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Insights into the estimation 
of surface tensions of mixtures 
based on designable green 
materials using an ensemble 
learning scheme
Reza Soleimani 1 & Amir Hossein Saeedi Dehaghani 2*

Precise estimation of the physical properties of both ionic liquids (ILs) and their mixtures is crucial for 
engineers to successfully design new industrial processes. Among these properties, surface tension is 
especially important. It’s not only necessary to have knowledge of the properties of pure ILs, but also 
of their mixtures to ensure optimal utilization in a variety of applications. In this regard, this study 
aimed to evaluate the effectiveness of Stochastic Gradient Boosting (SGB) tree in modeling surface 
tensions of binary mixtures of various ionic liquids (ILs) using a comprehensive dataset. The dataset 
comprised 4010 experimental data points from 48 different ILs and 20 non-IL components, covering 
a surface tension range of 0.0157–0.0727 N m−1 across a temperature range of 278.15–348.15 K. The 
study found that the estimated values were in good agreement with the reported experimental data, 
as evidenced by a high correlation coefficient (R) and a low Mean Relative Absolute Error of greater 
than 0.999 and less than 0.004, respectively. In addition, the results of the used SGB model were 
compared to the results of SVM, GA-SVM, GA-LSSVM, CSA-LSSVM, GMDH-PNN, three based ANNs, 
PSO-ANN, GA-ANN, ICA-ANN, TLBO-ANN, ANFIS, ANFIS-ACO, ANFIS-DE, ANFIS-GA, ANFIS-PSO, 
and MGGP models. In terms of the accuracy, the SGB model is better and provides significantly lower 
deviations compared to the other techniques. Also, an evaluation was conducted to determine the 
importance of each variable in predicting surface tension, which revealed that the most influential 
factor was the mole fraction of IL. In the end, William’s plot was utilized to investigate the model’s 
applicability range. As the majority of data points, i.e. 98.5% of the whole dataset, were well within 
the safety margin, it was concluded that the proposed model had a high applicability domain and its 
predictions were valid and reliable.
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In the past few years, there has been a surge of interest in ionic liquids (ILs) among scientists, engineers, regula-
tors, and policy makers worldwide1. These molten salts, which consist of organic cations and organic/inorganic 
anions, have gained popularity in various industries as a new class of compounds for diverse applications. Due 
to their bulky and asymmetrical cation structure2, ILs have a low tendency to form an ordered crystal and thus 
remain in a liquid state at ambient temperature.

The exceptional properties of ILs, such as their good catalytic properties, low vapor pressure, nonflammabil-
ity, high solvation capacity for various organic compounds, and high thermal and chemical stability, make them 
promising sustainable alternatives to traditional materials in a wide range of processes3–5. ILs are often referred 
to as “designable materials” because their properties can be tailored for specific processes by making structural 
modifications to the cation or anion6. At present, ILs are being used for various applications, including but not 
limited to Enhanced Oil Recovery (EOR)7 process, extraction processes8–11, catalytic reactions12, separation 
processes13–15, electrochemistry16, lithium batteries17, biomass conversion18, desulphurization19, coal dissolution20, 
bitumen processing21,22, crude oil dissolution23,24, asphaltene dissolution25, and crude oil/water IFT reduction26.

Having a comprehensive understanding of the chemical, physical, and thermodynamic properties of ILs or 
their mixtures with other compounds is crucial, especially since a significant percentage of industrial applica-
tions of ILs involve mixtures27, such as in EOR processes in reservoirs. This is of great importance from both 
academic and industrial perspectives.

Surface tension is a critical macroscopic physical property28 of ILs and their relevant mixtures. It plays an 
essential role in the appropriate design and operation of upcoming industrial processes that involve mass trans-
fer, such as distillation, extraction, and absorption3,29. In the petroleum industry, surface tension is particularly 
important for designing fractionators, absorbers, separators, two-phase pipelines, and assessing reservoirs30. 
This is because it significantly affects mass and heat transfer at the interfaces31. Interested readers are referred to 
Tariq et al.32 who provide a detailed explanation of why surface tension of ILs is crucial.

Due to the infinite number of possible systems, it is impractical to experimentally measure the surface ten-
sion of every possible IL and its mixture with other compounds. Additionally, empirical measurements can be 
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expensive, time-consuming, and susceptible to non-negligible uncertainties33. Therefore, it is important to have 
a reliable and powerful scheme for predicting surface tension34, as experimental measurements are not always 
feasible for all ILs and their mixtures with various substances.

Although there have been some attempts to calculate the surface tension of pure ILs using different methods, 
there are few studies available in the literature that focus on predicting the surface tension of mixtures contain-
ing ILs. Reviews conducted by Tariq et al.32 and Gharagheizi et al.35 have explored this topic. However, Oliveira 
et al.3 used the Soft Statistical Associating Fluid Theory (soft-SAFT) equation of state and the density gradient 
theory (DGT) to model the surface tension of mixtures containing [Cnmim][NTf2] ILs with different alkyl chain 
lengths (n = 1, 2, 5, 6, 8, and 10). A model based on a cubic equation of state and on the geometric similitude 
concept is proposed by Cardona and Valderrama36 to calculate the surface tension of pure substances and mix-
tures containing organic substances, water, and ILs. The model has been extended to binary and ternary mixtures 
using simple mixing and combining mixing rules without interaction parameters, so the predictive capabilities 
of the model are guaranteed. The mixtures are composed of organic solvent + IL and water + ILs. Equations of 
state (EOS) methods are only applicable to systems for which they have been calibrated. Typically, EOS models 
rely on adjustable parameters that must be optimized based on experimental data points. Without experimental 
data and calibrated parameters, these models cannot be fully trusted, and the process of calibration can be time-
consuming and complex37. Therefore, it is essential to focus on developing and utilizing general models capable 
of predicting the thermophysical properties of these systems in general, and surface tension in particular.

During recent years, soft computing methods have drawn researchers’ attention by virtue of their capability 
to model and tackle difficult issues that were formerly problematic or impractical to solve38. In the field of ILs, 
several groups around the world have accomplished several studies on the application of the Artificial Neural 
Networks (ANNs) for prediction the properties of the ILs and their related mixtures such as thermal conduc-
tivity of ionic liquids39, solubility of supercritical carbon dioxide in ILs40, ternary electrical conductivity of IL 
systems41, bubble points of ternary systems involving ILs42, viscosity of ternary mixtures containing ILs43, binary 
heat capacity of mixtures containing IL44 and melting point of ILs45. Also, recommended published papers are46,47; 
for a more applications of different machine learning approaches in the field of ILs.

Various soft computing methods have been employed by researchers to predict the surface tension of pure 
ILs. For example, Lazzús et al.48 utilized a group contribution method based on ANNs to estimate surface tension 
values of pure ILs, while Atashrouz et al.49 developed a mathematical model using Least Square Support Vector 
Machines (LSSVM) to predict surface tension values of pure ILs. Obaid et al.50 used AdaBoost with different 
base models, including Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Decision 
Tree (DT) to predict surface tension of different ILs. A review of the current literature reveals that there are only 
a few studies that have utilized different soft computing techniques to predict surface tension values for binary 
systems that contain ILs. These methods will be discussed in detail below.

Soleimani and his colleagues46 utilized Support Vector Machine (SVM) and LSSVM models combined with 
Coupled Simulated Annealing (CSA) and Genetic Algorithm (GA) to predict surface tension of binary mix-
tures consisting of 31 different IL mixtures and 748 data points. The input parameters of their models included 
temperature, IL properties, and non-IL properties. They found that the CSA-LSSVM model outperformed other 
models in view of statistical parameters. In another inquiry51, they used an ANN model based on the same data 
points and input parameters. Their model accurately predicted surface tension in terms of statistical analysis. 
Based on the same dataset and input variables, Setiawan et al.33 suggested different ANNs disciplined by four 
optimization algorithms, namely Teaching–Learning-Based Optimization (TLBO), Particle Swarm Optimiza-
tion (PSO), GA, and Imperialist Competitive Algorithm (ICA), to estimate surface tension of the binary ILs 
mixtures. Atashrouz et al.52 used GA-LSSVM, GA-SVM, and Group Method of Data Handling Polynomial 
Neural Network (GMDHPNN) models to estimate surface tension of binary mixtures containing ILs based 
on 573 data points and 28 different mixtures. Their input data included temperature and properties of ionic 
and non-ILs. They concluded that GA-LSSVM and GA-SVM models had better prediction ability compared to 
GMDH-PNN model. Lashkarbolooki53 used an ANN model based on 836 data points and 32 different mixtures. 
The input parameters of the model included temperature, melting temperature, mole fraction, and molecular 
weight of ionic and non-ILs. Shojaeian and Asadizadeh54 proposed an ANN model to predict surface tension of 
binary mixtures containing ILs based on 1537 data points regarding 33 binary mixtures. In their study, various 
approaches were developed by utilizing physical properties such as temperature, reduced temperature, critical 
temperature, critical pressure, critical volume, molecular weight, acentric factor, and critical compressibility 
factor, along with two distinct mixing rules, as input parameters. In addition, they utilized five different intel-
ligent methods, including Adaptive neuro-fuzzy inference system (ANFIS), ANFIS optimized with Ant Colony 
Optimization (ANFIS-ACO), ANFIS optimized with Differential Evolution (ANFIS-DE), ANFIS optimized 
by GA (ANFIS-GA), and ANFIS optimized by PSO (ANFIS-PSO), to predict the surface tension values for the 
binary mixtures of interest. The results were then compared to those obtained using an ANN model, which was 
found to have the highest level of accuracy as compared to the other five ANFIS based models. Esmaeili and 
Hashemipour55 used Multi-Gene Genetic Programming (MGGP) to develop correlations for predicting surface 
tension in binary mixtures containing ILs based on 1414 data related to 37 binary mixtures have been gathered 
from literature. They presented two correlations for predicting of surface tension of IL and non-IL mixture using 
just temperature and mole fraction of IL component.

Despite the efforts to create precise models, the review of literature revealed that there is a much larger amount 
of experimental surface tension data available for binary mixtures containing ILs than what was used in previ-
ous studies. Therefore, it is crucial to conduct an in-depth literature search to gather a comprehensive database 
of experimental surface tension values, which is necessary for developing a comprehensive predictive model.

Over the past few years, Gradient Boosting (GB) Tree model developed by Friedman et al.56 has emerged as 
one of the potent methodologies for predictive data mining. The concept of algorithm for GB Trees rooted in 
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application of boosting method to regression trees. A new version of GB Tree model named stochastic gradient 
boosting (SGB) tree model, introduced by Friedman57, which is appeals to scientific communities and engineers 
due to enjoys several merits, for instance it works effectively on vast data sets, it is fast, relatively simple, easy 
to use and requiring the tuning a few parameters. The capability of capturing non-linear associations between 
inputs and target is one of the main strengths of this improved heuristic model, due to complex inherent struc-
ture of real-world data. Also, this promising machine learning scheme is robust to variable outliers, variable 
collinearity and missing data. Boosted regression tree based models have performed and applied well in various 
study domains such as carbon dioxide-oil minimum miscibility pressure prediction, carbon dioxide solubility 
in polymers forecasting58, estimation of interfacial tension for geological carbon dioxide storage59, predicting 
carbon dioxide solubility in aqueous amine solutions60,61.

As far as we are aware, there is no study on the application of the properties prediction of the surface tension 
of ILs mixtures using the DT based approaches. Thus, for the first time, this study will present an SGB scheme 
for predicting binary surface tension values of IL systems using a comprehensive dataset of 4010 experimental 
surface tension values of binary mixtures containing ILs. Furthermore, we will compare the performance of SGB 
scheme with 18 commonly used computational models. Besides, the effectiveness of each of the input variables 
on the output of the SGB model, i.e. surface tension, is assessed. Finally, an outlier diagnosis method is employed 
to examine any ambiguous or inconsistent experimental data.

Data preparation
All the data assembled (4010 binary surface tension values) for creating the SGB tree model took from the NIST 
Standard Reference Database62, cover temperatures between 278.15 and 348.15 K where the pressure was held 
constant at atmospheric condition. In total, data points cover 122 distinct binary mixtures comprising 48 differ-
ent ILs and 20 various non-IL components (water and 19 various organic compounds). The detailed information 
about binary mixtures, ILs and non-IL constituents presented in the supplementary information (Table S1).

To create the SGB model with satisfactory estimation capabilities of the surface tension for binary mixtures of 
ILs, some independent variables were taken into account. There are varieties of inter-related factors that affect the 
surface tension of binary IL mixtures. The relationship that models the interdependency between the surface ten-
sion for the binary mixtures and the chosen independent factors based on previous published papers46,51, i.e. the 
temperature ( T ), the mole fraction of the ILs ( xIL ), molecular weight of IL ( MwIL ) and density of IL ( ρIL ) together 
with the boiling point ( Tbnon−IL ) and molecular weight ( Mwnon−IL ) of non-IL component, is expressed as46,51:

Stochastic gradient boosting tree
Stochastic Gradient Boosting (SGB) is a novel branch of traditional Gradient Boosting (GB) developed by 
Friedman57. For enhancing precision and execution speed of the GB with the aim of bettering overall 
performance63–65, SGB merges randomization in the process which is the core principle behind Breiman’s bag-
ging method66. Successful applications of this competent method have proven across many domains in the 
literature46,58–61,67–74.

Gradient Boosting (GB) is an ensemble method that transforms weak hypotheses into strong ones by mini-
mizing the loss of the model using a gradient descent-like procedure. GB takes a collection of weak learners, such 
as decision trees, and adds them to the model to avoid overfitting. Trees are created in a stage-wise fashion, and 
future weak learners focus more on examples that the previous ones misclassified. The final output of the model 
is improved by adding the output of the updated tree to the output of the existing sequence of trees.

The training procedure employed in SGB can be examined through the flowchart depicted in Fig. S1, which 
illustrates that instead of providing all the training instances to a tree, only a fraction of these instances are used 
for training, selected through sampling without replacement. The sampled data is then utilized for training a tree 
using only a randomly sampled fraction of the available features for splitting. After a tree is trained, its predictions 
are made, and the residual errors are computed. These residual errors are multiplied by the learning rate eta ( η ) 
and fed to the next tree in the ensemble. This process is repeated sequentially until all the trees in the ensemble 
are trained. To predict the output for a new instance in stochastic gradient boosting, a similar procedure is fol-
lowed as in gradient boosting.

In this study, the SGB algorithms have been executed based on the instructions provided in Friedman’s 
works57,63. Additional information on the mathematical aspects of the SGB model can be found in the 
literature57,63,75–77.

Results and discussion
Methodology.  The current study utilized the SGB tree model to predict the surface tension of binary mix-
tures of ILs, as previously mentioned. It is crucial to carefully set the hyper-parameters to ensure the SGB model’s 
maximum generalization ability. Among these parameters, the learning rate (η) has a significant impact on the 
final outcome. Through an extensive trial and error process, the optimal value for the η was found to be 0.57. 
The model’s performance improves when using a η value of 0.57, as shown in Fig. S2, resulting in a lower Mean 
Relative Absolute Error (MRAE) value of 0.0039888.

Figure S3 displays the MSE values for the training and test datasets plotted against the number of trees. The 
initial stages show a rapid leveling off of the error rates. However, as more trees are added, the MSE values for 
the testing data begin to increase after reaching a minimum error value. This indicates the optimal number of 
trees to avoid overfitting, as shown by the horizontal green line. The optimal number of trees in this study was 
determined to be 2976.

(1)σ = f (T , xIL,MWIL, ρIL,Tbnon−IL,Mwnon−IL)
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Graphical and statistical evaluation of the SGB model.  Various criteria were employed to evalu-
ate the performance accuracy of the SGB tree method. The statistical analysis results were measured in terms 
of several parameters, including Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), Mean Relative Squared Error (MRSE), Mean Relative Absolute Error (MRAE), Relative Absolute 
Error (RAE), Correlation Coefficient (R), Bias Factor (Bf), and Accuracy Factor (Af). These parameters were 
calculated using Eqs. (2)–(10) as described in references51,78.

where yexp.ypre and y are the experimental value, predicted output and the average value, respectively.
Regression plots can be used to validate models, and Fig. 1 in particular shows the regression lines, equations, 

R-squared values, and 45° line for both the training and test data sets. The R-squared value indicates how well 
the model outputs and experimental values are related, with an R-squared value of 1 indicating an exact linear 
relationship and an R-squared value close to zero indicating no linear relationship. The formula for calculating 
R-squared is given by Eq. (8) squared. It can be seen that the SGB tree estimations have low dispersion, with 
high R-squared values of 0.99988 and 0.99274 for training and testing, respectively. Equations (11)–(13) are the 
resulting linear regression equations for the entire dataset, as well as the training and testing subsets.

The SGB model provided highly accurate predictions of the surface tension of binary mixtures, as indicated 
by the slope value being close to 1 and the intercept having a negligible value.

Another crucial aspect of creating an accurate predictive model is the model’s ability to estimate experimental 
binary surface tension data accurately, both overestimating and underestimating, across a range of input param-
eter variations. Figure 2 illustrates the trend plots of SGB predicted values and experimental data points for five 
selected different binary systems, including tributyl phosphate & 1-butyl-3-methylimidazolium hexafluorophos-
phate, butan-1-ol & 1-butyl-3-methylimidazolium L-lactate, tetrahydrofuran & 1-butyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl)imide, water & 1-butylpyridinium tetrafluoroborate, and dimethyl sulfoxide & 
1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. This figure demonstrates that the developed 
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model can accurately predict the impact of various input parameters on the surface tension of studied binary 
mixtures. As such, the developed model exhibits an excellent ability to predict the behavior of experimental data 
over related input parameters. Another observation that can be made from the Fig. 5 is that the surface tension 
behavior of a mixture consisting of IL changes as the mole fraction of IL varies. For instance, in the tributyl 
phosphate & 1-butyl-3-methylimidazolium hexafluorophosphate, butan-1-ol & 1-butyl-3-methylimidazolium 
L-lactate, tetrahydrofuran & 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide mixture, the sur-
face tension increases as the mole fraction of IL rises. Conversely, in the water & 1-butylpyridinium tetrafluor-
oborate mixtures, the surface tension initially decreases with an increase in the mole fraction of IL, but as the 
concentration of IL continues to rise, the effect of adding more IL becomes less significant.

As mentioned, to ensure that the SGB model can generalize, the collected dataset was divided into two seg-
ments: the training set and the test set. The training set was used to fit the SGB model, while the test set provided 
an unbiased assessment of the model’s accuracy. Table 1 presents the key error indexes, including MSE, RMSE, 
MAE, MRAE, MRSE, R, R2, Bf, and Af, for both the training and test subsets of the SGB tree model, as well as 
for all the data sets. The results in Table 1 indicate that the SGB tree model can accurately predict the surface 
tension of IL binary mixtures. For example, considering all data points, the Bf was obtained 1.0002301 which 
indicate that the predictions were 0.02301% larger than experimental values, while Af of 1.0039883 means that, 
on average, the predicted value is 0.39883% different (either smaller or larger) from the experimental value. These 
results demonstrate the SGB tree model’s acceptable accuracy in determining the surface tension of 122 distinct 
binary mixtures under different conditions. Thus, based on the satisfactory results obtained, it can be concluded 
that the SGB tree model is a reliable method for predicting the essential physical property of surface tension for 
binary IL mixtures. Interested readers could refer to the references78–80 for detailed discussions of these statistics; 
in the circumstance of estimation issues; various statistical parameters are as well reviewed in the references81,82.

The cumulative frequency of errors versus RAE% is depicted in Fig. 3. The maximum RAE% value is 17.06, 
and nearly 92.69% of the data points have errors lower than 1% for predicting surface tension values of binary 
mixtures containing ILs using the SGB model. In addition, only 4 out of the 4010 data points have errors greater 
than 10%, which means that 99.90% of the entire dataset has errors less than 10% for the target prediction of 
interest. This statistical analysis indicates that the SGB tree model is in a satisfactory state and is a precise and 
reliable tool for predicting the surface tension values of the studied binary mixtures.

Sensitivity analysis.  Relative contributions.  The SGB algorithm provides the relative influence of each 
variable on the model’s output, which is a benefit inherent in the decision tree. The variables’ influence is rest-
ed on averaging the amount that each variable is decided on for splitting, weighted by the squared improve-
ment to the model as a consequence of each split83. Figure 4 illustrates bar graphs that displays the importance 
scores for each attribute such that the most important variable who have the topmost score assign a value of 
1 and then by scaling the others accordingly. Based on the findings presented in Fig.  4, it appears that the 
SGB model exhibits greater sensitivity to changes in mole fraction ( xIL ) when predicting surface tension for 
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Figure 2.   Diagram of surface tension ( σ ) of binary mixture (a) tributyl phosphate & 1-butyl-3-
methylimidazolium hexafluorophosphate, (b) butan-1-ol & 1-butyl-3-methylimidazolium L-lactate, 
(c) tetrahydrofuran & 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, (d) water 
& 1-butylpyridinium tetrafluoroborate, and (e) dimethyl sulfoxide & 1-butyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl)imide as a function of temperature (T) and concentration of IL component (x, IL).

Table 1.   Calculated values of different errors for the SGB model based on the 4010 collected data.

All data Train data Test data

Root mean square error (RMSE) 0.0003718 0.0001016 0.0008027

Mean absolute error (MAE) 0.0001367 0.0000709 0.0003973

Mean relative absolute error (MRAE) 0.0039888 0.0021908 0.0111031

Mean relative squared error (MRSE) 0.0000891 0.0000096 0.0004034

Correlation coefficient (R) 0.9992264 0.9999423 0.9963646

R-squared (R2) 0.9984533 0.9998847 0.9927424

Bias factor (Bf) 1.0002301 0.9999992 1.0011443

Accuracy factor (Af) 1.0039883 1.0021932 1.0111227
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Figure 3.   Cumulative frequency versus relative absolute error of the SGB model for predicting surface tension 
of binary mixtures including ILs.
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binary mixtures containing ILs. This observation is consistent with the outcomes reported by Esmaeili and 
Hashemipour55, who utilized the Pearson method to evaluate the efficacy of various parameters in this context. 
The variables of MWnon−IL.MWIL.ρIL.Tbnon−ILandT take the second, third, fourth, fifth and sixth places of 
sensitivity, respectively.

Pearson’s correlation coefficient.  In order to conduct a thorough investigation into the surface tension of binary 
mixtures containing ILs using the SGB model, a sensitivity analysis was performed to determine how input 
parameters such as T , xIL , MwIL , ρIL , Tbnon−IL , and Mwnon−IL affect surface tension. Pearson’s correlation coef-
ficient ( rp ) was used to measure the impact of each parameter on surface tension, with values ranging from − 1 
to + 1. A value close to + 1 indicates a strong positive relationship between two variables, with both increasing 
together, while a value close to − 1 indicates a strong negative relationship with one decreasing as the other 
increases. A value of 0 indicates no relationship between the variables. The absolute value of the highest rp 
between any input variable and the output variable indicates the most significant influence on the dependent 
parameter. The following equation was used to calculate the rp values:

where yi , y , xi , and x denote the ith output, output average, ith input, and average of input, respectively.
The values of rp for input parameters for the SGB model are shown in Fig. 5. The results show the negative 

impacts of T , MwIL , ρIL , Tbnon−IL , and Mwnon−IL on the surface tension of binary mixtures containing ILs. The 
xIL has the positive and greatest impact on surface tension of binary mixtures with a rp of 0.32280 while the vari-
able of T is the least effective parameter with the rp of − 0.00006.

Comparison of the SGB model against the others.  Hashemkhani et al.46 utilized 748 experimental 
data points to predict the surface tension of binary mixtures that included ILs using SVM based methods. They 
conducted a study to optimize the three parameters of the SVM algorithm for predicting surface tension. This 
was done using a user-defined approach based on prior knowledge and experience. Additionally, GA and CSA 
algorithms were utilized to find an improved combination of the two hyper parameters embedded in the LSSVM 
model. The aim was to maximize the generalization performance of the LSSVM model in predicting surface ten-
sion. By employing these optimization techniques, the researchers sought to enhance the accuracy and effective-
ness of the LSSVM model for surface tension prediction. With the same data set, an ANN51 model with a struc-
ture containing twelve neurons in it’s both hidden layers and trained by trainbr function was proposed for the 
purpose of predicting surface tension of binary mixtures. Table 2 demonstrates the computed R and MRAE val-
ues for the SGB model, three SVM based models, i.e. SVM, GA-LSSVM, and CSA-LSSVM models and as well as 
ANN model. Due to higher values of R and lower values of MRAE, the SGB model outperforms the mentioned 
heuristics approaches in prediction of the surface tension of studied binary mixtures and shows better results. 
Another point to consider is that the SGB not only generates more accurate outputs, but also covers a more 
comprehensive data set. It was created based on a large data set of 4010 points, which covers a surface tension 
range of 0.0157–0.0727 N m−1 and temperature range of 278.15–348.15 K. This data set comprises 122 binary 
systems, with 20 non-IL components and 48 IL components. On the other hand, the ANN, SVM, GA-LSSVM, 
and CSA-LSSVM were created based on a smaller data set of 748 points, covering 31 binary systems, with 9 non-
IL components and 15 IL components. This data set covers a surface tension range of 0.0157–0.07135 N m−1 and 
temperature range of 283.1–348.15 K.

Also, to compare the SGB Model with ANN53, SVM46, CSA-LSSVM46 and GA-LSSVM46 models based on 21 
different studied binary mixtures that were common in these models, the MRAE in percent was computed for 
each binary system. It should be mentioned that instead of Tbnon−IL and ρIL , melting point of the IL and non-IL 
components introduced as model input variables for the proposed ANN model by Lashkarbolooki53. He sug-
gested an ANN model for binary surface tension prediction, which comprised one hidden layer with 16 neurons 
based sing 836 binary surface tension data points obtained within a temperature range of 278.15–348.1 K, and it 
includes a total of 11 ILs and 11 non-ILs, resulting in 32 binary IL/non-IL systems. The network was trained by 
trainlm function with 836 collected data points. Table 3 shows obviously the proposed SGB model outperforms 
the other ones in terms of MRAE%.

Moreover, the computed MRAE% values of three models based on Neural Network (NN) and SVM, viz. 
GMDH-PNN, GA-SVM and GA-LSSVM which were proposed by Atashrouz et al.52 as well as SGB model for 

(14)rp =

∑N
i=1(xi − x)(yi − y)

√

∑N
i=1 (xi − x)2

∑N
i=1 (yi − y)2

Table 2.   Evaluation MRAE and R values of different models.

MRAE R

SVM46 0.037180 0.960176

GA-LSSVM46 0.021951 0.977113

CSA-LSSVM46 0.013873 0.987044

ANN51 0.0042650 0.9995726

SGB 0.0039888 0.9992264
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13 different binary mixtures that were common in these models, are tabulated in Table 4. As shown, it is clear 
that the SGB model presented herein has the smallest MRAE% on average for the common investigated binary 
mixtures. It is worth noting that in lieu of MWIL.MWnon−IL.Tbnon−IL and ρIL , surface tension of pure compo-
nents introduced as input variables in Atashrouz et al.52 models. It is also worth highlighting that Atashrouz and 
colleagues52 developed two separate models using different datasets; one for ILs mixed with water and another 
for ILs mixed with organic compounds. In contrast, the SGB model proposed in this study is a unified model 
that covers both binary systems, including both ILs mixed with water and 19 different organic compounds. This 
indicates that the SGB model has broader applicability and is more comprehensive than the previous models 
developed by Atashrouz et al.52. Moreover, it should be emphasized that the models proposed by Atashrouz et al.52 
was constructed using 573 binary surface tension data points that were collected within a temperature range 
of 283.15–342.8 K, and covering a range of surface tension values from 0.0218 to 0.07160 N M−1. The models 
include 20 ILs and 8 non-ILs, resulting in a total of 28 binary IL/non-IL systems.

In addition, the capability of the SGB model for the purpose of predicting surface tension of mixtures in this 
study was also compared to the ANN models optimized with GA, PSO, ICA, and TLBO algorithms proposed 
by Setiawan and colleagues33 in terms of R2 and MSE values reported in Table 5. As can be seen in Table 5, the 
SGB model gives better results than PSO-ANN, GA-ANN, ICA-ANN and TLBO-ANN models. The dataset and 
input parameters utilized in Setiawan et al.’s study33 was identical to that in Hashemkhani et al.’s investigation46.

Furthermore, a comparison was made between the SGB model and the MGGP model55 in terms of their ability 
to predict the surface tension of 9 binary systems that were present in both models. Table 6, lists the MRAE% 
values for the both models, and the results suggest that the surface tension predictions by the proposed SGB 
model have better agreement with the experimental data compared to MGGP model. It should be noted that, the 
MGGP model was developed using a data set containing 1414 data points, which pertains to 37 binary systems 
and includes 10 non-IL components and 20 IL components. This data set covers a temperature range spanning 
from 278.15 to 348.15 K.

Finally, Table 7 presents a comparison of the MSE values of six models developed by Shojaeian and 
Asadizadeh54, including ANFIS, ANFIS-ACO, ANFIS-DE, ANFIS-GA, ANFIS-PSO, and ANN, with the SGB 
model. The authors used 1537 data points from 33 binary mixtures comprising 15 unique IL components and 
11 individual non-IL substances to predict surface tension across a temperature range of 278.15–338.15 K, with 
a surface tension range of 0.0189–0.0727 N M−1. To prepare the input parameters, they used physical properties 

Table 3.   Comparison of the SGB framework with other methods in terms of MRAE% for 21 different binary 
systems.

MRAE %

ANN53 SVM46 GA-LSSVM46 CSA-LSSVM46 SGB

1 1-octene/1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]
imide 2.07 3.12 0.98 1.09 0.44

2 Dimethyl Sulfoxide/1-butyl-3-methylimidazolium bis[(trifluoromethyl)
sulfonyl]imide 0.34 1.77 1.53 0.62 0.31

3 Dimethyl Sulfoxide/1-ethyl-3-methylimidazolium bis[(trifluoromethyl)
sulfonyl]imide 0.34 2.81 0.92 0.20 0.24

4 Acetonitrile/1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]
imide 0.41 3.32 0.72 0.18 0.31

5 Tetrahydrofuran/1-butyl-3-methylimidazolium bis[(trifluoromethyl)
sulfonyl]imide 1.30 2.61 0.23 0.24 0.52

6 Water/1-butyl-3-methylimidazolium tetrafluoroborate 2.62 5.56 5.88 4.05 1.04

7 Water/1-ethyl-3-methylimidazolium tetrafluoroborate 0.87 3.48 3.90 1.70 0.27

8 Ethanol/1-butyl-3-methylimidazolium tetrafluoroborate 0.66 3.80 1.71 0.93 0.31

9 Ethanol/1-hexyl-3-methylimidazolium tetrafluoroborate 1.28 2.06 0.42 0.58 0.27

10 Ethanol/1-methyl-3-octylimidazolium tetrafluoroborate 0.81 1.85 0.45 0.15 1.92

11 Water/1-hexyl-3-methylimidazolium tetrafluoroborate 0.25 2.28 0.13 0.01 0.28

12 Ethanol/1-ethyl-3-methylimidazolium tetrafluoroborate 0.58 12.22 2.60 0.25 0.99

13 Water/1-ethyl-3-methylimidazolium octyl sulfate 2.39 5.73 5.59 4.66 0.88

14 Ethanol/1-ethyl-3-methylimidazolium octyl sulfate 0.23 2.00 0.74 0.14 1.18

15 Water/1-ethyl-3-methylimidazolium ethyl sulfate 1.12 5.94 3.18 1.51 0.30

16 Ethanol/1-ethyl-3-methylimidazolium ethyl sulfate 0.49 1.89 0.20 0.41 1.06

17 1-butanol/1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]
imide 2.14 2.59 1.33 0.39 1.11

18 1-propanol/1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]
imide 1.63 2.91 0.81 1.46 0.50

19 Methanol/1-ethyl-3-methylimidazolium methylsulfate 0.96 3.07 0.80 0.34 0.33

20 Ethanol/1-ethyl-3-methylimidazolium methylsulfate 0.55 3.06 1.51 0.46 0.49

21 1-butanol/1-ethyl-3-methylimidazolium methylsulfate 1.32 5.88 5.73 3.04 1.53

Average 1.03 3.38 1.85 1.07 0.68
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Table 4.   Comparison of MRAE% between GA-LSSVM, GA-SVM, GMDH-PNN and SGB models.

MRAE%

GA-LSSVM52 GA-SVM52 GMDH-PNN52 SGB

1 Dimethyl sulfoxide/1-butyl-3-methylimidazolium bis[(trifluoromethyl)
sulfonyl]imide 0.58 0.92 2.45 0.31

2 Dimethyl sulfoxide/1-ethyl-3-methylimidazolium bis[(trifluoromethyl)
sulfonyl]imide 0.37 0.68 1.74 0.24

3 Acetonitrile/1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]
imide 0.56 0.91 2.60 0.31

4 Tetrahydrofuran/1-butyl-3-methylimidazolium bis[(trifluoromethyl)
sulfonyl]imide 0.82 0.83 1.30 0.52

5 Ethanol/1-butyl-3-methylimidazolium tetrafluoroborate 2.57 0.88 7.87 0.31

6 Ethanol/1-hexyl-3-methylimidazolium tetrafluoroborate 1.12 0.55 3.10 0.27

7 Ethanol/1-methyl-3-octylimidazolium tetrafluoroborate 3.54 3.48 1.35 1.92

8 Water/1-hexyl-3-methylimidazolium tetrafluoroborate 3.67 5.94 1.48 0.28

9 Water/3-ethyl-1-methylimidazolium butyl sulfate 1.02 0.96 2.26 0.90

10 Ethanol/1-ethyl-3-methylimidazolium octyl sulfate 1.36 1.09 3.30 1.18

11 Ethanol/3-ethyl-1-methyl-1H-imidazolium hexyl sulfate 1.61 1.43 2.76 0.39

12 1-butanol/1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]
imide 3.27 2.45 8.22 1.11

13 1-propanol/1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]
imide 0.94 1.56 3.40 0.50

Average 1.65 1.67 3.22 0.63

Table 5.   Comparison of TLBO-ANN33, PSO-ANN33, GA-ANN33, ICA-ANN33 and SGB models.

TLBO-ANN PSO-ANN GA-ANN ICA-ANN SGB

R2 0.998 0.996 0.994 0.993 0.998

MSE 0.0000002 0.0000004 0.0000006 0.0000007 0.0000001

Table 6.   Comparison of MGGP55 and SGB models in terms of MRAE%.

Binary System

MRAE%

MGGP SGB

1-octene/1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 2.813 0.438

Dimethyl Sulfoxide/1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 1.309 0.308

Dimethyl Sulfoxide/1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 0.940 0.245

Acetonitrile/1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 0.791 0.306

Tetrahydrofuran/1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 0.440 0.523

Methanol/1-butyl-3-methylimidazolium L-lactate 1.804 0.569

Water/1-butyl-3-methylimidazolium L-lactate 0.824 0.536

1-butanol/1-butyl-3-methylimidazolium L-lactate 0.996 0.357

Ethanol/1-butyl-3-methylimidazolium L-lactate 0.689 0.718

Average 1.178 0.444

Table 7.   Comparison of ANFIS54, ANFIS-ACO54, ANFIS-DE54, ANFIS-GA54, ANFIS-PSO54, ANN54 and SGB 
models.

ANFIS ANFIS-ACO ANFIS-DE ANFIS-GA ANFIS-PSO ANN SGB

MSE 0.000811 0.0167 0.0163 0.00507 0.00421 0.0000620 0.0000001
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such as temperature, reduced temperature, critical temperature, critical pressure, critical volume, molecular 
weight, acentric factor, and critical compressibility factor, as well as two different mixing rules. The ANN models 
proposed by Shojaeian and Asadizadeh had one hidden layer with 10 neurons and used the training function 
trainlm. In the ANFIS-based models, ACO, DE, GA, and PSO algorithms were introduced to obtain the optimum 
parameters. Table 7 shows that the SGB model is more accurate and superior to both the ANN model and the 
five ANFIS-based models proposed by Shojaeian and Asadizadeh54.

Outlier detection.  The detection of outliers is crucial in the development of mathematical models84. Outli-
ers refer to observations that deviate from the bulk of data obtained under the same conditions84,85. It is common 
to encounter outliers or doubtful data in projects involving data collection, and this is especially true for large 
datasets like the one used in this study. In addition to errors in experimental measurements, data entry errors 
can also contribute to the presence of outliers, particularly when data is recorded manually86. To develop reliable 
predictive models, it is essential to have accurate data points from experimental tests87. However, even if the 
data is obtained from reputable sources, errors in experimental measurements may affect the model’s prediction 
capability. Removing potential outliers can enhance model performance, but this requires a novel technique to 
identify them. The Leverage approach is used in this study to assess the quality of experimental data points and 
determine the best model’s range of applicability.

The leverage approach involves the use of a hat matrix (H) to calculate the hat indices or leverage of data 
points as follows84,85,88,89:

The equation given uses a two-dimensional matrix X with N rows (representing the data points) and k 
columns (representing the model parameters), along with a transpose multiplier t. The hat values of data are 
represented by the diagonal components of the H matrix, which are obtained using Eq. (15). These H values are 
then used in a Williams plot to visually identify outlier and suspected data points, as well as to determine the 
correlation between the H indices and standardized residuals. A Williams plot is essentially a graph that plots 
standardized residuals against hat values and can be used to differentiate valid data, suspected data, and out-of-
leverage data. The standardized residuals (SR), also known as cross-validation residuals, are calculated for each 
data point using the following formula89:

The hat index of the ith data point is denoted by Hii in the equation given above.
The Leverage approach utilizes a warning leverage parameter ( H∗ ) for accepting or rejecting model outputs 

and measurements. This parameter is determined using the equation H = 3(k + 1)/N. Typically, a leverage value 
of 3 is used as the threshold, indicating that acceptable data should be within the range of − 3 to + 3 standard 
deviations from the mean. These bounds are illustrated by two red lines in Fig. 6. If the majority of data points 
fall within the ranges of 0 ≤ Hii ≤ H∗ and −3 ≤ SRi ≤ 3 , it can be concluded that the model and its predictions 
are valid and reliable, and that the experimental data used for developing the model are also reliable and valid84,89.

Based on Fig. 6, it can be seen only a small portion (1.5%) of the data points were flagged as suspected. So, 
it can be inferred that the proposed model is highly applicable, reliable, accurate, and statistically valid, as the 
majority of the data points fall within the specified ranges of H and R.

(15)H = X(XtX)
−1

Xt
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Figure 6.   The Williams plot of SGB model for predicting surface tension of binary mixtures containing ILs.
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Conclusion
The capability of the SGB tree model in handling 122 different types of binary systems, in predicting of surface 
tension of binary mixtures containing ILs based on a comprehensive data set of 4010 experimental data points 
consists of 48 different ILs and 20 various non-IL components, was examined. In the SGB tree model, the sys-
tem conditions of temperature and IL component composition as well as molecular weight of IL and non-IL 
components, density of IL component and normal boiling point of non-IL component are used as input vari-
ables. It is notable that SGB tree model has been used for the first time for prediction/estimation of properties 
of mixtures especially those containing IL. Based on the results presented, the main contributions of the current 
research include:

1.	 Experimental surface tensions of studied binary systems show a consistency and good agreement with results 
of SGB tree model.

2.	 The MRAE and R values of the SGB models for predicting of mixtures containing ILS were nearly 0.003989 
and 0.99923 respectively.

3.	 The comparison between the results of 18 various computational approaches reveals that the SGB method is 
visibly superior to the SVM, GA-SVM, GA-LSSVM, CSA-LSSVM, GMDH-PNN, three based ANNs, PSO-
ANN, GA-ANN, ICA-ANN, TLBO-ANN, ANFIS, ANFIS-ACO, ANFIS-DE, ANFIS-GA, ANFIS-PSO, and 
MGGP models in the respect of accuracy.

4.	 Furthermore, with the bar graph of the predictor importance, the mole fraction of IL component was rec-
ognized as the variable that makes the major contributions to the prediction of the dependent variable of 
interest.

5.	 The Leverage mathematical algorithm was employed to detect outliers and assess the applicability domain of 
the SGB model proposed in this study. The analysis revealed that a very small percentage, specifically 1.5%, 
of the overall dataset was deemed questionable and did not meet the expected criteria.

6.	 In addition to the high accuracy of the predicted surface tensions, the most important advantage of the 
model of binary surface tensions proposed in this study, is that the proposed SGB tree model constructed 
exclusively based on experimental data which makes it attractive for scientists and engineers to apply such 
ensemble learning tool for rough estimation of the surface tension of any desired binary mixtures comprised 
of ILs.

7.	 The findings of this study can be used in industries that use ILs, particularly in the design and optimization 
of new processes on an industrial scale.

8.	 Due to the largest available dataset was applied, a dependable technique was put forth to predict the surface 
tension of numerous binary mixtures containing various ILs. Nevertheless, it has a limitation: although the 
SGB method is broadly applicable, its predictive ability is confined to binary systems that closely resemble 
those used to create the model. It is not advisable to apply the developed tool to binary systems that are 
entirely dissimilar from the ones studied, though it may provide a rough approximation of the surface ten-
sion of such mixtures.

9.	 Future directions of this work could involve applying the developed models to predict the surface tension of 
new binary mixtures containing different ILs such as phosphonium and sulfonium based-ILs and evaluating 
their performance against experimental data. Additionally, the developed model could be used in process 
optimization and design for various industrial applications. Further research could also investigate the feasi-
bility of applying these models to ternary and multicomponent systems containing ILs. More research could 
also investigate the feasibility of applying this model to other types of properties of mixtures containing ILs.

Data availability
All data generated or analyzed during this study are included in this published article.
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