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Phases in fine volcanic ash
Adrian Hornby *, Esteban Gazel *, Claire Bush , Kyle Dayton  & Natalie Mahowald 

Volcanic ash emissions impact atmospheric processes, depositional ecosystems, human health, 
and global climate. These effects are sensitive to the size and composition of the ash; however, 
datasets describing the constituent phases over size ranges relevant for atmospheric transport 
and widely distributed impacts are practically nonexistent. Here, we present results of X-ray 
diffraction measurements on size-separated fractions of 40 ash samples from VEI 2–6 eruptions. 
We characterize changes in phase fractions with grainsize, tectonic setting, and whole-rock  SiO2. 
For grainsizes < 45 μm, average fractions of crystalline silica and surface salts increased while glass 
and iron oxides decreased with respect to the bulk sample. Samples from arc and intraplate settings 
are distinguished by feldspar and clinopyroxene fractions (determined by different crystallization 
sequences) which, together with glass, comprise 80–100% of most samples. We provide a dataset 
to approximate glass-free proportions of major crystalline phases; however, glass fractions are 
highly variable. To tackle this, we describe regressions between glass and major crystal phase 
fractions that help constrain the major phase proportions in volcanic ash with limited a priori 
information. Using our dataset, we find that pore-free ash density is well-estimated as a function 
of the clinopyroxene + Fe-oxide fraction, with median values of 2.67 ± 0.01 and 2.85 ± 0.03 g/cm3 for 
intraplate and arc samples, respectively. Finally, we discuss effects including atmospheric transport 
and alteration on modal composition and contextualize our proximal airfall ash samples with volcanic 
ash cloud properties. Our study helps constrain the atmospheric and environmental budget of the 
phases in fine volcanic ash and their effect on ash density, integral to refine our understanding of the 
impact of explosive volcanism on the Earth system from single eruptions to global modeling.

Following explosive volcanic eruptions, the transport and deposition of volcanic ash result in widespread and 
diverse impacts in the  environment1–3. Even a few millimeters of ashfall can cause cascading  impacts4, 5 that result 
in myriad societal, ecological, and health  issues6–8. Airborne volcanic ash can also acutely impact atmospheric 
processes and radiative  forcing9–12 and present hazards to the global aviation  industry13. The size, chemistry, 
and constituent phases of volcanic ash play a primary role on its impact in receiving  environments2, 14, 15; con-
straining these properties also helps to infer radiative properties that improve the capacity to detect ash clouds, 
forecast their dispersion and impact and quantify airborne ash  concentration16–18. The finer the ash, the greater 
the potential for dispersion,  remobilization19, transport and atmospheric  lifetime20, and the greater the envi-
ronmental  reactivity21, 22, including hazards to respiratory  health23. Finally, a better understanding of iron- and 
phosphorus-bearing phase fractionation and distribution is important for land and ocean  biogeochemistry24, 25.

Despite the critical impact of volcanic ash on the Earth system following a large eruption (potentially on a 
global scale), constraining the modal composition of volcanic ash remains a challenge and it is often misrepre-
sented or oversimplified. Unfortunately, this is particularly true for the fine volcanic ash capable of prolonged 
atmospheric transport, which has been neglected in preference of better constrained inputs of other aerosols in 
atmospheric  science26 and in preference of coarser fallout particles in  volcanology27. Due to terminology dif-
ferences between these research fields, a unique definition of fine volcanic ash is missing; fine (< 2.5 μm) and 
coarse aerosols (2.5-10 μm) in atmospheric science versus the coarser sedimentological criteria from ash fallout 
traditionally studied in volcanology; it might be argued that both definitions are poorly suited to volcanic ash 
clouds, where eruption columns force particles with a broad size distribution into the atmosphere. A defini-
tion for ‘very fine ash’ at < 30 μm based on fluid-dynamic settling  behavior28 may be a good compromise. Here, 
we examine ash in two sieved size ranges < 25 µm and 25-45 µm diameter, a reasonable approximation of the 
median size ranges found in medial-to-distal tephra deposits (e.g., Table 1 in ref.27), representing a step towards 
understanding volcanic ash particles at sizes comparable to those considered by atmospheric scientists.

Existing datasets for modal composition are uncommon in the  literature14 and specific comparisons between 
different magma-tectonic settings, eruption styles, and size  fractions29–31 are very limited. Improving the char-
acterization of the modal composition of fine volcanic ash is a high priority for a diversity of scientific fields and 
interdisciplinary research due to its widespread distribution following explosive eruptions. One common method 
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to approximate the modal composition of volcanic materials is to calculate a ‘normative’ mineralogy by assigning 
all chemical components from a given bulk chemistry to ideal mineral phases following experimentally-derived 
phase  relations32. The calculation rests on assumptions of equilibrium and anhydrous conditions, and complete 
crystallization of the magma and is often visualized as a highly simplified mineral proportion  chart33. While this 
normative phase assemblage based on chemistry is useful for rock classification and provides a general idea of 
the likely components, the relevance for volcanic ash is limited; the underlying assumptions of full crystallization 
under equilibrium conditions are commonly interrupted by volatile-driven magma ascent and eruption, leading 
to quenching of remaining silicate melt to glass. As a result, classification based on chemical composition alone 
has become the standard for volcanic rocks, like the widely used binary diagram ‘total-alkalis-to-silica’ (TAS, 
Fig. 1). Unfortunately, neither the normative mineral modes nor the magma chemistry alone provide a quantita-
tive basis for estimating the fractions of minerals and glass in an erupted magma.

Here, we present results of the first global characterization of the modal composition for ash samples at differ-
ent grain sizes from a wide range of eruptions with differing magma-tectonic setting and magma chemistry. At 
the highest level, we categorize samples based on tectonic setting, broadly divided between subduction-related 
melting of the upper mantle resulting in volcanic arcs and active mantle upwelling in an intraplate setting. In 
volcanic arcs, primary melts are formed either via devolatilization of subducting oceanic crust and sediments 
leading to partial melting of the mantle  wedge35–37 or via partial melting of the sediments or slab  itself38–40, form-
ing chains of arc volcanoes that track oceanic plate margins. For active upwelling in intraplate settings, primary 
melt is inferred to form in the mantle from a deeply rooted boundary layer (e.g., the core-mantle  boundary41, 

42 or the mantle’s transition  zone43, 44) and ascends through the mantle in long-lived plumes that generate intra-
plate volcanism, such as at Hawaii. The characteristic erupted products of mantle plumes are ocean island and 
intraplate basalts; however, these upwellings may intersect with melts generated at plate boundaries leading 
to mixed-source  magmatism45, 46. Arc magmas usually follow calc-alkaline (or rarely tholeiitic) crystallization 
sequences, while intraplate magmas are relatively reduced to moderately oxidized and evolve through either 
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Figure 1.  Global eruption locations and bulk chemistry. (a) Location of the volcanoes that produced volcanic 
ash used in this study (further details in Supplementary Table 1) The symbol size is scaled to the eruption 
volcanic explosivity index (VEI). (b) Total alkalis to silica (TAS)  diagram34 showing bulk chemistry in wt% 
oxides retrieved from the literature for the studied samples. Compiled data and references are provided in 
Supplementary Tables 2 and 7. Multiple data points bracket the range of chemistry for an eruption where the 
erupted materials were heterogenous. All symbols and colors in panels a-b follow the legend. Bicolored symbols 
indicate more complex arc-intraplate tectonic settings, with the bottom-right color indicating the dominant 
tectonic setting to which they were assigned for calculations and linear regressions. (c) Dry-sieving fractions 
for the grain size ranges used in the study are shown as stacked bars in order of total < 45 µm fraction. Gold 
diamonds show sampling distance from the eruptive vent. Map data © 2023 Google.
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tholeiitic or alkaline (silica undersaturated) magma  series47, 48. Thus, the contrasting origin of primary melts 
create discrepant physicochemical properties, which determine the crystallization trends that ultimately produce 
the diversity of eruptible  magmas49, 50.

Volcanic ash forms from magma fragmentation and is a complex multiphase material with heterogeneous 
material properties within single grains and between different ash grains. This inherent variability represents, 
initially, the variability (and nonlinearity) present in eruptible magmas. However, due to the varying physical 
properties of crystalline phases and  glass29, 51, size-dependent partitioning of ash mineral and glass content is 
expected during eruptive fragmentation and atmospheric transport processes. The properties of an airborne 
ash cloud and deposited (fallout) material also vary in space and time during atmospheric  transport52, 53 due 
to settling controlled by the aerodynamic properties of single ash  particles54 or particle  aggregates55. Very few 
measurements of fine volcanic ash within volcanic ash clouds have been made and the evolution of ash cloud 
composition and physical or optical properties is poorly constrained.

Due to the uncertainty in volcanic ash modal phase compositions, our approach is to investigate and compare 
a broad dataset of natural samples of fine volcanic ash. It is important to state that the observed characteristics 
of volcanic ash are limited to samples from a specific eruption(s) and cannot a priori be considered a proxy for 
the ash characteristics of any volcanic system in subsequent or future activity. In addition, the properties of fine 
ash fallout and airborne volcanic ash are expected to differ; here we examine differences between fine and bulk 
ash samples at proximal-to-medial (< 100 km) distances from the eruptive vent (Fig. 1c). Our goal is to improve 
and facilitate estimations of the physical, chemical, and optical properties of fine volcanic ash following volcanic 
eruptions and their subsequent impacts on the Earth system.

Results
The ash samples used in this study possess a range of physical and chemical properties too diverse to list in 
this study, however detailed examination of many of the samples has been made and the references for some of 
these are included in Supplementary Table 1. Examples of the broad morphological, petrographic, and chemi-
cal features discussed are illustrated in Fig. 2. Most atmospheric ash consists of glass and different crystalline 
phases derived from fragmentation of magma, referred to as juvenile components. Fragmentation of parts of 
the volcanic conduit and edifice can cause ‘lithic fragments’ to become mixed with juvenile ash. The shape of ash 
particles is determined by the pre-eruptive magma properties, especially pore number density as well as pore and 
crystal fraction, and modulated by syn-eruptive deformation and fragmentation. Crystalline ash shape depends 
on the broken mineral phases. Initially, silicate melts may flow and stretch while ascending towards Earth’s 
surface, forming elongate bubbles and fluidal textures. Crystal content, size and shape also affect the texture 
and morphology of glassy particles. During eruption, magma is fragmented, forming angular and blocky frag-
ments (Fig. 2a–c). Depending on eruption conditions, rapid cooling causes the silicate melt to quench to glass. 
Larger crystals can form single particles, freed from the magma during fragmentation. Smaller crystals, such as 
the microcrysts and nanolites in Fig. 2d–g, affect the magma mechanical strength and fracture behavior of the 
magma. Magmas erupting with high crystal fractions typically form blocky and low-porosity ash particles. Glass 
compositions can vary widely between different ash samples, as illustrated by the inversion in relative backscatter 
intensity compared to feldspar crystals in Fig. 2h and i. Variations in glass chemistry may also be measured in 
single particles due to the interaction of magmas of different chemistry prior to eruptions, which leads to mix-
ing and mingling textures in volcanic  glass56. Fresh ash particles commonly become mantled by secondary salts 
and  brines15, 57, which can substantially change the surface properties, aggregation potential and environmental 
impacts of the particles (Fig. 2j–k).

Using X-ray diffraction, we measured the composition of 40 size-separated samples from 23 volcanoes. We 
present the data for 24 samples including all source volcanoes in donut charts in Fig. 3, arranged approximately 
by whole-rock silica and alkali oxide weight fractions. The full dataset is provided in Supplementary Table 4. A 
few key observations stand out in this figure: first, the increase in clinopyroxene toward the low-silica samples; 
second, the ubiquitous dominance of feldspar and glass; third, the significant fractions of ‘other’ minerals in the 
Eyjafjallajökull, Agung, Bogoslof, Kīlauea and Masaya samples; fourth, the common (yet not ubiquitous) trend 
for lower glass in the < 25 µm (inner ring) fraction. A trend that is pronounced for some eruptions (for example in 
Kelut, Okmok, and Popocatépetl samples) is a peak in feldspar fraction in the 25-45 μm fraction. We also present 
the full dataset for primary minerals only (e.g., without volcanic glass, secondary salts or alteration minerals) in 
the < 25 µm fraction in Fig. 4, arranged by increasing silica fraction from right-to-left. We include the glass-free 
mineral fraction figure based on crystallization sequences commonly found in teaching and literature materi-
als in the inset for comparison. Here, increases in clinopyroxene with corresponding decreases in plagioclase 
content can be clearly seen from <  ~ 50 wt%  SiO2, together with a transition from quartz- to olivine-bearing ash  
< 45 wt% silica. These thresholds are considerably lower than in the idealized inset diagram; it is also apparent 
that plagioclase fractions tend to be higher and clinopyroxene lower than in our measurements than in the inset 
diagram, and that amphibole fraction can be significant but is only intermittently present and does not show a 
trend with silica. As a comparison, we present average phase proportions grouped by whole-rock  SiO2 in five wt% 
bins for arc and intraplate settings. For arc samples with < 55 wt%  SiO2, compositions contain less plagioclase, 
more clinopyroxene and less orthopyroxene than for samples with > 55 wt% silica. Intraplate ash samples show 
mineralogical changes < 50 wt%  SiO2, (notably increased clinopyroxene, olivine and Fe-oxides and decreased 
plagioclase) from samples with 50–55 wt%  SiO2. We note that in the average compositions, the 25–45 µm frac-
tion bears more plagioclase than the bulk or the < 25 µm fractions in all cases, for arc and intraplate samples, but 
is very pronounced for the < 55 wt% silica arc samples. 
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We further investigate the relationships between the primary crystal proportions by plotting the major phases 
for individual sieved samples against whole-rock  SiO2 in Fig. 5a–b. We plot a linear regression describing decreas-
ing clinopyroxene + Fe-oxide fraction with increasing  SiO2 in Fig. 5a,

Figure 2.  Typical morphology and phases of volcanic ash. (a–b) SEM secondary electron (SE) images showing 
typical forms of glassy volcanic ash with pore indentations from the Tajogaite 2021 eruption. (c) 
Microphotograph under plane-polarized light showing volcanic glass shard. (d) Backscattered electron (BSE) 
image showing intermediate arc sample from Tungurahua, with phenocrysts of plagioclase feldspar (dark) 
microlites of clinopyroxene (intermediate) and nanolites (specks) of Fe–Ti oxides. Glass is indistinguishable 
in greyscale from plagioclase, a common property of intermediate arc magmas. (e) BSE image showing Fe–Ti 
oxide phenocryst (bright), clinopyroxene (intermediate) and plagioclase (dark) microlites in a nanolite-rich 
glass (grey shade between plagioclase and pyroxene). (f) Crystal clusters are common, such as this set of 
clinopyroxene microlites and microphenocrysts associated with Fe–Ti oxides microlites in a BSE image from 
Tajogaite (2021). (g) BSE image of highly crystalline groundmass of Mt Etna 2017 sample, showing plagioclase, 
pyroxene and Fe-oxide microlites. Nanolite-rich glass can be seen as diffuse intermediate grey zones. (h) Ash 
grain from Okmok 2008 eruption, showing plagioclase phenocrysts and elongate microlites within an Fe-rich 
glass. (i) Sample from the Pinatubo 1991 eruption, showing plagioclase microlites in a Fe-poor felsic glass. (j) 
SE image from the Tajogaite 2021 eruption, showing salt crystals grown on an ash grain. (k) The identity of 
the salt crystals is seen by energy-dispersive spectroscopy (EDS), with a Ca-sulfate crystal in yellow and green, 
and halite in blues. All images produced by the authors using TESCAN Mira3, Bruker Esprit and Leica LAS-X 
software.
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where WR  SiO2 is whole rock silica weight fraction. An exponential fit is slightly better, with a coefficient of 
determination  (R2) of 0.76 vs. 0.68, and appears to better model the arc data points:

We also show that the ratio of clinopyroxene + Fe-oxide:feldspar can be described by an exponential linear 
regression

with an  R2 of 0.79.
Equations (1–3) allow the major crystalline phase proportions to be roughly estimated based on measured or 

estimated whole-rock  SiO2 fraction alone, bearing in mind a considerable degree of error (e.g., 95% confidence 
limits for the linear regression through clinopyroxene + Fe-oxide data points are ± 20 wt%).

To this point, we have not included volcanic glass, a ubiquitous phase in juvenile volcanic materials but 
forming via quenching of remaining silicate melt in magma during an eruption. Glass fractions are highly vari-
able and are poorly sensitive to whole-rock chemistry. No clear pattern is found either with data for < 25 μm ash 
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samples (Fig. 6a) or for samples binned by WR  SiO2 (Fig. 6b). Prior to calculating any average values, we reduced 
sampling bias by computing the mean for each phase in multiple samples from the same eruption. We also did 
not include highly altered samples in the calculation (symbols with gray shading in Fig. 1) except for the top 
1 cm sample from the 2018 Kīlauea summit caldera, which had the least alteration of the Kīlauea samples. As 
expected, we found significant variations between arc and intraplate eruptions, particularly higher fractions of 
glass and clinopyroxene, and lower fractions of feldspar in the intraplate samples.

Patterns and variation in phase fractions with grainsize are highlighted in Fig. 5c, showing standard deviation 
bars for each phase. Standard deviation and standard error is higher for intraplate volcanoes due to lower sample 
numbers. Within our dataset, average sieved ash (< 45 μm) compositions from arc volcanoes can be approximated 
as 33 wt% glass, 50 wt% plagioclase and 10 wt% pyroxenes and for intraplate eruptions as 40 wt% glass, 25 wt% 
feldspar and 20 wt% pyroxenes. Intraplate samples typically contain 5 wt% more ‘minor’ phases than arc samples.

We highlight the changes in composition for the sieved ash in comparison to the bulk in Fig. 5d, particularly 
for minor phases. A trend of decreasing glass fraction with smaller particle size is consistent for both tectonic 
settings. This is more pronounced for intraplate samples, averaging 6 wt% less glass compared to the unsieved 
ash. Smaller absolute variations in phase fractions are highlighted in the right-hand panel, showing relative 
changes in phase fraction. Many common changes were seen in both tectonic settings, crystalline silica, salts and 
‘other’ phase fractions were higher in the finest ash (< 25 µm), while glass, amphibole, iron oxides, and phosphate 
fractions were lower. However, in intraplate settings changes were more pronounced for glass, amphibole, and 
phosphates. Pyroxenes and feldspar show opposing changes at the finest grainsize for arc samples, feldspar and 
clinopyroxene decrease while orthopyroxene increases, while the opposite variations are noted for intraplate 
samples. Some of the most significant changes in fine ash are seen for crystalline silica (up by 50–100% in < 25 μm 
size fraction), salts (up by 40–60%) and iron oxides (down by approx. 50%). Regarding crystalline silica, it is 
interesting to note that we measured cristobalite exclusively in arc samples, while tridymite and quartz were 
measured in all tectonic settings. The large apparent change in ‘other’ phases for intraplate samples is affected by 
very large variations in zeolite contents for the Eyjafjallajökull sample, which is discussed later; however notable 
increases are found in the ‘other’ category for both arc and intraplate samples.

Changes in phase fractions and size-fractionation are also evident with between different eruption episodes 
and with transport distance for eruptions with multiple samples. Specific comparisons for several eruptions with 
multiple samples (Kīlauea, Tajogaite, Colima, Redoubt, and Tungurahua) are shown in Fig. 7, showing variations 
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Figure 6.  Average phase composition and sample standard error of the mean for arc and intraplate volcanic 
ash samples in the study. (a) Glass fraction is plotted against whole-rock  SiO2 for all samples, showing poor 
correlation and wide range. (b) Box plots showing glass content binned by whole-rock  SiO2 content and grain 
size. Arc samples are shown in yellow bars, intraplate samples in orange. (c) Sample standard deviation is shown 
as a bar for each phase for arc and intraplate ash samples. The y-axis scale is magnified for phases shown to the 
right of clinopyroxene to improve clarity of the minor phases. (d) Variations in phase abundance from the bulk 
for fine-sieved particles. Absolute variations (left) and relative variations (right) in weight fraction are plotted 
as stacked bars for each phase. Lighter colors represent the finest size range (< 25 μm) and darker colors the 
25-45 μm range.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15728  | https://doi.org/10.1038/s41598-023-41412-x

www.nature.com/scientificreports/

a)

21

51

6

9

13

76
2
5

30

51
8

6Colima 2015
July 10-11 PDC
Montegrande

12
45

23

6

6

7

22

49

19

4

5

34

33

23

6

3

Kilauea summit
top 1 cm

1626

26
24

7

9

32

30 21

7

23

30

17

20

4

Kilauea summit
over 2 cm

14
27

19

10
18

11

17

34

19
3

22

5

25

31

15

16

6

Kilauea summit
top 1-2 cm

15

62

10

12

72
6

6

20

77

2

Colima 2015 
Explosion 
A15-016

40

41
7

10

42

46

10

45

44

10Tungurahua 2006
F2 proximal

<1 km from PDCs

33

43 11

10

37

46

10

4

46

47

4

2

Tungurahua 2006
F11 prox/medial

<10 km from PDCs

49

31

11

49

32

0
7

53

40

02
Redoubt 2009
E6 AT-1661
‘proximal’

64

24

7

60

30

7

56

27

3

7
Redoubt 2009
E6 AT-1887

‘distal’

34

53

2

42

40

3
2

8

33

61

3
Redoubt 2009
E19 AT-1715

‘distal’

28

48

3
8

31

62

1

53

37

2Redoubt 2009
E19 AT-1850
‘proximal’

d)

c) e)

Natroalunite/
minamiite

Gismondine/
minamiite

b)

Kilauea 2018
Halema’uma’u
crater

Glass

Feldspar

Clinopyroxene

Orthopyroxene

Amphibole

Olivine

SiO2

Fe oxides

Salts

Phosphates

Others

50

15
24

54

16 14

55

11 20

25

25

31

6

27

16

35

11

2112

33
16

1820

48

26

22

39

25

20

36

Tajogaite
eruption 2021, 
La Palma

Event 6

Event 19

Tajogaite 
LP-9

26 October

Tajogaite 
LP-15

28 October

Tajogaite 
LP-2

20 Septemberr

Figure 7.  Variations in composition with distance and time. (a) Phase fractions for three airfall ash samples 
from the 2021 Tajogaite eruption on La Palma, Canary Islands, with size fractions nested in the donuts as 
labeled. Sample LP-2 was collected at the beginning of the eruption, while samples LP-9 and LP-15 were 
collected approximately one month later. (b) Kīlauea ash sampled at varying depth from the summit caldera rim 
following the 2018 eruption. The identity of the most common phases grouped under ‘Other’ shown. (c) Volcán 
de Colima ash from an explosive event (left) and overbank PDC deposits (right), separated by approximately 
three months in 2015. (d) Two samples from the 2006 eruption of Tungurahua. Although the samples were 
collected at varying distances from the vent, the proximity to major PDCs appears to dominate the measured 
modal componentry and distance from PDC runout is given. (e) Two pairs of samples from the Redoubt 2009 
eruption collected at relatively proximal and distal locations for two eruption episodes (Event 6 (E6) and Event 
19 (E19)). An increase in glass fraction for the distal samples is clearly seen for Event 6 and for the sieved 
particles in Event 19.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15728  | https://doi.org/10.1038/s41598-023-41412-x

www.nature.com/scientificreports/

with pyroclastic density current inputs (Colima and Tungurahua in Fig. 7d), ash cloud transport (Redoubt) and 
tephra burial depth (Fig. 7b) in the Halema’uma’u crater rim, Kīlauea. Very high salt fractions together with 
alteration minerals (“other”) likely representing decreasing degrees of hydrothermal alteration with depth in 
the Halema’uma’u crater, a pattern that is stratigraphically inverted in the deposit. For two eruptive events from 
the 2009 eruption of Redoubt, Alaska, we plotted modal compositions in Fig. 6e. For both Event 6 and Event 
19, separated by 12  days58, we compare results from relatively proximal and ‘distal’ samples between the bulk 
and finest (< 25 μm) grainsizes. ‘Distal’ samples show varying change in glass fraction of fine grains, increas-
ing for Event 6 but decreasing for Event 19. The feldspar fraction decreases with distance for both sample sets, 
while crystalline silica and amphibole increase substantially with distance for Event 19 and Fe-oxide and salts 
are effectively absent in the distal samples. For samples from two episodes of the 2021 Tajogaite eruption on 
La Palma, Canary Islands, separated by approximately one month, we plot size-separated modal compositions 
in Fig. 7a. An > 25% increase in crystallinity is observed; on top of this, more subtle size-dependent variations 
are observed, for instance the strong depletion in clinopyroxene observed for the 25-45 μm fraction in the 20 
September sample is not reproduced in the 26 October sample, while the dramatic size-fractionation of iron 
oxides is only apparent in the later samples.

Measurement of the weight fractions of crystal phases allows the bulk crystal density to be calculated. Crystal 
densities in the ICDD libraries for the specific mineral composition assigned in MDI Jade were used for most 
phases, supplemented rarely by values from the Mindat.org website (see Supplementary Table 5). The ‘bulk’ 
crystal density was calculated from the weighted average of crystal volume fractions. Bulk crystal densities 
varied between 2.6 and 3.5 g/cm3, with mean values of 2.8 ± 0.01 g/cm3 for arc and arc-intraplate samples and 
3.07 ± 0.04 g/cm3 for intraplate samples. Finer particle sizes had the small but repeatable effect of decreasing 
the bulk crystal density of arc samples, with the lowest value of 2.75 g/cm3 for 25-45 μm samples likely caused 
by the higher feldspar fraction in this size range, up to 2.83 g/cm3 for bulk samples; consistent decreases from 
3.06 g/cm3 for bulk to 3.0 g/cm3 for < 25 μm samples were found for intraplate samples (Fig. 8a). Glass densities 
were modeled from groundmass glass compositions retrieved from the literature for each sample (see Supple-
mentary Table 6): the weight fractions of major element oxides were input to a multicomponent model for room 
temperature density estimation of  glasses59. Lower-Si glass compositions  (SiO2 < 55 wt%) typically fell outside 
the application limits of the model and were estimated based on a linear regression through 27 output data 
points spanning 55–80 wt%  SiO2, with an  R2 of 0.92 (Supplementary Fig. 2). Glass densities (retrieved from the 
modeled and projected results) ranged from 2.31 to 2.72 g/cm3, with the phonolitic Laacher See glass showing 
the greatest deviation from the regression. Modeled glass densities were correlated with WR  SiO2 and we plot 
a linear regression of

with an  R2 of 0.71 (Fig. 8b).
We calculated the mean ratio between the modelled glass density and bulk crystal density, and found they 

clustered around 0.873 ± 0.15 for all arc and intraplate samples and size splits, with no significant changes with 
tectonic setting or size fraction. From the glass density model and XRD results, we calculated the glass volume 
fraction and used this to calculate a bulk density for each sample (often termed as dense-rock-equivalent (DRE) 
density, here labelled whole-rock density). Median whole rock density was 2.66 ± 0.01 g/cm3 from arc volcanoes 
and 2.85 ± 0.04 g/cm3 from intraplate volcanism (Fig. 8c). These average values are quite consistent for all par-
ticle sizes for arc volcanoes; for intraplate samples the unsieved ash showed slightly higher median densities of 
2.89 ± 0.06 g/cm3. The narrower distribution of density values for arc samples is highlighted in Fig. 8d.

It is clear that the primary crystal assemblage and their density are a key factor in bulk density. We find that 
the (glass-free) proportion of clinopyroxene + Fe oxides (see Fig. 5 and Eq. 3 for a method of estimation) is cor-
related with whole-rock density (Fig. 8e), with a linear regression of

and  R2 of 0.67. By considering the bulk crystal density the fit may be improved (Fig. 8f) as

with an  R2 = 0.79, but this is a harder value to obtain. However, it is clear that bulk crystal density is the dominant 
control on whole-rock density with the exception of the highly-altered Kīlauea samples. The regression provides 
an estimate within ± 0.15 g/cm3 for 95% confidence limits. The regression is more robust for intraplate samples, 
as arc samples cover a smaller range of bulk crystal density. Further histograms of bulk crystal and glass whole 
rock, and crystal:glass density ratios are shown in Supplementary Fig. 3.

Discussion
In this study, we constrain petrographic and geochemical characteristics of volcanic ash in 25-45 μm and < 25 μm 
size ranges that are most relevant for sustained atmospheric  transport28, 60 and compare these to as-collected 
bulk ash samples for two distinct tectonic settings: arc-volcanoes and intraplate volcanoes (with several exam-
ples from complex arc locations that include intraplate components defined here as arc-intraplate). Separating 
samples by tectonic environment is logical from a genetic perspective as this will determine the contrasting 
major element chemistry of the primary melts, the effects of silica saturation, oxidation state (fO2), and volatiles 
on crystallization of phases.

Generally, arc magmas are relatively volatile-rich, oxidized (e.g. average oxygen fugacity of QFM for intraplate 
volcanoes and QFM + 1 (log units fO2 referring to the quartz-fayalite-magnetite buffer) for arc  volcanoes48), and 

(4)Glass density = 3.68− 2.09 · (WR SiO2),

(5)Whole rock density = 2.6+ 0.62 ·
[

clinopyroxene + Fe oxide
]

,

(6)Whole rock density = 0.26+ 0.87 ·
[

crystal density
]

,
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silica-saturated compared to intraplate magma. For relatively oxidized,  H2O-rich, and silica-saturated melts 
beneath arc  volcanoes61–63, the crystallization trend is defined by the calc-alkaline magma series. This entails early 
crystallization of clinopyroxene and magnetite followed by Ca-rich plagioclase and the replacement of olivine 
with orthopyroxene leads, which leads to successive enrichment of  SiO2 and alkali oxides in the remnant melt, 
eventually producing alkali-rich feldspar and crystalline  silica64, 65 with high degrees of crystallization (and/or 
with some level of  assimilation50).

In the relatively more reduced and  H2O-limited mantle-derived melts feeding intraplate volcanism, crystal-
lization follows the tholeiitic  sequence62, 66 where olivine and plagioclase remain stable as crystallization pro-
gresses, leading to saturation of Fe–Ti oxides and alkalis. Tholeiitic magmas follow similar early crystallization 
steps, but more fractionated magmas resemble dacitic-to-rhyolitic calc-alkaline rocks in mineralogy and can be 
distinguished by Fe- and Ti- enriched phases and bulk  chemistry49, 63. For silica-undersaturated alkaline series 
that are also common in intraplate settings, melt evolution leads to later stage crystallization of clinopyroxene, 
Fe–Ti oxides, biotite, nepheline and (depending on pressure and volatile contents)  plagioclase67.

As such, a distinction in modal mineralogy between these broad tectonic categories is expected. Our dataset 
shows clear variations in the fractions of feldspar, clinopyroxene, and glass (Figs. 5–6) which constitute the major 
phases for these magma series. Feldspar dominates the mineral assemblage for arc magmas, while feldspar and 
clinopyroxene occur in approximately even fractions for intraplate magma < 50 wt%  SiO2, but at a 2:1 ratio for 

Figure 8.  Density, chemistry, and size sensitivity. (a) Boxplots show bulk crystal density by size fraction for 
arc and intraplate samples. (b) The calculated glass density is sensitive to WR  SiO2, as shown with a linear 
regression (solid black) and 95% confidence intervals for individual points (dashed lines). The regression has 
a poor fit for arc data alone. (c) Boxplots showing whole rock density with grain size; distributions for each 
tectonic setting are highlighted in (d). (e) Whole rock density is plotted against primary mineral fractions (e.g., 
glass- and secondary mineral-free) of clinopyroxene + Fe oxides. Bulk crystal and whole rock density if shown 
for all samples in (f). For panels (e) and (f), regressions are plotted for all non-altered samples (black, with 95% 
confidence limits for individual data points in dashed lines and equation given at top of plot). The 1:1 line and 
regression equation are shown. For panel (f) arc (red) and intraplate (blue) linear regressions are also shown.
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samples with 50–55 wt% silica. In general, the mineral fractions diagram shown in the inset of Fig. 4 underesti-
mates the fraction of feldspar and overestimates the clinopyroxene fraction compared to our ash samples. Both 
orthopyroxene and Fe oxides are not considered in this idealized diagram. Additionally, the mineral fractions 
diagram overstates amphibole and mica fractions compared to most natural samples, and it will likely depend 
more on the tectonic setting (and indications from past erupted materials) than silica content. Taken together, 
although it describes the expected trends in composition for the major crystal phases with varying silica, the 
diagram is not a reliable indicator for ash composition.

Within the size ranges studied we find some consistent variations with size: in all cases, the glass and iron 
oxide fractions decrease and crystalline silica and adhering salts increase at fine particle sizes (Fig. 5b–c), consist-
ent with previous  studies31, 68, 69. The observable average changes with grain size mask greater variations found 
for some types of eruption. For example, all large VEI 5 + eruptions except Mount St. Helens had substantially 
higher glass in the < 25 µm ash fraction and the highest feldspar fraction in the bulk. These data, together with 
grainsize-sensitive trends in space and time (e.g., Figs. 3, 4, 5 and 6 and results of previous  studies29–31 demon-
strate the importance of size-dependent partitioning when considering volcanic ash composition, and thus the 
need to measure these materials and constrain their composition and variations.

Such partitioning likely has a dependency on the size and material properties of the mineral phase, which are 
largely determined by the storage and ascent history of the magma. Crystallization of a mantle-derived magma 
is generally considered to occur in at least two stages: deeper, slower crystallization in magma reservoirs at 10s 
to 100s km depth, and relatively fast crystallization occurring during transitory ascent, ‘shallow’ storage, and 
emplacement. To mobilize magma from a reservoir at depth, a minimum melt fraction of 30–50 vol% is generally 
 required70. This leads to a characteristic bimodal size distribution of crystals in magma: (i) phenocrysts formed 
during long-term storage and entrained in ascending magma and (ii) micro-to-nanolites formed during shallow 
storage and final pre-eruptive ascent. This bimodal distribution is enhanced in arc settings, as crystallization in 
water-saturated arc magmas during deeper magma ascent may be suppressed, since magma temperatures can 
exceed the water-saturated liquidus until shallower depths are  reached71, 72, where rapid crystallization of micro-
lites and nanolites commonly occurs. In all cases, the period at which magma remains at shallow depth before 
eruption can strongly affect the remaining melt fraction, which is quenched to glass upon eruption. This is also 
a function of magma ascent rate since rapid ascent reduces the time available for devolatilization- and cooling-
driven microlite crystallization. Such rapid ascent is also implied to increase the explosivity of an eruption as 
decoupling of bubbles and permeable loss of volatiles from the magma is inhibited. Therefore, we might expect to 
find a decrease in the total crystal fraction with increasing explosivity, a conclusion supported by studies measur-
ing the timescales of ascent via element diffusion profiles in crystals and  melt73, 74. Mafic melts are typically less 
likely to erupt explosively due to low viscosities; however, they are further from their liquidus at shallow depths 
than silica-rich melts and very rapid crystallization during ascent may encourage explosive  fragmentation75.

Interpretation of proximal ashfall deposits. Ash samples collected for this study were mainly collected 
from 10s of kms from the volcanic vent. The characteristics of the samples therefore represent the dynamics of 
proximal-to-medial fallout (i.e., fallout prior to long-distance atmospheric transport). The volcanic ash in the 
ash cloud, responsible for the most widespread impact of the ash, are not described by the proximal deposits; 
indeed, opposite fractionation trends in terms of modal composition and a sharp contrast in grainsize distribu-
tions could be expected between proximal deposits and the medial-to-distal ash cloud and  deposits16, 52. This is 
exemplified by our observations showing that the finest particles in proximal deposits are initially glass-poor 
with respect to the bulk (Fig. 5b–c). The implication is that glass-poor fine particles are preferentially deposited 
before glass-rich particles (due the capacity of the glass phase to host pore space and the relatively low density of 
the glass phase) leading to the well-documented increase in glass-rich fines with increasing transport distance in 
the eruption  cloud52. However, particle aggregation and premature fallout of fine  particles55 is ubiquitous during 
ash cloud  transport76 and may favor glass-rich  particles77 (perhaps via enhanced salt  formation57). This prevents 
a simple relationship between deposited and airborne ash from being articulated and ensures fine ash content 
even for very proximal deposits. It should be noted that < 4 µm particles sampled directly from volcanic ash 
clouds have been observed to be crystal-rich compared to the  bulk60; it is possible that favorable aggregation of 
fine glassy  particles76, 77 leaves fine crystalline fragments with the longest atmospheric residence times.

Fractionation of (25-45 μm) and (< 25 μm) particles showed some interesting dependencies on density 
and size. The highest feldspar fractions were often found in intermediate grainsize samples, both on average 
(Figs. 4–5) and pronounced for many individual samples (e.g., Figs. 3–4). In contrast, clinopyroxene is depleted 
in the 25-45 µm size range for both arc and intraplate samples. These patterns are likely to reflect the density 
contrast between these phases and we could simply infer that denser phases are depleted in both ground deposits 
and the ash cloud at significantly more proximal locations than feldspar for the same particle size  range52. How-
ever, in the < 25 um size-range, intraplate samples are enriched in clinopyroxene while for arc samples feldspar 
is depleted. These counterintuitive trends may be explained by a population of feldspar microlites generating 
free crystals and crystal fragments in the 25-45 µm size  range78 particularly in arc  samples79. We infer that the 
size distribution of major crystal phases plays a key role due to phase-boundary  fracture80, where larger crystal 
populations (i.e., microlites-to-phenocrysts) are depleted in fine particles at a faster rate than smaller popula-
tions of crystals (i.e., nano-microlites). The effect is greatly enhanced for high-density crystals due to preferential 
fallout of denser particles within any given size  range31, 52, as exemplified by the dramatic reduction in iron oxide 
fractions in fine particles for intraplate volcanism where these phases are present as phenocrysts.

The typical size distribution of crystal phases is in large part controlled by crystallization series and magma 
ascent history, together with assimilation and/or mixing of the pre-eruptive  magma50. Thus, while the domi-
nant modal signatures of magmas appear to be established via deeper crystallization of phenocrysts, microlite 
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crystallization can act to enhance the contrast between pyroxene fractions for arc and intraplate magmas. The 
restricted grainsize resolution in this study opens the possibility that further important partitioning of phases 
may be found, particularly in particles < 25 μm, a hypothesis which is supported by a small number of available 
 studies29–31, 60.

We investigated the relationship between the major mineral phases and glass fractions by plotting their weight 
fractions for all samples in Fig. 9. For arc eruptions, the data show that feldspar fractions remain above 25 wt% 
in all cases and glass + feldspar fractions typically comprise 70–95 wt% and are inversely correlated (Fig. 9a), 
with linear regression

with an  R2 = 0.74. Glass-depleted data points that fall off this trend are either associated with high lithic fractions 
(due the vent widening at Santiaguito and flank collapse at Mount St. Helens), mafic Plinian eruptions (Masaya, 
Etna 122 BC) and complex (Popocatepétl) or back-arc settings (Bogoslof). Intraplate eruptions show a shal-
lower trend with lower feldspar fractions and a broader spread of data. However, for the relationship between 
clinopyroxene + Fe-oxides and glass, intraplate samples show a considerably steeper negative correlation than 
samples from arc volcanoes (Fig. 8b). The reversed pattern of data distribution between Fig. 8a and 8b suggests 
that it is the replacement of early onset feldspar crystallization (tholeiites) with pyroxene (alkaline and calc-
alkaline) that controls the major modal composition of erupted rocks as a function of pressure and/or  water62, 81. 
Correlations between these three major phases are further investigated by plotting glass + clinopyroxene against 
feldspar (Supplementary Fig. 4) and show that these three phases make up 85–100% of all arc samples and 
most intraplate samples. Regressions for intraplate and arc settings are similar, with arc samples offset to higher 
feldspar. Laacher See and Kīlauea summit samples fall below the trend observed in Fig. 8c due to substantial 
alteration; We recalculated glass, pyroxene and feldspar fractions in Eyjafjallajökull samples fall to account for 
the incorporation of substantial non-juvenile zeolites during the explosive excavation of older, altered units 
around the summit  vent82. The lower right corner of both plots in Fig. 8a–b is dominated by highly explosive 
mafic eruptions; however, where high-silica arc magmas are under-represented in our dataset, highly explosive 
intraplate magmas are perhaps overrepresented. High-Si arc magmas are typically highly glassy; therefore, we 
expect the data points to converge in this region with better coverage of high-Si compositions.

Phase concentrations within an ash deposit are expected to vary with particle size and transport distance, 
since the physics of ash fallout separate denser and less aerodynamic particles closer to the eruption  source52, 54. 
However, these dynamics are overprinted by the effects of aggregation-driven fallout, which can dominate proxi-
mal ash settling under certain  conditions83 and simultaneously promote premature removal of fine particles 
and delayed fallout of coarse  particles55, 84. Nevertheless, in many cases particle aerodynamics (controlled by 
size, shape and density) are the primary control on total atmospheric residence time and transport  distance52, 

53. Within our results, whole rock density covers a considerable range for both tectonic categories despite a clear 
offset to higher densities for intraplate ocean island samples. To investigate possible correlation with chemistry 
or modal composition, we plot whole rock density against silica content (Fig. 9c) and against clinopyroxene + Fe-
oxide weight fractions (Fig. 9d). The linear regression for whole rock density vs silica through all arc and intra-
plate data points show a linear regression with equation

with an  R2 of 0.57. This correlation is partly dependent on the magmatic series since mafic oxide concentrations 
are somewhat codependent with silica due to similar crystallization sequences. However, considerable variability 
is noted within the calc-alkaline arc dataset the regression through arc data points is particularly poor. Whole-
rock density shows a better correlation with clinopyroxene fraction alone (with  R2 = 0.77), partly due to the 
relatively high density and fraction of clinopyroxene in intraplate and mafic magmas, but perhaps also related 
to correlations with melt chemistry (especially Fe, see glass compositions in Supplementary Table 6) and mafic 
mineral fraction for intermediate to silicic magmas. This is borne out by the regression for clinopyroxene + Fe-
oxide fraction against whole rock chemistry illustrated in Fig. 8d, showing a relatively good spread in values for 
arc samples and a linear regression of

with an  R2 of 0.83.

Implications for environmental impacts and ash transport modeling. The modal composition 
and density of volcanic ash are important constraints for a wide variety of disciplines. For example, the bulk opti-
cal properties of volcanic ash clouds may be constrained from the weighted optical properties of the constituent 
 phases85, 86 and the refractive indices of glasses are correlated with their  density87. In addition, the specific prop-
erties of separate phases (for example their electrostatic properties, optical properties, toxicity, dissolution and 
weathering rates, oxidation potential, and diffusion rates) are much better constrained than the properties of vol-
canic ash in bulk. Therefore, better constraints on the modal composition of volcanic ash may benefit modeling 
and forecasting the diverse impacts of volcanic eruptions across Earth and planetary science, environmental 
science, respiratory health, and engineering.

Glass fractions are perhaps the most important for a spectrum of environmental interactions. Glass is usu-
ally the main phase involved in fixing volatiles from the eruptive  plume15 due to its relatively high elemental 
diffusivity, a process that encourages particles to form  aggregates57, 88, which is often an important proximal 
process in removing fine material and volatiles from the ash cloud and transporting coarse particles to greater 
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Figure 9.  Relation between glass and mineral phases and correlations with whole-rock density. Different trends are 
seen between intraplate and arc samples for feldspar vs glass fraction (a) and clinopyroxene + Fe oxide fractions (b). 
Whole rock density is shown against  SiO2 fraction (c) and against clinopyroxene + Fe-oxide fraction (d). In most 
cases the fraction of dense mineral phases is the dominant control on the bulk density; poorer fits are found with 
bulk chemistry, with  SiO2, shown in (c), and  TiO2 showing the best correlations. Symbols match the legend, symbol 
size indicates particle size fraction as shown in (a). Solid lines show linear regressions and dashed lines show 95% 
confidence intervals for individual data points, colored to match the tectonic setting. Regressions for all data points 
are shown as black lines, with the equation and coefficient of determination  (R2) given in each panel. Clinopyroxene 
is abbreviated to CPx in the regression equation in (d). Lines showing 100% fractions for the plotted phases are 
drawn on panels (a) and (b). Altered samples (shaded grey) are shown but not included in regressions for all panels.
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 distance55. An important observation of our work for environmental impact is that the fraction of salts is higher 
for < 25 μm particles compared to the bulk. Given that glass fractions are relatively depleted in fine particles 
from the proximal location in our study, it should be expected that the salt fraction is substantially higher in the 
glass-rich fines entrained in the ash plume at medial-distal locations. Therefore, fine ash may be an important 
host for S- and Cl- bearing aerosols in the atmosphere following large volcanic eruptions. Salts can significantly 
change the reactivity of the particles, but also affect the bulk density and optical properties of the  particles57. 
The effect of salt crystallization on iron mobility due to oxidation of iron in the  glass89 potentially increases the 
environmental impact of far-traveled ash, despite the rapidly decreasing fraction of iron oxides in finer particles.

Finally, we emphasize two topics for further research. The grainsize-dependent phase partitioning that we 
present for the first time across a global ash sample set are dependent on tectonic setting and eruption magnitude; 
however, our results suggest that further important partitioning may occur at finer grainsize ranges. These fine 
grainsizes (e.g., PM10, PM2.5) are particularly important for ash  resuspension19, 90, distal atmospheric  transport55, 

91, 92, aerosol  interaction15, 69 and for respiratory  health93, 94. Future research into the modal composition and 
chemistry of PM10 to nanoscale ash will be critical in completing our understanding of volcanic ash and inte-
grating understanding and terminology between atmospheric science and volcanology.

Our results also showed significant increases in glass and decrease in pyroxenes for relatively distal vs rela-
tively proximal ash samples (Fig. 7d–e). These transport-related trends are likely due to aerodynamic factors 
driven by size, shape, and  density55 and suggest that transport-related sorting may become an increasingly 
important process in determining the composition of ash clouds as they age. We note the scarcity of atmospheric 
sampling of volcanic ash clouds in comparison to equivalent fallout samples. Future sampling campaigns aimed 
at airborne ash from varying distance and height in volcanic ash clouds would be of great benefit in determining 
the evolution of ash cloud composition during ash dispersion, a crucial question for ash detection and hazards 
from airborne and fallout.

Materials and methods
Materials. The ash samples were collected and provided for this study by colleagues across the globe (Fig. 1), 
with a notable set from the Alaskan Volcano Observatory (Supplementary Table 1). In total, data were collected 
on 40 ash samples from 28 eruptions with bulk chemistry ranging from basaltic to dacitic and basanitic to pho-
nolitic (Fig. 1b). Of these, 23 samples were collected from eruptions in the past 50 years. Details and appropriate 
references for further information on each sample can be found in Supplementary Table 1. We present literature 
values for the whole-rock (e.g., bulk) chemistry for each sample in Supplementary Table 2, and plot total alkalis 
vs silica in Fig. 1b.

For arc volcanism, we present data from 16 eruptions from island arcs (e.g., the Aleutians) and continental 
arcs (e.g., Andes) across a broad range of composition and eruption magnitude, including the Plinian eruptions of 
Pinatubo and Masaya, and recent eruptions of Kelut, Calbuco, and Colima. Relatively proximal and ‘distal’ sample 
pairs from the same eruptive event were received for the Redoubt 2009 eruption, the Tungurahua 2006 eruption 
and the Calbuco 2015 eruption. In the latter case, only the relatively distal sample was included in the study as 
the proximal sample was lapilli-rich and contained insufficient fine material or XRD measurements. Samples 
from arc volcanism are dominantly eruption-plume-derived ash, although contributions from pyroclastic density 
currents (PDCs), which are relatively enriched in fine particles and  glass20, 95 are important for the Tungurahua 
samples, which contain a significant fraction of co-PDC  ash96 and the Colima CMG003  sample97, which was 
taken from a co-PDC overbank deposit adjacent to the flow channel. The Mt Agung sample was collected from 
within an abandoned structure; the deposit showed precipitation of sulfuric minerals and was saturated with 
water. The Masaya Triple Layer sample (150 BC eruption) was collected from a weathered exposure 3.5 km from 
the vent. Both these samples were classified as ‘altered’ and symbols are shaded grey; all altered samples were 
excluded from regression calculations in all cases.

For intraplate volcanism, all samples are from ocean islands (Kīlauea, La Palma (Tajogaite), Réunion, and 
Iceland (Eyjafjallajökull and Grimsvötn)) except Laacher See, which is fed by the subcontinental Eifel mantle 
 anomaly98. Intraplate ash samples are derived from the eruption plume during mixed effusive-explosive activ-
ity (e.g., Kīlauea, Tajogaite) or dominantly explosive activity (Grimsvötn, Eyjafjallajökull). The Eyjafjallajökull 
samples was collected during the early eruption phase that may have involved phreatomagmatic fragmentation 
due to glacial melt  input99. The Tajogaite samples from October 2021 were collected by the authors directly 
from fallout at locations west of the vent; the LP-2 sample was collected at the airport, at a similar distance E of 
the vent prior to rainfall. At Kīlauea, samples were collected from the crater rim, from deposits of intermittent 
explosive activity during subsidence of the Halema’uma’u crater. These samples contain cream-colored secondary 
surface salts and are considered to be altered either on the Halema’uma’u crater floor or following deposition on 
the crater rim. For the Laacher See sample, fine ash was produced by experimental abrasion of pumice  clasts78 
and therefore better represents co-PDC ash than fallout deposits; a significant contribution from ash produced 
in PDCs has been shown for the Laacher See 12.9 ka  eruption100. The Réunion samples were collected from the 
base and top of an exposure of the AD 1440 Chisny Black Tephra  deposits101. Both the Laacher See and Chisny 
deposits have weathered and are considered to be altered.

A small subset of volcanoes occur in more complex settings: At Popocatépetl, contributions from astheno-
spheric mantle are suspected to generate unusual OIB-like magma, resulting in magmas that record subduc-
tion and intraplate  signatures102. Nearby, El Chichón is set back from the main arc front and is located above a 
subducted transform ridge. The unusual K-rich magmas have been attributed to an upwelling from underlying 
asthenospheric magma via slab tear(s)103 and deep serpentinization of the ridge  basalts104. Bogoslof, in the 
Aleutian arc, is a back-arc volcano with magma compositions enriched in alkalis. The Bogoslof sample is likely 
to derive from eruptions modified by ingress of seawater into the eruption vent, generating Surtseyan-style 
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activity. The sample was collected at Dutch Harbor, 90 km from the vent, representing one of the farthest-traveled 
samples in the data set. In addition, we present data from Plinian (122 BC) and recent (2017) eruptions at Mt. 
Etna, which is likely fed from combined intraplate and subduction sources, with post 1970 eruptions bearing 
a stronger (yet still minor) subduction-related chemical  signature105. The Plinian sample is considered altered 
due to weathering. For simplicity, we group samples from these complex volcanoes as ‘arc-intraplate’, marked by 
pink symbols in Fig. 1 and other figures.

Characterizing the modal compositions of volcanic ash in nature presents a particular set of challenges due 
to poorly resolved partitioning of phases with grain size. This is affected by fragmentation mode, in addition to 
transport, aggregation and fallout related sorting of the volcanic ash  cloud29, 52, 53, 95, 96. Therefore, composition is 
sensitive to sampling location and partitions between airborne and fallout ash. All samples included in this study 
were collected from fallout deposits less than 100 km from the source vent. Although these proximal samples do 
not represent long-lived fine ash that has the widest dispersal, airborne and/or distal volcanic ash samples have 
not been commonly collected and a representative dataset cannot be compiled. With this caveat, the ubiquitous 
proximal sampling allows internally consistent comparisons to be made between samples in the dataset.

Methods
Sample handling and laboratory size separation methods may significantly affect the measured composition of 
fine ash  samples30 and the detection of secondary surface phases. All samples were gently dry-sieved by hand to 
three size ranges: > 45 μm, 25-45 μm and < 25 μm. Sieving below 63 µm has been considered impractical by many 
researchers, however this is likely to relate to mechanical stack sieving using a shaker rather than to hand-sieving. 
Hand-sieving down to 32 µm has been used for 300 volcanic ash  samples20 and more recently, hand sieving was 
employed down to 45 µm106; in both case hand-sieving was chosen in order to mitigate abrasion during sieving. 
We took the following steps to maximize sieving efficiency and reproducibility:

• Drying at 85 °C for 1 h or more prior to sieving.
• Presieving of > 125 µm fraction.
• Hand sieving for short durations (~ 2 min) with a tightly-fitting lid.
• Sieving of small sample volumes (not more than 15 g per sieve run, less for finest sieve).
• Separate and successive sieving of < 45 and < 25 µm fractions (i.e., no stacked sieves).
• Tapping on lab countertop 2–3 times during hand sieving to prevent blinding.

The ability to effectively deblind sieves by tapping and employ a wave-like motion during hand sieving has 
provided us with effective (and reasonably efficient, although multiple sieve runs are often required to obtain 
sufficient particles in the < 25 micron range) method to separate < 63 micron size fractions.

We used a Spex SamplePrep 8000M alumina ball grinder to dry-mill bulk (unsieved) samples for up to 
25 min prior to XRD analyses. Sieved particles were measured directly, without further milling. X-ray diffraction 
(XRD) measurements were made using a Bruker D8-ECO Powder X-ray Diffractometer in the Cornell Center 
for Materials Research (CCMR). The instrument has a Cu K-alpha X-ray source excited by a 40 kV, 25 mA elec-
tron gun and a silicon strip detector. Measurements were made at angles of 10–80° for most fresh samples and 
5–65° for weathered samples, with an increment of 0.0195° and a dwell time of 0.4 s. To filter Fe fluorescence, we 
increased the lower discriminator on the detector from 0.110 to 0.182 V, as determined experimentally by CCMR 
technicians. Depending on sample volume, powder samples were held in either 5 or 10 mm diameter wells in 
single-crystal quartz sample holders. Comparison between results of 5 and 10 mm sample holders show a good 
degree of similarity. Spectra were analyzed in MDI Jade 10 software using the ICSD database of crystallography 
data. We used the Degree of Crystallinity approach to quantify the glass content of the ash  samples107, where 
the area under amorphous peaks is divided by the area under crystalline plus amorphous peaks. Peak fitting 
was conducted semi-automatically for crystalline peaks after applying a baseline following the amorphous peak; 
crystalline peaks were carefully picked by hand and then fit using the ‘Profile fitting’ algorithm in MDI Jade. 
Amorphous peaks were picked after applying a linear baseline and fit by hand. Occasionally, two overlapping 
amorphous profiles were required to fit the amorphous peak in the spectra. Whole pattern fitting (WPF) with 
Rietveld refinement was used to quantify phases. The full protocol used for analysis of output spectra is laid out 
in Supplementary Fig. 1. Accuracy was determined using binary mixtures of San Carlos olivine and pure quartz 
measured using a 0.1 mg resolution scale. Error was typically < 5%, however the 10 wt% olivine + 90 wt% quartz 
mixture gave relative uncertainty for olivine between 10 and 20% (1–2 wt%). Absolute error did not exceed  
2.5 wt% in all cases (Supplementary Table 3). Precision was monitored via repeated measurements of the Eyjaf-
jallajökull 25-45 μm sample with spectral similarity of 98%.

Output mineral fractions were recalculated to include the glass fraction, which was determined from the 
ratio of the area under the amorphous peak to the sum area under crystal peaks plus the amorphous peak. To 
consistently report the output data, specific species of minerals were clustered under broader categories, namely: 
feldspars, clinopyroxenes, orthopyroxenes, amphiboles, olivines,  SiO2-polymorphs, iron oxides, phosphates, 
and salts. Any other species were classified under “other” and included alteration products, sulfides, and phyl-
losilicates detailed in the “Other ID” and “Notes” columns in the Supplementary Table 4. A list of these minerals, 
their classification and basic properties is included as Supplementary Table 5. Finally, samples sieved to > 45 μm 
and < 25 μm were mounted and then imaged using a TESCAN Mira FE-SEM with either backscattered electron 
(BSE) or energy-dispersive spectroscopy detectors to examine microstructure and check phases assigned by 
XRD (see Fig. 2).
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