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Variability in donor leukocyte 
counts confound the use 
of common RNA sequencing 
data normalization strategies 
in transcriptomic biomarker studies 
performed with whole blood
Grant C. O’Connell 

Gene expression data generated from whole blood via next generation sequencing is frequently used 
in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring 
of human disease. These investigations often employ data normalization techniques more typically 
used for analysis of data originating from solid tissues, which largely operate under the general 
assumption that specimens have similar transcriptome composition. However, this assumption may 
be violated when working with data generated from whole blood, which is more cellularly dynamic, 
leading to potential confounds. In this study, we used next generation sequencing in combination with 
flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition 
of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently 
examined the effect of four frequently used data normalization approaches on our ability to detect 
inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true 
cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte 
counts exhibited dramatic differences in both genome-wide distributions of transcript abundance 
and gene-level expression patterns. Consequently, three of the normalization strategies we tested, 
including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, 
noticeably masked the true biological structure of the data and impaired our ability to detect true 
interspecimen differences in mRNA levels. The only strategy that improved our ability to detect 
true biological variance was simple scaling of read counts by sequencing depth, which unlike the 
aforementioned approaches, makes no assumptions regarding transcriptome composition.

The advent of whole transcriptome profiling techniques, along with the push towards personalized medical 
treatments, has led to the clinical emergence of multi-analyte algorithmic molecular diagnostics which target 
mRNA. The peripheral whole blood is an attractive source of candidate biomarkers to develop such tests, as 
it is relatively easy to sample, and exhibits altered gene expression in several disease states via the peripheral 
immune  response1. Currently, diagnostics targeting whole blood gene expression signatures are being assessed 
for a variety of clinical uses including risk stratification in  cancer2, early detection of chronic infectious  disease3, 
diagnosis of various neurologic  disorders4, 5, and organ transplant  monitoring6, 7. Given the potential, countless 
biomarker discovery investigations are now performed involving high-throughput gene expression profiling 
of whole blood, and even more are carried out via secondary analyses and meta-analyses of the resultant data.

Because the translational goal of these studies is typically development of biomarker panels that could ulti-
mately be measured in the blood with minimal specimen handling and post-analytical data processing in a 
clinical laboratory setting, often using lower throughput techniques such as qRT-PCR, the focus is largely on 
identifying diagnostically targetable absolute differences in mRNA levels that are directly observable at the bulk 
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tissue level. This differs in some regards from the studies which use whole blood transcriptomics to investigate 
physiologic or pathophysiologic mechanisms, in that the latter may be more focused on making inferences about 
the underlying nuclear transcriptional state of the constitute blood cells as opposed to best quantifying the true 
RNA levels in a sample. Given this fundamental difference, it is important that the methodology employed in 
biomarker-centric investigations is specifically tailored to the application.

A large majority of the data collected or used in transcriptomic biomarker discovery studies of whole blood 
today is now generated via next generation RNA sequencing (RNA-seq). One of the fundamental steps in the 
analysis of bulk RNA-seq data generated from any tissue is normalization of the raw read  counts8. While the 
primary goal of normalization is remove technical variance, if performed incorrectly, normalization can intro-
duce unintended artifacts and impair the ability to detect true differences in RNA  levels9. For example, prior 
studies have demonstrated that the use of different normalization approaches can generate highly discordant 
results from the same  dataset10, 11, and that in some circumstances, normalized data can perform worse for dis-
ease diagnosis than the raw data  itself12. Thus, selection of an appropriate data normalization strategy is critical 
to increase the odds of identifying gene expression signatures with true diagnostic utility in RNA-seq based 
biomarker discovery workflows.

Despite the importance of normalization and potential impact on results, many biomarker discovery inves-
tigations performed using RNA-seq data generated from whole blood simply employ the default normalization 
strategies deployed in the most commonly used RNA-seq data analysis tools such as the  DESeq213 and  EdgeR14 
packages for  R15. However, many of the assumptions underlying these commonly used normalization strategies 
may not hold true in whole blood, especially if the goal of analysis is to identify purely diagnostic differences in 
mRNA levels between disease states. For example, a majority of widely used global scaling normalization tech-
niques, including median-ratio normalization (MRN)13 and trimmed mean of m-values (TMM)  normalization14, 
work under the assumption that a majority of genes are not differentially expressed between  specimens16. Further-
more, other commonly used normalization strategies, including quantile normalization, assume that all speci-
mens have similar global distributions of transcript  levels16. Both of these key assumptions are likely to be violated 
when working with data generated from whole blood if there are inter-donor differences in leukocyte counts.

Unlike solid tissues which are relatively static in terms of cellular composition, the cellular composition of 
whole blood is highly dynamic and can differ substantially between donors. With the exception of hemoglobin 
transcripts, which are often selectively depleted prior to gene expression  profiling17, virtually all of the of the 
mRNA in whole blood originates from white blood cells; furthermore, a majority of this mRNA is contributed 
by neutrophils and lymphocytes specifically, as they collectively make up well over 90% of the circulating leuko-
cyte  pool18. However, circulating proportions of neutrophils and lymphocytes can differ significantly between 
donors. For example, the ratio of circulating neutrophils to circulating lymphocytes, commonly referred to as 
the neutrophil-to-lymphocyte ratio (NLR), ranges from roughly 4:1 (4.0) to 1:2 (0.5) in healthy  adults19, with 
more extreme values observed in a wide variety of disease  states20–26.

Because the predominate leukocyte subpopulations found in circulation each carry highly unique 
 transcriptomes27, any shift in white blood cell differential has the potential to result in dramatic changes in gene 
expression at the level of whole blood, even in the absence of true transcriptional differences in gene expression at 
the level of individual  cells28; given their outsized contributions to the total pool of whole blood RNA, it is likely 
that even the normal inter-individual heterogeneity in neutrophil-to-lymphocyte ratio, much less that which is 
observed in disease states, results in near genome-wide differences in whole blood transcript levels that violate the 
assumptions of the aforementioned normalization approaches. Thus, the use of these normalization approaches 
when analyzing whole blood data in mRNA-based biomarker discovery studies has the potential to generate 
artifactual false positives or obscure true biologic differences in transcript levels that have diagnostic potential.

Despite this potential confound, no studies have formally investigated the effects of inter-donor differences in 
white blood cell counts on the composition of the whole blood transcriptome within the context of implications 
for data normalization in RNA-seq based biomarker discovery workflows. In this study, we used RNA sequencing 
to generate genome-wide gene expression profiles of whole blood specimens collected from a cohort of human 
subjects recruited in an emergency medicine setting, and used white blood cell differential data collected from 
the same blood draw with flow cytometry to examine the influence of shifts in neutrophil-to-lymphocyte ratio 
on global transcriptome composition. Then, we examined the effect of four commonly used data normalization 
approaches on our ability to detect true inter-specimen biological variance, using the white blood cell differential 
data to benchmark each specimens true molecular and cellular identity.

Results
Isolated neutrophils and lymphocytes exhibit dramatic differences in transcriptome composi-
tion. In order to better understand the potential effects of shifts in neutrophil-to-lymphocyte ratio on the 
composition of the whole blood transcriptome, we first compared the transcriptomes of the respective cell popu-
lations themselves using publically available gene expression data. In particular, we assessed differences in over-
all distributions of transcript abundance, as well as gene-level differential expression, using genome-wide data 
generated from isolated human neutrophils and lymphocytes via both next generation sequencing and microar-
ray. Data generated via both technologies was used in order to give the clearest picture of transcriptome differ-
ences independent of platform-specific caveats such as differences in dynamic range and composition biases.

Expectedly, both sequencing data and microarray data revealed dramatic differences in transcriptome compo-
sition between cell types. Across both platforms, distributions of mRNA abundance in neutrophil samples were 
dominated by a small number of highly expressed transcripts, characterized by higher upper percentiles, lower 
medians, and a smaller number of contributing genes, whereas distributions of mRNA abundance in lymphocyte 
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samples were more normal and more diverse, characterized by lower upper percentiles, higher medians, and a 
larger number of contributing genes (Fig. 1A,D).

In terms of gene-level differential expression, we observed near genome-wide differences, as 84.1% and 
84.4% of reliably detected genes exhibited at least a 1.5-fold difference in expression levels between cell types in 
the sequencing and microarray datasets respectively (Fig. 1B,E). In order to contextually evaluate the collective 
magnitude of these observed differences, a set of permutation analyses were performed using both the sequencing 
and microarray datasets in which 1000 and 200 comparisons each were generated between pseudo-randomly 
selected groups of samples constrained to contain equivalent proportions of neutrophil and lymphocyte samples. 
The median number of genes exhibiting at least a 1.5-fold difference in expression levels across these permuta-
tion comparisons were 34.5% and 48.2% in the sequencing and microarray datasets respectively, and in both 

Figure 1.  Comparison of transcriptome composition between isolated neutrophils and lymphocytes. (A) 
Genome-wide distributions of transcript abundance, as well as the total number of genes with detectable 
transcript, in samples of isolated human neutrophils (n = 6) and lymphocytes (n = 35) profiled by RNA-
sequencing. Transcript abundance was quantified using TPM values. The total number of genes detected 
was statistically compared between cell types using Mann Whitney U-Test. Boxplots indicate median and 
interquartile range. (B) Fold differences in expression levels between neutrophil and lymphocyte samples 
profiled with RNA sequencing for all reliably detected genes, ordered from highest to lowest absolute fold 
difference, along with the cumulative absolute fold difference. Fold differences were calculated from median 
TPM values. (C) Probability density distributions generated from the percentages of genes exhibiting at least 
1.5-fold difference, as well the genome-wide cumulative absolute fold differences, observed in 1000 comparisons 
of pseudo-randomly selected groups of n = 6 and n = 35 sequencing samples constrained to contain equivalent 
proportions of neutrophil and lymphocyte samples, compared to the values observed when comparing 
neutrophil and lymphocyte samples specifically. (D) Genome-wide distributions of transcript abundance, as 
well the total number of genes with detectable transcript, in samples of isolated human neutrophils (n = 3) 
and lymphocytes (n = 10) profiled by microarray. Transcript abundance was quantified using raw background 
corrected fluorescence intensities. The total number of genes detected was statistically compared between cell 
types using Mann Whitney U-Test. Boxplots indicate median and interquartile range. (E) Fold differences 
in expression levels between neutrophil and lymphocyte samples profiled with microarray for all reliably 
detected genes, ordered from highest to lowest absolute fold difference, along with the cumulative absolute fold 
difference. Fold differences were calculated from median intensity values. (F) Probability density distributions 
generated from the percentages of genes exhibiting at least 1.5-fold difference, as well the genome-wide 
cumulative absolute fold differences, observed in 200 comparisons of pseudo-randomly selected groups of n = 3 
and n = 10 microarray samples constrained to contain equivalent proportions of neutrophil and lymphocyte 
samples, compared to the values observed when comparing neutrophil and lymphocyte samples specifically.
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instances, not a single permutation comparison produced a greater number of differentially expressed genes than 
we observed in the our actual comparisons of neutrophil and lymphocyte samples (Fig. 1C,F).

Shifts in neutrophil-to-lymphocyte ratio globally alter the transcriptome composition of 
whole blood. Given the substantial differences we observed between the transcriptomes of isolated neutro-
phils and lymphocytes, we would expect that differences in donor neutrophil-to-lymphocyte ratio would result 
in corresponding differences in the transcriptional composition of whole blood. To explore this possibility, we 
used RNA sequencing to generate genome-wide gene expression profiles from human whole blood specimens 
sampled from a cohort of 138 patients presenting to the emergency department of an academic hospital with a 
variety of medical conditions (Table 1). We then examined the relationship between transcriptome composition 
and donor neutrophil-to-lymphocyte ratio, which was calculated from white blood cell differential data gener-
ated with flow cytometry from parallelly drawn specimens. Specifically, we assessed the correlation between 
donor neutrophil-to-lymphocyte ratio and the observed genome-wide distribution of transcript abundance, as 
well as gene-level differential expression between specimens originating from donors with neutrophil-to-lym-
phocyte ratios in the upper and lower quartiles.

Distributions of unnormalized read counts associated with whole blood specimens from donors with low 
neutrophil-to-lymphocyte ratios looked highly similar to the transcript distributions we observed in isolated 
lymphocytes, whereas distributions of unnormalized read counts associated with whole blood specimens from 
donors with high neutrophil-to-lymphocyte ratios looked highly similar to the transcript distributions we 
observed in isolated neutrophils (Fig. 2A).

Furthermore, in terms of gene-level differential expression, 58.3% of reliably detected genes exhibited at least 
a 1.5-fold difference in unnormalized read counts between whole blood specimens originating from donors with 
neutrophil-to-lymphocyte ratios in the upper and lower quartiles (Fig. 2B). In order to establish whether these 
fold differences were attributed to true biological differences as opposed to technical artifacts, we compared 
them to the fold differences we observed in our prior analysis of isolated neutrophils and lymphocytes. Fold 
differences were highly-correlated genome-wide (r = 0.677, p < 0.001, Fig. 2D), suggesting that the widespread 
gene-level differences in read counts we observed were attributed to true differences in RNA levels resulting 
from the underlying differences in neutrophil and lymphocyte composition. In order to contextually evaluate 
the collective magnitude of these differences, we performed a permutation analysis in which 1000 comparisons 
were generated between pseudo-randomly selected groups of specimens constrained to have similar composition 
in terms of donor neutrophil-to-lymphocyte ratio. The median percentage of genes exhibiting at least a 1.5-fold 
difference in read counts across these permutation comparisons was 11.5%, and not a single permutation com-
parison produced a greater number of differential read counts than we observed in our actual comparison of 
specimens originating from donors with high and low neutrophil-to-lymphocyte ratios (Fig. 2C).

The results of these analyses demonstrate the profound effect that shifts in donor neutrophil-to-lymphocyte 
ratio have on composition of the whole blood transcriptome, and in fact, suggest that neutrophil-to-lymphocyte 
ratio is likely by a wide margin the single largest determinant of the overall pattern of gene expression observed 
at the level of whole blood.

Commonly employed normalization approaches mask true biologic variance when applied to 
data generated from whole blood specimens with differing cellular composition. The dramatic 
shifts in the composition of the whole blood transcriptome we observed as a result of shifts in neutrophil-to-
lymphocyte ratio suggest that the underlying assumptions central to many of the most common techniques 
used for normalization of RNA sequencing data, especially assumptions related to genome-wide distributions 

Table 1.  Donor clinical and demographic characteristics.

n = 138

Demographic characteristics:

 Age median (range) 64 (20–96)

 Female n (%) 66 (47.8)

 Male n (%) 72 (52.2)

 White n (%) 121 (87.7)

 African American n (%) 15 (10.9)

 Asian n (%) 1 (0.7)

 American Indian n (%) 1 (0.7)

 Hispanic n (%) 41 (29.7)

Leukocyte counts:

 % Neutrophil count median (range) 63.8 (20.8–91.1)

 % Lymphocyte count median (range) 24.3 (3.8–57.4)

 % Monocyte count median (range) 7.2 (2.5–30.2)

 % Eosinophil count median (range) 1.5 (0.1–7)

 Neutrophil-to-lymphocyte ratio median (range) 2.57 (0.48–23.98)
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of transcript abundance and gene-level differential expression trends, would be violated in any analysis involv-
ing data originating from specimens with differing neutrophil and lymphocyte composition. Thus, it is likely 
that the use of these normalization techniques in such situations could interfere with the ability to detect true 
biological variance. In order to explore this possibility, we performed a series of analyses to examine the impact 
of four commonly used data normalization approaches on our ability to detect true inter-specimen biological 
variance, using the white blood cell differential data to benchmark each specimens true molecular and cellular 
composition.

The following four data normalization approaches were evaluated: simple scaling of read counts by sequenc-
ing depth to yield normalized counts in terms of reads per million mapped (RPM), median-ratio normaliza-
tion (MRN), trimmed mean of m-values (TMM) normalization, and quantile normalization. The resultant pre 
and post-normalization read count distributions are depicted in Fig. 3. With the exception of simple scaling 
by read depth, each normalization strategy that was tested disrupted the clear relationship between read count 
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Figure 2.  Comparison of whole blood transcriptome composition between donors with differing neutrophil-to-
lymphocyte ratios. (A) Genome-wide distributions of raw read counts generated from whole blood specimens, 
as well as the total number of genes with detectable transcript, ordered by donor neutrophil-to-lymphocyte 
ratio. The number of detected genes was statistically compared between specimens from donors with 
neutrophil-to-lymphocyte ratios in the lower quartile (n = 35), middle two quartiles (n = 68) , and upper quartile 
(n = 35) with Kruskal–Wallis rank test. Boxplots indicate median and interquartile range. (B) Fold differences in 
raw read counts between specimens from donors with neutrophil-to-lymphocyte ratios in the upper and lower 
quartiles for all reliably detected genes, ordered from highest to lowest absolute fold difference, along with the 
cumulative absolute fold difference. Fold differences were calculated from median values. (C) Probability density 
distributions generated from the percentages of genes exhibiting at least 1.5-fold difference, as well the genome-
wide cumulative absolute fold differences, observed in 1000 comparisons of pseudo-randomly selected groups of 
n = 35 and n = 35 specimens constrained to have a less than a 5% difference in donor neutrophil-to-lymphocyte 
ratio, compared to the values observed when comparing specimens from donors with neutrophil-to-lymphocyte 
ratios in the upper and lower quartiles. (D) Relationship between gene-level fold differences observed in 
whole blood between donors with neutrophil-to-lymphocyte ratios in the upper and lower quartiles, and those 
observed between isolated neutrophils and lymphocytes. Correlation strength and statistical significance was 
assessed via Spearman’s rho. *Statistically significant.
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distribution and donor neutrophil-to-lymphocyte ratio that we had observed in the raw data, suggesting that 
their use removed or obscured a significant amount of the true biological structure of the data.

In order to examine this potential effect further, we assessed the impact of the tested normalization strate-
gies on our ability to detect expected inter-specimen differences in gene-level mRNA expression. Given that 
our collective prior analyses demonstrated that whole blood mRNA levels are largely dependent on the cellular 
composition of the specimen, and that specimens with differing cellular composition exhibit inter-specimen 
gene-level differential expression patterns which are highly reflective of those that exist between their isolated 
constitute cell populations, we assessed the impact of each normalization strategy on the correlation that we 
previously observed between the genome-wide fold differences in raw read counts yielded from comparison of 
whole blood specimens from donors with high and low neutrophil-to-lymphocyte ratios, and those yielded from 
comparison of isolated neutrophils and lymphocytes. Purely in terms of correlation coefficient, simple scaling of 
the raw read counts by sequencing depth significantly improved the strength of the observed correlation, however, 
the use of every other normalization strategy weakened it (Fig. 4A,B). Furthermore, simple scaling of the raw 
read counts by sequencing depth resulted in improved directional agreement in fold difference values, whereas 
the use of every other normalization strategy introduced discordance. These effects were most pronounced when 
looking at genes which exhibited higher fold differences in expression levels between isolated neutrophils and 
lymphocytes, and thus whose whole blood transcript levels should be most affected by shifts in the neutrophil-
to-lymphocyte ratio (Fig. 4C).

Finally, we assessed the impact of each normalization strategy on our ability to bioinformatically infer the true 
cellular composition of each whole blood specimen using gene expression data. To do this, we leveraged the same 
publically available RNA-sequencing dataset of isolated human leukocyte subpopulations that we employed in 
our prior analyses to identify a list of 126 marker genes (hereafter referred to as WBC4.126, Supplementary File 
1) whose expression levels are highly enriched in either neutrophils, lymphocytes, monocytes, or eosinophils 
(Fig. 5). We then applied a principal components analysis-based deconvolution approach to generate inferred 
counts for the aforementioned cell types using both the raw and normalized whole blood expression levels of 
these marker genes. The resultant inferred cell counts were then compared to the actual donor white blood 
cell differentials generated via flow cytometry, and the effect of each normalization approach on the accuracy 
of deconvolution was assessed. Inferred cell counts generated from the raw data were highly correlated with 
actual donor cell counts. Simple scaling of the raw read counts by sequencing depth resulted in an improvement 
in deconvolution accuracy in the case of every leukocyte subpopulation, whereas normalization via all other 
strategies resulted in a decreased deconvolution accuracy in the case of either all or nearly every leukocyte 
subpopulation (Fig. 6A,C).

The results of these analyses (summarized in Table 2) suggest that with the exception of simple correction 
for sequencing depth, all of the data normalization strategies that we evaluated significantly interfere with the 
ability to detect true biological variance in the presence of inter-specimen differences in cellular composition.
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Discussion
In this study, our goal was to examine how shifts in donor leukocyte counts alter the transcriptional composi-
tion of whole blood, and determine how these alterations influence the performance of commonly employed 
RNA-sequencing data normalization strategies in terms of detecting true biological variance in mRNA levels. 
Our results demonstrate that shifts in donor leukocyte counts profoundly alter the composition of the whole 
blood transcriptome, and that many of the data normalization strategies that are currently being deployed in 
sequencing-based transcriptomic biomarker discovery studies of whole blood are likely to significantly interfere 
with the ability to detect true biological variance in transcript levels in the presence of inter-donor differences 
in leukocyte counts as a result of said alterations.

A majority of the most commonly-employed RNA sequencing data normalization approaches used today 
operate under at least one of the following two assumptions: that either genome-wide distributions of transcript 
levels are similar between specimens, or a majority of genes are not differentially expressed between  specimens16. 
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Figure 4.  Effects of normalization on the ability to detect variance in whole blood gene expression levels 
associated with underlying variance in sample cellular composition. (A) Relationship between gene-level fold 
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Our results demonstrate that not only can whole blood specimens with differing cellular composition have 
dramatically different global distributions of transcript levels, but that they can also exhibit near genome-wide 
gene-level differential expression, phenomena which would clearly result in violation of the aforementioned 
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Figure 5.  WBC4.126 marker gene list used for cellular deconvolution. Expression levels, of the 126 genes which 
make up the WBC4.126 marker gene list in isolated neutrophils (n = 6), eosinophils (n = 6), monocytes (n = 6), 
natural killer cells (n = 6), and lymphocytes (n = 35). The degree of fold enrichment in the cell type each gene 
is designated to represent is indicated relative to all other cell types. Indicated expression levels represent TPM 
values, and fold enrichment was calculated from leukocyte subpopulation weighted medians.
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Figure 6.  Effects of normalization on the ability to infer sample composition from whole blood gene expression data 
using cellular deconvolution. (A) Correlations between actual donor peripheral blood leukocyte counts measured by 
flow cytometry, and those inferred from whole blood gene expression data both before (Raw) and after adjusting read 
counts by either simple sequencing depth correction (RPM), median ratio normalization (MRN), trimmed mean of 
M-values (TMM) normalization, and quantile normalization. The strength and statistical significance of correlations was 
assessed via Spearman’s rho. (B) Statistical comparisons of the correlation coefficient observed with inferred cell counts 
generated from raw whole blood read counts, and those generated following each normalization strategy, for each cell 
type. Pooled correlation coefficients represent the average correlation coefficient observed across all cell types. 95% 
confidence intervals and p-values were generated via the percentile bootstrap method using 1000 bootstrap samples. 
(C) The change in correlation coefficient associated with each normalization strategy for each cell type, relative to the 
correlation coefficient observed when performing deconvolution directly from raw read counts. *Statistically significant.
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assumptions in any analysis involving specimens originating from donors with variable leukocyte counts. Our 
findings further suggest that the use of these normalization methods in the presence of these violations can intro-
duce significant analytical confounds. Of the four normalization approaches we evaluated in our benchmark-
ing analysis, three, including MRN, TMM, and quantile normalization, noticeably masked the true biological 
structure of the data, and impaired our ability to detect true interspecimen differences in whole blood transcript 
levels. Thus, the use of these normalization approaches or others which are based on similar assumptions is not 
recommended in future biomarker discovery investigations performed with data generated from whole blood, 
given the significant heterogeneity in leukocyte counts that is present across even healthy  populations19, much 
less populations with  disease20–26. The only normalization strategy that we evaluated that improved our ability 
to detect true biological variance was simple scaling of read counts by sequencing depth, which does not operate 
under of the assumptions inherent to the aforementioned  methods16. For most studies, adjusting for sequencing 
by generating RPM values as we did here, or by generating transcripts per million (TPM) values by additionally 
adjusting for transcript length, should be adequate to remove technical variance while leaving the ability to detect 
true biological variance intact, especially in analyses with modest to large sample  sizes29, which is becoming 
increasingly common in transcriptomic biomarker investigations due to the decreasing cost of bulk sequencing.

It could be argued that a limitation to this study is that we only experimentally assessed the effects of the 
tested normalization strategies on our ability to detect biological variance in terms of expected differences in 
whole blood mRNA levels driven by underlying differences in cellular composition, and not differences in whole 
blood mRNA levels driven by cell-level differences in nuclear transcription. To directly assess the latter, we 
would have needed a priori knowledge of true transcriptional differences between specimens, or ideally, to have 
used a spike-in strategy. However, the absolute mRNA level for any given gene in a bulk sample is collectively 
determined by the relative proportions of functionally distinct cell populations present in the sample, and the 
nuclear transcriptional state of said gene within the cell populations  themselves28; given that tissue-level transcript 
abundance is cumulatively dependent on both factors, if the variance contributed by cell type admixture effects 
is not accurately quantified in an experiment, then further variance stemming from true transcriptional differ-
ences will also be harder to reliably detect. Thus, because MRN, TTM, and quantile normalization dramatically 
disrupted the baseline global distributions of transcript abundance which were biologically expected based on 
sample leukocyte composition, we can assume that their use for normalization would also interfere with the 
ability to detect differences in whole blood mRNA levels driven by underlying cell-level differences in rates of 
nuclear transcription, not just those driven by cell-type admixture effects.

One obvious caveat to the conclusions we have drawn here lies in that we evaluated the performance of the 
tested normalization strategies within the context of investigations focused on discovery of RNA-based biomarker 
panels, where the goal is typically to identify diagnostically targetable absolute differences in mRNA levels that 
are directly observable at the level of whole blood, as opposed to making inferences about the underlying nuclear 
transcriptional state of the composite leukocyte pool, which may be the case in studies more focused purely on 
evaluating physiologic or pathophysiologic mechanisms. Two of the normalization strategies we tested, MRN and 
TMM normalization, were actually conceptualized with the latter application in mind; they were designed with 
the intention of helping reveal true nuclear transcriptional state by controlling for potential sequencing-specific 
biases associated with the influence of the read counts of most highly expressed genes on the read counts of the 
remainder of the genome given the finite number of total reads that are generated from a  sample30, 31. While such 
correction may be more warranted in a physiologic experiment aimed at understanding nuclear transcriptional 
state, given the degree to which the core assumptions of these normalization methods were violated in our analy-
ses, we would still have reservation about their use with whole blood data for any experimental aim. While these 
methods have exhibited strong performance in prior benchmarking studies which have utilized simulated data 
or real data generated from various human and non-human solid  tissues11, 32–34, these studies did not evaluate 
them for specific use with data generated from whole blood as we did here.

While our findings have direct implications for informing data normalization strategies in biomarker-centric 
whole blood gene expression analyses, they also shed light on other caveats associated with the analysis of whole 
blood gene expression data in general. For example, the results of the permutation analysis we performed when 
assessing gene-level expression differences between specimens from donors with differing leukocyte counts sug-
gest that neutrophil-to-lymphocyte ratio is likely by a wide margin the single largest determinant of the overall 
pattern of gene expression observed at the level of whole blood. While this result is not necessarily surprising, and 
aligns well with prior reports by our group and  others35–39, continuing to experimentally illustrate and emphasize 
this phenomenon as we have done here is important, as an alarming proportion of the vast number of papers 
currently being published reporting the results of experiments performed with whole blood gene expression data 

Table 2.  Summary of observed performance of tested normalization strategies.

Expected global distributions of 
transcript abundance maintained 
following normalization:

Effect of normalization on 
ability to detect expected 
gene-level fold differences:

Effect of normalization 
on ability to infer 
sample cellular 
composition:

RPM normalization: Yes Improved Improved

MRN normalization: No Reduced Reduced

TMM normalization: No Reduced Reduced

Quantile normalization: No Reduced Reduced
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fail to account for potential inter-specimen differences in leukocyte composition in their experimental designs, 
or to discuss the influence of any such differences on the results; many of these papers interpret the results of 
their analyses under the flawed assumption that a majority of the observed gene expression differences are driven 
by true changes in nuclear transcription, ignoring the fact that many are likely a result of underlying changes 
in specimen cellularity, which is undoubtedly leading to widespread biological misinterpretation of findings. 
Furthermore, an additional insight our results provide outside of the primary aim of our analyses is that many of 
the commonly employed data normalization techniques which we evaluated should likely be avoided in studies 
of whole blood gene expression data using cellular deconvolution methods, as their use could clearly interfere 
with the accuracy of cell type enumeration.

Our collective findings highlight the pitfalls associated with the application of widely-used RNA sequencing 
data normalization strategies which rely on the assumption of homogeneous transcriptome composition across 
specimens in biomarker discovery studies performed with whole blood. Given our results, such normalization 
techniques should be avoided in future investigations in lieu of others that are not confounded by inter-specimen 
differences in transcriptome composition associated with heterogeneity in donor leukocyte counts.

Materials and methods
Analysis of gene expression data originating from isolated neutrophils and lymphocytes. RNA 
sequencing data generated from isolated human neutrophils, naive CD4+ T cells, naive CD8+ T cells, memory 
CD4+ T cells, memory CD8+ T cells, naive B cells, and memory B cells originally sampled from the peripheral 
blood of healthy donors by Uhlen et al.40 were retrieved as gene-level summarized TPM values from the Human 
Protein Atlas (https:// www. prote inatl as. org/ about/ downl oad). Median TPM values observed in neutrophil sam-
ples and the total pool of lymphocyte samples were used directly for fold difference calculations.

Microarray data originating from isolated human neutrophils, TH1 CD4+ T cells, TH2 CD4+ T cells, memory 
CD4+ T cells, and B cells originally sampled from the peripheral blood of healthy donors by Mackay et al.41 were 
retrieved as raw intensity values with corresponding present-absent calls from the National Center for Biotech-
nology Information (NCBI) Gene Expression Omnibus (GEO) via accession number GSE3982. Median raw 
intensity values observed in neutrophil samples and the total pool of lymphocyte samples were used directly for 
fold difference calculations. Note that raw values were used in this analysis because the most commonly used 
microarray data-normalization approaches, such as quantile normalization, would have likely masked the true 
biological structure of the data if applied to samples with dramatically different transcriptome composition, in 
a similar manner as the RNA sequencing data normalization methods we evaluated.

Patients and blood sampling. Patients were recruited in the emergency department at Dell-Seton Medi-
cal Center (Austin, Tx) as part of a larger acute care biomarker discovery investigation, and presented with a 
broad range of medical conditions. Venus whole blood was collected via both PAXgene and  K2EDTA vacutain-
ers, prior to initiation of any treatment. PAXgene vacutainers were moved to − 80 °C for storage until down-
stream RNA isolation, while  K2EDTA vacutainers were used immediately for hematology analysis. Donor clini-
cal and demographic information was retrospectively retrieved from the electronic medical record. All methods 
were carried out in accordance with relevant guidelines and regulations, and were approved by the Institutional 
Review Board of Dell-Seton Medical Center. Written informed consent was obtained from all subjects or their 
authorized representatives prior to any study procedures.

White blood cell differential. White blood cell differential was immediately assessed in EDTA-treated 
blood via four angle optical flow cytometry on the Cell-Dyn Sapphire automated clinical hematology system 
using the Cell-Dyn WBC reagent pack (Abbott Diagnostics, Santa Clara, CA). Relative counts of leukocyte sub-
populations were generated by dividing absolute subpopulation cell counts by the absolute total leukocyte count. 
The neutrophil-to-lymphocyte ratio was calculated as relative neutrophil count divided by relative lymphocyte 
count.

RNA sequencing of whole blood. Total RNA was isolated from archived PAXgene-stabilized whole 
blood using the PAXgene IVD Blood RNA Kit (PreAnalytiX GmbH). RNA purity was assessed using spectro-
photometry (NanoDrop 3300, Thermo Scientific), RNA concentration was assessed using fluorometry (Qubit 
RNA broad range assay kit, Thermo Scientific), and RNA integrity was assessed using chip capillary electropho-
resis (2100 Bioanalyzer, Agilent Technologies, Inc).

Ribosomal RNA and globin mRNA-depleted cDNA libraries were prepared from 500 ng of total RNA using 
the illumina TruSeq Stranded Total RNA Ribo-Zero Globin kit (Illumina, Santa Clara, CA). Paired-end 150 bp 
sequencing was performed on the illumina NovaSeq 6000 platform. Pre-processing of raw data was performed 
using R (R Project for Statistical Computing)15. Low quality reads were filtered, and remaining reads were aligned 
to human reference genome GRCh38 using the HISAT2 pipeline via the ‘rhisat2’  package42. Counts of mapped 
reads were summarized at the gene level using the featureCounts() function of the ‘Rsubread’  package43.

RNA sequencing data normalization. All data normalization was carried out using R. Scaling of raw 
read counts to produce RPM values was performed using basic scripts. MRN normalization was performed via 
the ‘DEseq2’  package13, using a combination of the DESeq() and counts() functions under default settings to 
respectively generate scaling factors and retrieve scaled read counts. TMM normalization was performed via the 
‘edgeR’  package14, using a combination of the calcNormFactors() and cpm() functions under default settings to 
respectively generate scaling factors and retrieve scaled read counts. Quantile normalization was performed via 
the ‘preProcess’ package using normalize.quantiles() function with ties in read counts being broken at random.

https://www.proteinatlas.org/about/download
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Cellular deconvolution of whole blood gene expression profiles. RNA sequencing data gener-
ated from isolated human neutrophils, naive CD4+ T cells, naive CD8+ T cells, memory CD4+ T cells, memory 
CD8+ T cells, naive B cells, memory B cells, monocytes, natural killer cells, and eosinophils originally sampled 
from the peripheral blood of healthy donors by Uhlen et al.40 were retrieved as gene-level summarized TPM 
values from the Human Protein Atlas (https:// www. prote inatl as. org/ about/ downl oad) and used to select the 
WBC4.126 marker gene list used for deconvolution. Final marker genes for neutrophils, total lymphocytes, 
monocytes, and eosinophils were selected by filtering the total pool of detected genes to retain those which 
exhibited at least 100-fold higher expression levels in one target cell population relative to the others, and also 
a median expression level of 1.0 TPM within the target cell population of maximal expression. In said analysis, 
inter-cell population fold differences were calculated from weighted median TPM values, which were used to 
avoid bias associated with differing numbers of samples associated with each target cell population.

For deconvolution, principal components analysis was used to produce an inferred count for each target 
cell population based on the whole blood read counts of its associated marker genes using the collapserows() 
function of the ‘WGCNA’  package44 for R as described by our group  previously45, with cell count values based 
solely on the elgenvector capturing the most variance. The resultant inferred counts of each cell population were 
arbitrarily scaled from zero to one using unity-based normalization.

Statistical analyses. All statistics were carried out using the R ‘stats’ package. Mann–Whitney U-test or 
Kruskal–Wallis rank test was used for the comparison of continuous variables where appropriate. Spearman’s 
rho was used to assess the strength and significance of correlational relationships. Permutation analyses were 
carried out using basic scripts and the sample() function of base R. Bootstrap statistical comparisons were car-
ried out using the percentile bootstrap  method46, and were similarly implemented using basic scripts and the 
sample() function of base R. Sample sizes were arbitrarily determined. In the case of all statistical testing, the 
null hypothesis was rejected when p < 0.05. The parameters of all statistical tests performed are outlined in detail 
within the figure legends.

R versioning. All R analyses were carried out using R version 4.3.

Data availability
Data are available from the National Center for Biotechnology Information (NCBI) via BioProject accession 
number PRJNA949611. Raw sequencing data are available as .fastq files via individually linked Sequence Read 
Archive (SRA) records, and can be downloaded in bulk via the SRA run selector. Demographic information, as 
well as neutrophil-to-lymphocyte ratios, for all 138 donors are available via the attributes slots of linked individual 
BioSample records, and can be downloaded along with sequencing data as metadata using the SRA run selector.
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