ~ 300 nm in diameter59. When 
cycled at 0.1-C for 135 cycles, the wire–particle aggregation structure (Fig. 6b) showed the most stable behavior 
among the three anode materials, with almost no capacity fade. In conclusion, the aggregation structure com-
posed of the narrowest nanowires and smallest nanoparticles used in our experiments showed the most stable 
cycle performance, with a high capacity of 580 mAh/g at a rate of 0.1-C. However, when the C-rate was increased 
to 0.2, 0.5, 1, 2, and 5 (left graph in Fig. 6a–c), the capacity decreased to 554, 336, 166, 36, and 1.54 mAh/g for 
the batteries with the spider-web-like-network structure (Fig. 6a), to 488, 310, 132, 6.95, and 0.7 mAh/g for 
the batteries with the wire–particle aggregation structure (Fig. 6b), and to 260, 124, 28, 3, and 0 mAh/g for the 
batteries with the rod-like structure (Fig. 6c), respectively. Further improvements of the nanowire structure 
and film morphology are necessary to achieve rapid charging in next-generation high-capacity Li-ion batteries.

To investigate the mechanism of relatively stable capacity behavior in the Si-nanowire anodes, we analyzed 
the anode materials after cycling tests by disassembling the cells. Figure 7a show SEM images of a Si/Sn com-
posite nanowire anode with the spider-web-like network structure before and after 100 charge–discharge cycles. 
The average diameter of the nanowires increased from 165 to 474 nm after 100 cycles as a result of Li alloying. 
However, substantial pulverization of the Si nanowires was not observed and the physical strain was success-
fully relaxed by the 2.8-fold radical expansion of the 1D Si nanowires. Figure 7b shows a TEM image and EDX 
elemental mapping images of wires after 100 charge–discharge cycles, where blue and green indicate Si and Sn 
atoms, respectively. A Sn layer sill covered the Si wire core after 100 cycles. Notably, another layer was observed 
on the Si/Sn wire surface; the layer was composed of F atoms (red), P atoms (orange), and O atoms (pink). This 
layer is reasonably attributed to a chemical reaction between the Si/Sn nanowire surface and the organic elec-
trolyte solution, which is composed of LiPF6 dissolved in a mixture of ethylene carbonate (C3H4O3) and diethyl 
carbonate (C5H10O3). The outer layer is considered part of the SEI layer, although the anode sample was observed 
by SEM and TEM under the dry condition.

We conducted SEM and TEM analyses of Si/Sn nanowires with a 165-nm diameter in the spider-web-like 
network structure after 100 cycles. We considered that the wire–particle aggregation structure (wire diameter: 
133 nm) was not significantly pulverized because the two anode materials showed similar cycle behavior (Fig. 6a, 
b). However, the rod-like structure (wire-diameter: 605 nm) might have been pulverized, as evidenced by its 
substantial decrease in capacity in the first 54 cycles (Fig. 6c), which is similar to the cycle behavior observed for 
an anode composed of two-dimensional Si thin films, which exhibited material fracture60–62.

The fabricated amorphous Si-core/Sn-shell nanowires have a morphology suitable for Li-ion-battery anodes 
from mechanical and electrochemical perspectives. To summarize the advantages of the Si-core/Sn-shell nanow-
ires, Fig. 8 shows a schematic of the lithiation of a Si/Sn nanowire anode. First, the amorphous structure of the 
Si core exhibits more favorable behavior than a crystalline structure when reacting with Li59 because amorphous 
Si nanomaterials without orientation dependence are lithiated isotropically, which reduces the physical stress 
and suppresses material fracture59,63,64. Second, the Sn layer around the Si-core surface enhances the lithiation 
rate39,65,66 because Sn has a high electron conductivity of 104 S/cm and electrons critical for electrochemical 
reactions (Li alloying) are therefore supplied sufficiently to the Si core from the bottom Cu current collector via 
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Figure 7.   Si/Sn composite nanowire anodes after charge–discharge cycles. (a) SEM surface images of the Si/Sn 
composite nanowire anode with a spider-web-like network structure before and after 100 cycles. (b) TEM image 
and TEM–EDX mapping images of the Si/Sn nanowire anode with a spider-web-like network structure after 100 
cycles.
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the Sn surface layer. Jiang et al. have reported that the electrical conductivity of amorphous SiSn films increases 
by six orders of magnitude when the Sn concentration in the films is increased from 0 to 10%43. We did not 
measure the electrical conductivity of the Si/Sn composite nanowire anodes. However, the Sn content in the Si/
Sn composite nanowire anode was approximately 5–10 at%, which is expected to be sufficient to improve the 
electrical conductivity of the Si nanowire anode.

Figure 9 shows Nyquist plots of Si/Sn composite anodes, as obtained by electrochemical impedance spectros-
copy (EIS), before the charge–discharge cycle. These plots consist of a semicircle in the high-frequency region 
and a straight line in the low-frequency region. The semicircle in the high-frequency region corresponds to the 
charge-transfer resistance associated with interfacial Li+ ion transfer between the anode and the electrolyte. 
Among the three investigated anode materials, the rod-like structure (wire-diameter: 605 nm) exhibited the 
lowest charge-transfer resistance before the charge–discharge cycle. This low resistance contributes to the dif-
ferent electrochemical behavior, which is observed as a lack of a plateau potential in the first charge–discharge 
voltage profile (Fig. 6c, middle graph). The straight line in the low-frequency region corresponds to the Warburg 
impedance, which is the impedance associated with ion diffusion. Similar slopes were obtained for the three 
anode materials, suggesting that ion diffusion within the Si/Sn composite nanowires did not substantially differ 
among the investigated anode materials62,67. In addition, we emphasize that the fibrous spider-web-like network 
structure of the Si/Sn nanowires is advantageous for a Li-ion-battery anode because, even if one part of the wire 
is broken, the conductivity of the electrode is preserved by other joints, resulting in high capacity retention.

In conclusion, we fabricated high-capacity Si anodes with various nanostructures in a single-step procedure 
using plasma sputtering without substrate heating. The film morphology could be controlled from a 3D nano-
porous to a 1D nanowire morphology by changing the discharge gas from Ar to He. In particular, 1D nanowire 
films were obtained under the special sputtering conditions of a SiSn (3–6 at%) target and He discharge gas at a 
high pressure of 100–500 mTorr. The 1D nanowires consisted of an amorphous Si core with high Li-ion capac-
ity and a crystalline Sn shell with high electrical conductivity, which were suitable structures for Li-ion-battery 
anodes. The morphology of the Si/Sn nanowire films changed depending on plasma sputtering conditions such 
as the sputtering target–substrate distance z and the Sn content in the Si sputtering target, ranging from (1) a 
spider-web-like network structure with a wire diameter of 136–257 nm (z = 20 mm and Sn content = 6 at%) to 
(2) a rod-like structure with a rod diameter of 605 nm (z = 10 mm and Sn content = 6 at%) and (3) an aggregated 
structure of nanowires and nanoparticles (z = 20 mm and Sn content = 10 at%). We evaluated the charge–dis-
charge cycle performance of the Si/Sn nanowire anodes in Li-ion battery cells. The Si/Sn nanowire anodes with 
the spider-web-like network structure and the nanowire–nanoparticle aggregation structure showed a high Li-
storage capacity of 1219 and 977 mAh/g, respectively, for the initial 54 cycles at 0.01-C and finally 644 and 580 
mAh/g, respectively, after 135 cycles at 0.1-C. The developed low-temperature plasma sputtering process enabled 
the formation of a binder-free high-capacity Si/Sn-nanowire anode in a single step.

Methods
Some of the following explanations of methods overlap with descriptions in our previous papers68,69. The Si anode 
films were fabricated on a Cu disk using 13.56 MHz radiofrequency (rf) magnetron sputtering. The experimental 
setup was the same as described in our previous work (see Fig. 4 in Refs.69). The Cu disk had a diameter and 
thickness of 15 mm and 80 μm, respectively, and was placed at the center of the substrate holder. The sputter-
ing target was a polycrystalline intrinsic Si disk (1 inch diameter) with a purity of 99.99% or a Si disk with a Sn 
content of 3, 6, or 10 at%. An rf power of 15.7 W/cm2 (80 W) was supplied to the sputtering target for plasma 
production. Ar or He gas was supplied from the direction of the target to the substrate holder at a flow rate of 
16–94 sccm. The gas pressure was set to a high value of 100 to 500 mTorr. The distance between the target and 
the substrate holder was 10 or 20 mm. The substrate holder was not heated or cooled during film deposition.
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Si films deposited onto the Cu disk under various conditions were assembled into Li-ion battery cells (HS flat 
cell, Hohsen) as anodes with Li metal counter electrodes with diameters of 16 mm and thicknesses of 250 μm. A 
polypropylene separator with a diameter of 24 mm and a thickness of 24 μm was placed between the Si anode and 
Li cathode. A solution of 1 mol/L LiPF6 dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate 
(DEC) (EC:DEC = 1:1 volume%) was used as an electrolyte in the battery test cells. The battery cycle perfor-
mance was analyzed at a constant current of less than 1 mA, corresponding to a C-rate of 0.01 to 5, for all the 
charge–discharge cycles; the cut-off voltage was 0.03–2.0 V. The cycle tests were conducted at room temperature 
using a battery test system (HJ1001SD8, Hokuto Denko).

To analyze the material properties of the Si anodes, Si films were deposited onto n-type Si wafers with a low 
resistivity under the same sputtering conditions used for the battery Si anodes. The crystal structure was evalu-
ated by XRD (Rigaku SmartLab), and the surface morphology and cross-sectional microstructure were analyzed 
by SEM (SU-8010, Hitachi) and TEM (JEM-ARM200F, JEOL).

Data availability
The datasets used and/or analyzed in this study are available from the corresponding author upon reasonable 
request.
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