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Selective UMLS knowledge 
infusion for biomedical question 
answering
Hyeryun Park 1,2, Jiye Son 1,2, Jeongwon Min 1,2 & Jinwook Choi 2,3*

One of the artificial intelligence applications in the biomedical field is knowledge-intensive question-
answering. As domain expertise is particularly crucial in this field, we propose a method for efficiently 
infusing biomedical knowledge into pretrained language models, ultimately targeting biomedical 
question-answering. Transferring all semantics of a large knowledge graph into the entire model 
requires too many parameters, increasing computational cost and time. We investigate an efficient 
approach that leverages adapters to inject Unified Medical Language System knowledge into 
pretrained language models, and we question the need to use all semantics in the knowledge graph. 
This study focuses on strategies of partitioning knowledge graph and either discarding or merging 
some for more efficient pretraining. According to the results of three biomedical question answering 
finetuning datasets, the adapters pretrained on semantically partitioned group showed more efficient 
performance in terms of evaluation metrics, required parameters, and time. The results also show 
that discarding groups with fewer concepts is a better direction for small datasets, and merging 
these groups is better for large dataset. Furthermore, the metric results show a slight improvement, 
demonstrating that the adapter methodology is rather insensitive to the group formulation.

As the use of artificial intelligence increases in all fields, many application systems are being introduced in the 
medical field. One of the applications in medicine is question-answering (QA) for doctors seeking clinical evi-
dence of a diagnosis or treatment, or for the general public finding information about their health  conditions1. QA 
is a task that requires not only an understanding of the context, but also knowledge of the subject. In particular, 
biomedical QA requires accuracy and expertise as it is closely related to patient safety  issues2. Biomedical QA 
research using knowledge bases has been developed, but there is still room for  improvement1. In this study, we 
introduce a method to infuse the Unified Medical Language System (UMLS) knowledge more efficiently into 
pretrained language models for biomedical QA and discuss its effects.

Pretrained language models should fully utilize their acquired contextual information to handle knowledge-
intensive tasks, such as QA, fact-checking, and dialogue  tasks3. The biomedical domain, like any other domain, 
requires relevant knowledge to solve problems. In order to answer biomedical questions, it is important to 
understand the relation between concepts such as “hypoventilation (concept), cause of (relation), respiratory 
acidosis (concept)”. Pretrained language models learn information contextually using a self-attention mechanism, 
but they do not utilize knowledge contexts such as entity semantics or relationships between  entities4. Recent 
studies have shown that models trained with masked language modeling have difficulty capturing rich factual 
 knowledge5. BERT is overly reliant on the surface form of entity  names6 and mostly did not learn the meaning 
of  negation7. As our target is biomedical QA, the language model should not just rely on the surface form of 
biomedical concepts or relations.

Knowledge bases are useful for extracting semantic knowledge by recognizing nodes as concepts and edges as 
 relations8. Leveraging knowledge bases notably improves performance for knowledge-intensive  tasks4. Knowledge 
bases in the general domain include  ConceptNet9,  WordNet10, and the atlas of machine  commonsense11. The 
UMLS is one of the well-known knowledge bases in the biomedical  domain12.

Several studies have examined knowledge infusion into large pretrained language models, such as the  BERT13, 
 RoBERTa14, and others. Most models are jointly pretrained with masked language modeling and knowledge 
infusion  objectives15–21. As pretraining is expensive in terms of computation cost and time, several studies have 
only fine-tuned their models with structural modifications, such as incorporating a knowledge  layer22 or using a 
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selective attention  mechanism4. Another approach, parameter efficient pretraining and fine-tuning can leverage 
multiple adapters to inject various types of knowledge. The K-Adapter  model5 is a RoBERTa with two adapters: 
a factual adapter pretrained with a relation classification task and a linguistic adapter pretrained with depend-
ency relation prediction. The mixture-of-partition (MoP)  method23 partitions the UMLS knowledge base into 
subgraphs, and adapters connected to a biomedical BERT are pretrained for each group. The pretrained adapters 
can then be integrated for fine-tuning.

This study investigates the need to use all semantics in a knowledge graph when injecting knowledge into 
adapters. Our work is an extension of the MoP approach but differs in strategies of grouping large UMLS knowl-
edge base, and selecting subgroups for more efficient pretraining, as shown in Fig. 1. The original MoP uses 
the METIS software  package24 to divide the knowledge graph based on its number of edges between vertices, 
resulting in groups of similar size. In contrast, we utilized semantic groups (SG) and semantic-type collections 
(SC) to organize groups according to the relationship of semantic types. As group sizes are disproportionate, we 
experimented with methods of selecting subgroups. In three biomedical QA datasets which are  BioASQ7b25, 
 PubMedQA26, and  MedQA27, adapters pretrained on semantically partitioned groups showed more efficient 
performance. For small finetuning datasets such as BioASQ7b, PubMedQA, and sampled MedQA, it was better 
to discard groups with a small number of concept unique identifiers (CUI), while for large dataset like MedQA, 
it was better to merge these groups. Since the QA datasets for a specific domain are relatively small, removing 
groups with fewer concepts seems to be an efficient way without significantly affecting the metric scores. In the 
case of general domain, where QA datasets and knowledge graphs are larger, more research is needed on merging 
groups with fewer concepts rather than discarding them, in order to achieve efficient training. In addition, auto-
matically partitioning METIS algorithm and semantically partitioning and merging or discarding groups with 
fewer concepts show similar performance without statistically significant difference. This rather demonstrates 
that the adapter methodology is rather insensitive to the group formulation. In other words, when injecting 
knowledge from UMLS into adapters, how the graph is grouped has little effect on the metric, but it reduces 
the computational parameters and time. As most of the groups with fewer concepts are less relevant to the QA 
datasets, merging or removing them reduces the number of groups the model has to reference.

Methods
Overall training scheme. Transformer  adapters28,29 are one of the lightweight finetuning methods that 
require training with only small number of model parameters. The  PubMedBERT30 model used has 12 trans-
former layers and each transformer layer has an additional adapter part as shown in Fig. 2 pretraining stage. 
Transformer adapters can have various customization options, such as the placement of learnable weights, resid-
ual connections, and bottleneck  sizes31.

Our models are based on a pretrained  PubMedBERT30 with multiple adapters, each adapter following Pfeiffer 
configuration 31 as shown in Fig. 2. The adapter down-projects features into a smaller dimension, applies a non-
linearity, and then up-projects to the original dimension. To inject knowledge, each adapter is pretrained on each 
partitioned subgroup using an entity prediction task; a tail entity is predicted, given a head entity and a relation. 
During pretraining, PubMedBERT weights are frozen, and only the adapter and prediction head weights are 
learned with the entity prediction task. The knowledge injected adapters are then used for finetuning QA task. 
While finetuning, the  AdapterFusion29 integrates adapters by activating adapters related to question and given 
passage. As shown in Fig. 2, the query vector is the output of the feed-forward layer and the key and value vectors 
are the output of the adapters. Similar to the attention mechanism, if the query and key vector are similar, the 
dot product of those vectors will be higher, resulting in a higher attention score. The attention score is a weight 
of the value vector, with higher weight indicating more active adapter. In this study, we investigate the need to 
use whole UMLS knowledge graph and the group formulation methods for more efficient knowledge infusion.

Baseline method. The UMLS triplets contain a head entity, relation, and tail entity. To generate the triplets, 
obtain concept unique identifier (CUI) and concept string (STR) from MRCONSO.RRF file, and get relation 

Figure 1.  Overview of partitioning, selecting groups, and pretraining adapters. The strategies of partitioning 
the UMLS knowledge graph and selecting groups produce K sub-groups. SG indicates semantic groups, SC 
denotes semantic-type collections, and the partitioning criteria are in parentheses. The knowledge of each group 
is injected into each adapter by an entity prediction task.
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(RELA) between two CUIs from MRREL.RRF file. The baseline MoP  approach23, which achieved the best per-
formance at that time, partitions the UMLS knowledge graph of the SNOMED CT (US Edition 2020AA) by using 
METIS. The METIS algorithm considers the number of edges between vertices and does not regard relations. 
Three phases are applied: coarsening, initial partitioning, and un-coarsening. We reimplemented the MoP in 
our experimental settings to obtain two versions of partitioned groups: Sfull-METIS-20 and S20Rel-METIS-20. 
Sfull-METIS-20 uses all 229 relations while S20Rel-METIS-20 uses only the top-20 most frequent relations. 
As the previous  work23 tested with knowledge graph of 5, 10, 20, 40, and 60 partitioned groups, the knowledge 
graph with 20 groups showed the best performance, we set 20 groups as a default setting for both experiments.

Semantically partitioning method. The UMLS provides a semantic  network32 consisting of 133 seman-
tic types which are broad categories of entities and 54 semantic relations. Since the 133 semantic types are still 
complex to comprehend the knowledge, several studies have attempted to create smaller, coarser  groups33–36. We 
utilized two semantically partitioned groups of UMLS: semantic groups (SG)36 and semantic-type collections 
(SC)34. SG is the result of grouping the semantic types into 15 higher-level categories. The six grouping princi-
ples of SG are semantic validity (semantic coherency within the groups), parsimony (minimize the number of 
groups), completeness (encompass the entire domain), exclusivity (each concept must be in only one group), 
naturalness (acceptable to domain experts), and utility (useful for a specific purpose)36. There are total of 28 
groups in SC, grouping semantic types with exactly the same set of relations, in other words, grouping semantic 
types that are structurally identical and semantically  close34.

As Sfull consists of triplets (entity 1-relation-entity 2) generated from UMLS, we had to match the entities to 
SG and SC groups. First, the CUI for each entity was obtained from the UMLS MRCONSO.RRF file, the Type 
Unique Identifier (TUI) for each CUI was matched from the Semantic Network’s MRSTY.RRF file, and the full 
semantic type name of the TUI was acquired from the SRDEF file. As a result, all of the following information 
was matched to the triplet: entity 1, relation, entity 2, CUI 1 (CUI for entity 1), CUI 2 (CUI for entity 2), TUI 
1 (TUI for CUI 1), TUI 2 (TUI for CUI 2). Then, the SG group name was matched to the TUI using the UMLS 
SemGroups.txt file. For each SC, we manually matched the SC group name with corresponding TUI by refer-
ring to the  paper34. The Fig. 3 illustrates the distribution of the number of CUIs in each group. Using the METIS 
algorithm, the 20 groups have a relatively uniform distribution on CUIs, while due to the semantic partitioning, 
SG and SC exhibit large imbalances in the number of CUIs among the groups.

Figure 2.  Overview of pretraining and finetuning stage. The pretraining task is predicting the tail entity, 
given a head entity and a relation as input. During pretraining, PubMedBERT weights are fixed, only adapter 
and prediction head weights are learned. All parameters are updated in the QA fine-tuning phase, and given 
question and passage as input, the model predicts an answer (yes/no/maybe). While finetuning, AdapterFusion 
component integrates adapters with knowledge of subgroups.

Figure 3.  A log scale distribution of the number of CUIs per group according to different partitioning strategies 
(METIS, SG, and SC).
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Thus, we experimented with merging or discarding subgroups, as the semantically partitioned group size 
was highly imbalanced. In SG, the minimum number of CUIs within a group is 18, the maximum is 140,058, 
and the average is 20,155. In SC, the minimum number of CUIs in a group is 15, the maximum is 63,842, and 
the average is 10,797. The infrequent group in this paper is a group with fewer CUIs than the threshold. This 
threshold is set in two cases. First, when conducting experiments to train the adapter with various numbers of 
data, 1000 is commonly used as the smallest  number37,38, so the threshold is set to 1000 and groups with less 
than 1000 CUIs are either merged or removed. In the second case, the threshold is the average number of CUIs 
among the groups, with SG set to 20,155 and SC set to 10,797. For SG, infrequent groups are simply merged or 
removed based on the number of CUIs in the group. Sfull-SG-15 uses all 15 groups, Sfull-SG-11 merges groups 
with less than 1000 CUIs, and Sfull-SG-10 removes those groups. Sfull-SG-5 merges groups with CUIs less 
than the average number of CUIs (20,155), and Sfull-SG-4 eliminates these groups. For SC, infrequent groups 
are either deleted or merged with their parent groups according to the SC hierarchy in the  paper34. Sfull-SC-28 
uses all 28 groups, Sfull-SC-20 and Sfull-SC-16 handle groups with less than 1000 CUIs, whereas Sfull-SC-12 
and Sfull-SC-7 handle those with CUIs fewer than the mean (10,797). The Supplementary Fig. S1 shows the 
percentage of CUIs used for each knowledge graph. Sfull-METIS-20, Sfull-SG-15, and Sfull-SC-28 all have a 
total of 302,332 CUIs, and the merging cases of infrequent groups, Sfull-SG-11, Sfull-SG-5, Sfull-SC-20, and 
Sfull-SC-12 also have 302,332 CUIs. For cases where infrequent groups are discarded, Sfull-SG-10 has 301,517 
CUIs (99.73%), Sfull-SG-4 contains 282,913 CUIs (93.58%), Sfull-SC-16 includes 297,996 CUIs (98.56%), and 
Sfull-SC-7 has 255,085 CUIs (84.37%).

After partitioning and selecting groups, the next step is pretraining adapters. To inject knowledge, each 
adapter is pretrained on each partitioned subgroup through an entity prediction task using triplets; given a 
head entity (CUI) and a relation, a tail entity (CUI) is predicted. During pretraining, PubMedBERT weights are 
frozen, and only the adapter and prediction head weights are learned. The knowledge injected adapters are then 
used for finetuning QA task.

Finetuning stage. After injecting knowledge into adapters, the whole model is fine-tuned on the biomedi-
cal QA datasets by updating all model parameters including adapters, PubMedBERT, and the prediction head. 
The BioASQ7b dataset has four types of questions: factoid, yes/no, summary, and list. As in a previous  work23, we 
used only 885 yes/no questions such as “Is Baloxavir effective for influenza?”. Each question and sentences from 
PubMed abstract is annotated with the answer (yes/no). The PubMedQA-labeled dataset has 1000 instances of 
questions generated from article titles, abstracts excluding conclusions, and yes/no/maybe answers. As the Bio-
ASQ7b and PubMedQA datasets are small, we ran the finetuning experiment ten times and averaged the results. 
The MedQA dataset has 12,723 questions, with multiple-choice answers generated from professional medical 
board exams. Table 1 lists the details of the datasets.

There are several differences in finetuning between the original MoP and the reimplementation MoP. Due to 
the class imbalance in the QA datasets, f1 score is more reliable than accuracy. While the original MoP only tested 
based on accuracy alone, we also evaluated using the macro-precision, macro-recall, and macro-f1 score. After 
finetuning, the model of the best training step should be used for evaluation. The original MoP used accuracy as 
a criterion, but for this experiment we selected the model with the highest f1 score. The statistical comparisions 
between original and reimplementation MoP are shown in Supplementary Table S1. For the BioASQ7b dataset, 
our reimplemented accuracy was statistically higher than the original accuracy. For the PubMedQA dataset, 
there was no statistically significant difference between our reimplemented accuracy and the original accuracy.

Experimental settings. All experiments were performed using two 3090 RTX GPUs. Whereas the original 
MoP pretrained the adapters for one or two epochs with a random seed, we pretrained our model for ten epochs 
and used a fixed seed of 42, resulting in slightly different results. During pretraining, the learning rate was 1e−4, 
batch size was 256, and AdamW optimizer was used with 0.01 weight decay. During fine-tuning, the learning 
rate was 1e−5, batch size was eight, total epoch was 25, and model used early stopping with a patience of five. 
The only difference with MedQA fine-tuning was that the dataset size was large; thus, the batch size was set to 
two. In addition, BioASQ7b and PubMedQA experiments were repeated ten times with a seed list consisting of 
ten fixed seeds (42, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16,384) while original MoP used a seed list with ten 
random seeds. As MedQA is a large dataset we only experimented once with a fixed seed 42 for reproducibility. 
The pretraining objective was cross-entropy loss for the entity prediction task and the fine-tuning objective was 
cross-entropy loss for the biomedical QA task.

Table 1.  Statistical details of the three biomedical QA datasets.

Dataset Total Train/dev/test Yes/no(/maybe)

BioASQ7b 885 670/75/140 80%/20%

PubMedQA 1000 450/50/500 55.2%/33.8%/11.0%

MedQA 12,723 10,178/1272/1273 X
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Results
Metric evaluation. As BioASQ7b and PubMedQA provide yes/no and yes/no/maybe classification tasks, 
respectively, the evaluation metrics include accuracy, macro-precision, macro-recall, and macro-f1 scores. Addi-
tionally, because both the datasets are imbalanced, the macro-f1 score is more reliable. For MedQA, accuracy 
is used for multiple-choice classification. In contrast from the previous study, when adapters were pretrained 
for ten epochs, the Sfull knowledge graph showed higher scores than S20Rel in all datasets. In the BioASQ7b 
and PubMedQA datasets, performance often improved when adapters were pretrained with the semantic group 
instead of the METIS group, and the required parameters and time were reduced. With the MedQA dataset, 
when using the semantic group, efficient training was accomplished with the use of reduced parameters and in a 
timely manner than the METIS group, but the performance was comparable.

Table 2 shows the fine-tuning results of the BioASQ7b dataset, for which the format of the adapter name uses 
graph-partitioning method-number of groups. If only PubMedBERT is finetuned, the macro-f1 score is 0.8493, 
0.8719 when using the adapter without knowledge infusion, and 0.8921 when using the adapters pretrained 
with the entire METIS group. The best SG-pretrained adapter was Sfull-SG-4, which performed slightly bet-
ter than Sfull-METIS-20 while reducing the parameters and learning times. The best adapter pretrained with 
SC was Sfull-SC-12, which had a lower macro-f1 score than the Sfull-METIS-20, but reduced the number of 
parameters and time required. In most cases, removing groups based on the number of CUIs in each group was 
better than merging.

Table 3 shows the results of using the PubMedQA dataset. According to the macro-f1 score, using SG and SC 
was superior to using METIS, but there was no statistically significant difference. Finetuning the PubMedBERT 
alone results in macro-f1 score of 0.4336, 0.4394 when using the adapter without knowledge injection, and 
0.4402 using the adapters pretrained with the full METIS group. The best adapters were Sfull-SG-10 and Sfull-
SC-16, which discarded groups with less than 1000 CUIs. Similarly, for groups under the CUI mean frequency, 
the elimination method performed better than merging. For PubMedQA, utilizing semantic groups resulted in 
higher macro-f1 scores and fewer parameters and training times.

As the results of BioASQ7b and PubMedQA showed that SG shows better performance than SC, only SG 
was used with the MedQA dataset; Table 4 shows the obtained results. Using the adapter significantly improved 
performance compared with only finetuning PubMedBERT and using adapter without knowledge infusion. The 
accuracies of Sfull-METIS-20 and Sfull-SG-5 adapters tied for the best score but using SG significantly reduced 
parameters and time. Differing slightly from the trend of other datasets, the infrequent-group merge method 
outperformed the discard method. As MedQA has more data than either BioASQ7b or PubMedQA, which means 
there are more questions that require more diverse knowledge, it might be better to incorporate all the knowledge, 
even though the meanings may be mixed. To support this, we further experimented with 509 instances randomly 
sampled from the MedQA training data, as there are 670 samples in BioASQ and 450 instances in PubMedQA. 
The results show that the best adapter was Sfull-SG-4, removing infrequent groups, as shown in Table 5. This 
indicates that for small datasets it is better to remove infrequent groups, and for large datasets it is better to 

Table 2.  Results show that the best adapter is Sfull-SG-4, which is pretrained on Unified Medical Language 
System semantic groups and discarded infrequent groups. The Sfull-SG-4 adapter exhibits similar performance 
to the Sfull-METIS-20, and reduces parameters and computation time. †Indicates a significant difference 
between PubMedBERT with knowledge infused adapters and PubMedBERT without adapters (independent 
t-test, p < 0.05).

Adapter status Adapter name Parameters Time Accuracy Macro-precision Macro-recall Macro-f1

X X 109,483,778 45 m 0.8750 ± 0.0012 0.8794 ± 0.0011 0.8370 ± 0.0031 0.8493 ± 0.0023

Not pretrained X 110,378,306 50 m 0.8921 ± 0.0012 0.8911 ± 0.0010 0.8603 ± 0.0024 0.8719 ± 0.0020

Pretrained with METIS group
S20Rel-METIS-20 166,332,674 2 h11 m 0.9071† ± 0.0002 0.9100† ± 0.0007 0.8798†± 0.0003 0.8913† ± 0.0003

Sfull-METIS-20 166,332,674 2 h17 m 0.9093† ± 0.0003 0.9171† ± 0.0002 0.8775 ± 0.0008 0.8921† ± 0.0005

Pretrained with UMLS semantic 
groups

Sfull-SG-15 (use all groups) 157,433,473 1 h42 m 0.8964 ± 0.0011 0.8940 ± 0.0011 0.8702 ± 0.0024 0.8782 ± 0.0020

Sfull-SG-11 (merge groups under 
1000) 150,314,114 1 h39 m 0.8929 ± 0.0013 0.8982 ± 0.0020 0.8575 ± 0.0021 0.8723 ± 0.0020

Sfull-SG-10 (remove groups under 
1000) 148,534,274 1 h24 m 0.8979 ± 0.0029 0.8952 ± 0.0042 0.8745 ± 0.0040 0.8815 ± 0.0040

Sfull-SG-5 (merge groups under 
20,155) 139,635,074 1h22m 0.9007 ± 0.0005 0.9020 ± 0.0006 0.8706 ± 0.0008 0.8830 ± 0.0007

Sfull-SG-4 (remove groups under 
20,155) 137,855,234 1 h13 m 0.9093† ± 0.0004 0.9165† ± 0.0004 0.8780 ± 0.0010 0.8922† ± 0.0007

Pretrained with semantic-type 
collections

Sfull-SC-28 (use all groups) 180,571,394 2 h38 m 0.8886 ± 0.0029 0.8822 ± 0.0037 0.8626 ± 0.0050 0.8691 ± 0.0047

Sfull-SC-20 (merge groups under 
1000) 166,332,674 2 h3 m 0.8957 ± 0.0016 0.9018 ± 0.0014 0.8602 ± 0.0034 0.8742 ± 0.0028

Sfull-SC-16 (remove groups under 
1000) 159,213,314 2 h2 m 0.9007 ± 0.0023 0.9035 ± 0.0020 0.8706 ± 0.0049 0.8806 ± 0.0042

Sfull-SC-12 (merge groups under 
10,797) 152,093,954 1 h35 m 0.9057† ± 0.0002 0.9013 ± 0.0005 0.8865† ± 0.0004 0.8914† ± 0.0003

Sfull-SC-7 (remove groups under 
10,797) 143,194,754 1 h22 m 0.9022 ± 0.0006 0.9078 ± 0.0007 0.8689 ± 0.0011 0.8837 ± 0.0009
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merge them. Furthermore, for the metrics in most datasets, our model of semantically partitioned group shows a 
slightly better improvement over the METIS group, but there is no statistically significant difference. Comparing 
to the PubMedBERT without adapters, Sfull-METIS-20, S20Rel-METIS-20, SFull-SG-4, and SFull-SC-12 have a 
statistically significant difference in the BioASQ7b, and only Sfull-SG-10 has a statistically significant difference in 

Table 3.  For the PubMedQA dataset, adapters pretrained with SG and SC are both superior to the METIS 
group in terms of macro-f1 score, required parameters, and time. Both Sfull-SG-10 and Sfull-SC-16 adapters 
eliminate the infrequent groups rather than merging them. † has the same meaning as in Table 2.

Adapter status Adapter name Parameters Time Accuracy Macro-precision Macro-recall Macro-f1

X X 109,483,778 40 m 0.5918 ± 0.0026 0.4597 ± 0.0037 0.4413 ± 0.0028 0.4336 ± 0.0035

Not pretrained X 110,379,075 42 m 0.6094 ± 0.0017 0.4628 ± 0.0021 0.4506 ± 0.0019 0.4394 ± 0.0019

Pretrained with METIS group
S20Rel-METIS-20 166,333,443 1 h10 m 0.5938 ± 0.0027 0.4509 ± 0.0044 0.4364 ± 0.0024 0.4293 ± 0.0029

Sfull-METIS-20 166,333,443 1 h41 m 0.5994 ± 0.0035 0.4519 ± 0.0058 0.4484 ± 0.0034 0.4402 ± 0.0043

Pretrained with UMLS semantic 
groups

Sfull-SG-15 (use all groups) 157,434,243 1 h27 m 0.6042 ± 0.0033 0.4714 ± 0.0087 0.4516 ± 0.0019 0.4489 ± 0.0019

Sfull-SG-11 (merge groups under 
1000) 150,314,883 1 h5 m 0.5966 ± 0.0017 0.4533 ± 0.0054 0.4528 ± 0.0027 0.4417 ± 0.0041

Sfull-SG-10 (remove groups under 
1000) 148,535,043 1 h15 m 0.6098† ± 0.0007 0.4668 ± 0.0020 0.4561 ± 0.0012 0.4501 ± 0.0019

Sfull-SG-5 (merge groups under 
20,155) 139,635,843 1 h4 m 0.5518 ± 0.0021 0.4386 ± 0.0021 0.4294 ± 0.0015 0.4144 ± 0.0017

Sfull-SG-4 (remove groups under 
20,155) 137,856,003 1 h9 m 0.5980 ± 0.0012 0.4679 ± 0.0027 0.4492 ± 0.0014 0.4473 ± 0.0016

Pretrained with semantic-type col-
lections

Sfull-SC-28 (use all groups) 180,572,163 1 h59 m 0.5810 ± 0.0027 0.4909 ± 0.0094 0.4373 ± 0.0018 0.4305 ± 0.0022

Sfull-SC-20 (merge groups under 
1000) 166,333,443 1 h50 m 0.6028 ± 0.0023 0.4918 ± 0.0079 0.4525 ± 0.0022 0.4468 ± 0.0027

Sfull-SC-16 (remove groups under 
1000) 159,214,083 1 h33 m 0.6000 ± 0.0022 0.4669 ± 0.0001 0.4524 ± 0.0014 0.4480 ± 0.0013

Sfull-SC-12 (merge groups under 
10,797) 152,094,723 1 h17 m 0.5794 ± 0.0015 0.4391 ± 0.0042 0.4299 ± 0.0031 0.4214 ± 0.0039

Sfull-SC-7 (remove groups under 
10,797) 143,195,523 1 h6 m 0.5886 ± 0.0019 0.4785 ± 0.0034 0.4467 ± 0.0023 0.4389 ± 0.0033

Table 4.  For the large MedQA, Sfull-METIS-20 and Sfull-SG-5 adapters show the same accuracy but using SG 
significantly reduces parameters and time, allowing for efficient fine-tuning.

Adapter status Adapter name Parameters Time Accuracy

X X 109,483,778 3 h2 m 0.3386

Not pretrained X 110,377,537 4 h48 m 0.3425

Pretrained with METIS group
S20Rel-METIS-20 166,331,905 15 h50 m 0.3747

Sfull-METIS-20 166,331,905 29 h23 m 0.3849

Pretrained with UMLS semantic groups

Sfull-SG-15 (use all groups) 157,432,705 14 h58 m 0.3778

Sfull-SG-11 (merge groups under 1000) 150,313,345 9 h44 m 0.3778

Sfull-SG-10 (remove groups under 1000) 148,533,505 10 h5 m 0.3747

Sfull-SG-5 (merge groups under 20,155) 139,634,305 13 h42 m 0.3849

Sfull-SG-4 (remove groups under 20,155) 137,854,465 9 h23 m 0.3621

Table 5.  For the small sampled MedQA, the best method is to remove the infrequent groups, which show the 
same trend as the other small datasets, BioASQ and PubMedQA.

Adapter status Adapter name Accuracy

Pretrained with METIS group Sfull-METIS-20 0.2663

Pretrained with UMLS semantic groups

Sfull-SG-15 (use all groups) 0.2828

Sfull-SG-11 (merge groups under 1000) 0.2844

Sfull-SG-10 (remove groups under 1000) 0.2671

Sfull-SG-5 (merge groups under 20,155) 0.2820

Sfull-SG-4 (remove groups under 20,155) 0.2899
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the PubMedQA. This result asserts that the injection of UMLS into adapters, even though the semantic grouping 
has little effect on the metric, but it does show much benefits in terms of the computational parameters and time.

Discussion
Impact of semantic group adapters. Since the partitioned groups are based on semantics, we experi-
mented the performance of each adapter to examine the contribution of each group. The Supplementary Fig. S2 
shows the macro-f1 score of each adapter from Sfull-SG-4, which performed best on the BioASQ7b test data-
set, and Sfull-SG-10, which achieved the highest performance on the PubMedQA test dataset. The Sfull-SG-4 
has four adapters: chemicals and drugs, anatomy, disorders, and procedures. The chemicals and drugs group 
includes entities related to chemical (protein, enzyme, etc.), clinical drug, and pharmacologic substance. The 
anatomy group contains anatomical structure (body, organ, tissue, cell, etc.) and body substance (extracellular 
material). The disorders group encompasses entities of abnormality, disease, symptom, finding, and dysfunction. 
In the procedures group, there are entities related to procedures, methods or techniques for diagnosis, examina-
tion, treatment, genetic research, etc., research activities, and healthcare activities such as patient care. As shown 
in the Supplementary Fig.  S2, the procedures group contributes the most and the disorders group the least. 
Since most yes/no questions in BioASQ7b does not ask about one entity, but rather asks about how a specific 
treatment affects a disease, the procedures semantic group that includes procedures, methods, techniques, and 
research contents may have the greatest impact. In the case of PubMedQA, the physiology group contributes 
the most and the disorder group the least. The physiology group includes the physiologic function of cell, gene, 
molecule, organism, organ, and tissue, clinical and organismal attribute, and mental process. For Sfull-SG-10, 
the removed groups are geographic areas group, occupations group, organizations group, gene and molecular 
sequences group, and activities and behaviors group. Since most of these groups are less related to BioASQ7b 
and PubMedQA, removing them will yield more efficient training. However, it is a concern to remove the gene 
and molecular sequences group based on the number of concepts, so further research is necessary to augment 
groups using other knowledge graphs such as  GenomicKB39.

To figure out which adapters contribute more depending on the input question, there are some examples in 
the Supplementary Table S2. The attention weight of the adapter fusion is the score of which adapter is concen-
trated. Question 1 is about the effect of Semagacestat, a candidate drug for Alzheimer’s disease, and the question 
2 asks about Axitinib, a small molecule tyrosine kinase inhibitor for pancreatic cancer, so it can be seen that 
the weight of the clinicals and drugs adapter and disorder adapter is relatively higher than other questions. As 
question 3 asks about the exosomal marker, which is an extracellular material in the body and Question 4 is 
about the activator of pancreatic stellate cells, both have a higher weight for the anatomy adapter than the other 
questions. Question 5 asks about the association of Miller-Dieker syndrome and abnormalities of chromosome 
1, and question 6 asks about a complication of sinusitis, so the attention weight of the disorder group with infor-
mation on abnormalities and diseases is higher. Lastly, looking at the questions with a high attention weights on 
the procedures group, question 7 is about gene therapy for auditory function, and question 8 asks about FDA 
approval that is activity. Therefore, it can be observed that each question requires different knowledge, and to 
answer the question the knowledge from appropriate semantic group adapters should be integrated through the 
different attention weights.

Case study (incorrect answers). For 140 BioASQ test dataset, when all groups were used without merg-
ing or discarding, all models using Sfull-METIS, Sfull-SG-15, and Sfull-SC-28 were wrong in three cases. Nega-
tive expressions were not recognized or different expressions with the same meaning, such as "not available” 
and "did not come yet” were not recognized as equivalent. In three cases where only Sfull-SG-15 was wrong, the 
given passage for the question was very long, so it is possible that the model did not catch the relevant part. Also, 
the answer to question “Tocilizumab is an anti-TNF antibody, yes or no?” is “no”, but the model seems to predict 
“yes” as the two concepts frequently appear together in the passage. The Sfull-SC-28 was wrong in two cases. 
The answer to the question “Does lucatumumab bind to CD140?” is “no”, but the passage says that lucatumumab 
binds to CD40, leading to model prediction of “yes” which may indicate the weakness at understanding num-
bers. The Sfull-METIS-20 was wrong in five cases, and there were cases where the answer was incorrect even if 
the answer was clearly in the passage. Also, if the question mentions Gepotidacin, but the passage has a different 
name, GSK2140944, the model does not recognize that the two mean the same thing.

In summary, when using the METIS group, there are cases where the prediction is wrong even if there is a 
clear answer in the passage, but semantically grouped SG or SC do not have such case. The weakness of all mod-
els is that they are vulnerable to negative expressions or different expressions of the same meaning. If there are 
synonyms for medical terms, the model can be supplemented by adding those to the knowledge graph.

Limitations. When training with a small amount of data, such as BioASQ7b, PubMedQA, and sampled 
MedQA, merging infrequent groups can mix meanings and confuse the model. On the other hand, discarding 
infrequent groups may prevent the model from answering questions related to those groups. Differing slightly 
from the trend of other datasets, for the data-heavy MedQA, merging was better way even when the semantics 
were mixed. Although the discarding method is a better direction for medical applications because the datasets 
in this field are most often small, more research is needed on large-scale biomedical QA datasets like MedQA.

The discrepancy between knowledge injection pretraining task (entity prediction) and finetuning task (yes/
no/maybe or multiple-choice classification) makes it difficult to deeply understand how the model is predict-
ing. For explanatory power, using BioASQ factoid or list questions whose answers are entities, or generating the 
BioASQ’s ideal answer (summaries of relevant snippets) can be further research directions. If a model finds an 
answer in a given text or generates an answer, we can infer why the model made wrong predictions, but simply 
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classifying yes/no/maybe leads to weak explanatory power. As adapters can be used for any transformer-based 
models, future researches can proceed beyond classification tasks to understand model predictions.

Conclusion
Pre-trained language models can benefit from knowledge-infused adapters and this study questioned the need 
to use whole UMLS knowledge graph and the group formulation methods. We compared partitioning strategies, 
where METIS focused on the number of edges, whereas SG and SC considered the semantic type and distribution 
of relations, respectively. Using semantically partitioned groups to pretrain adapters showed more efficient per-
formance than METIS groups in terms of the evaluation metrics, required parameters, and time. The method of 
discarding infrequent groups was preferable to merging in small finetuning datasets: BioASQ7b, PubMedQA, and 
small sampled MedQA. Conversely, for the data-rich MedQA, merging was better way even when the semantics 
were mixed. Although more research is needed on large-scale biomedical QA methods, the discarding method 
is a better direction for medical applications because the finetuning datasets in this field are most often small. In 
summary, to efficiently inject large knowledge graphs into adapters, it is not necessary to use the entire knowledge 
graph and the way of group formulation has little effect on the metric scores, but it does affect the computational 
parameters and time. Adapters can be used for any transformer-based models; thus, future research can improve 
other QA types, such as finding answers in documents and generating answers. Furthermore, more research on 
selecting the adapters with relevant knowledge could be another direction to enhance the model.

Data availability
The three datasets used in this study are already publicly available. We plan to upload the adapters pretrained on 
semantically partitioned UMLS knowledge to AdapterHub for easy use.
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