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Evaluating genomic signatures 
of aging in brain tissue as it relates 
to Alzheimer’s disease
Megan T. Lynch 1, Margaret A. Taub 2, Jose M. Farfel 3, Jingyun Yang 3, Peter Abadir 1, 
Philip L. De Jager 4, Francine Grodstein 3, David A. Bennett 3 & Rasika A. Mathias 1*

Telomere length (TL) attrition, epigenetic age acceleration, and mitochondrial DNA copy number 
(mtDNAcn) decline are established hallmarks of aging. Each has been individually associated with 
Alzheimer’s dementia, cognitive function, and pathologic Alzheimer’s disease (AD). Epigenetic age 
and mtDNAcn have been studied in brain tissue directly but prior work on TL in brain is limited to 
small sample sizes and most studies have examined leukocyte TL. Importantly, TL, epigenetic age 
clocks, and mtDNAcn have not been studied jointly in brain tissue from an AD cohort. We examined 
dorsolateral prefrontal cortex (DLPFC) tissue from N = 367 participants of the Religious Orders Study 
(ROS) or the Rush Memory and Aging Project (MAP). TL and mtDNAcn were estimated from whole 
genome sequencing (WGS) data and cortical clock age was computed on 347 CpG sites. We examined 
dementia, MCI, and level of and change in cognition, pathologic AD, and three quantitative AD traits, 
as well as measures of other neurodegenerative diseases and cerebrovascular diseases (CVD). We 
previously showed that mtDNAcn from DLPFC brain tissue was associated with clinical and pathologic 
features of AD. Here, we show that those associations are independent of TL. We found TL to be 
associated with β-amyloid levels (beta = − 0.15, p = 0.023), hippocampal sclerosis (OR = 0.56, p = 0.0015) 
and cerebral atherosclerosis (OR = 1.44, p = 0.0007). We found strong associations between mtDNAcn 
and clinical measures of AD. The strongest associations with pathologic measures of AD were with 
cortical clock and there were associations of mtDNAcn with global AD pathology and tau tangles. 
Of the other pathologic traits, mtDNAcn was associated with hippocampal sclerosis, macroscopic 
infarctions and CAA and cortical clock was associated with Lewy bodies. Multi-modal age acceleration, 
accelerated aging on both mtDNAcn and cortical clock, had greater effect size than a single measure 
alone. These findings highlight for the first time that age acceleration determined on multiple genomic 
measures, mtDNAcn and cortical clock may have a larger effect on AD/AD related disorders (ADRD) 
pathogenesis than single measures.

Aging, a progressive deterioration of physiologic reserve with  time1, is a risk factor of many complex  diseases2. 
Biologic age, determined by genomic markers of aging, may be better than chronologic age at predicting func-
tional capacity and rate of  aging3. Cellular and molecular hallmarks of aging include mitochondrial dysfunction, 
genomic instability, TL shortening, and epigenetic  alterations4. Physiological functions, including some cognitive 
functions, decline with chronologic age and biological markers of aging have been linked to cognitive decline 
and Alzheimer’s disease (AD).

Mitochondrial dysfunction is well studied in AD and  aging5–7. Genomic instability leads to mitochondrial 
DNA variations and increased age correlates with increases in mtDNA heteroplasmy and decreases in mtDNA 
copy number (mtDNAcn)8,9. Some studies have found lower mtDNAcn in brain tissue in AD that may even be 
region-specific10–13. Using quantitative PCR methods and hippocampal tissue, one study found that AD pyramidal 
neurons, but not dentate granule neurons, had significantly lower  mtDNAcn10. A later study showed that mtD-
NAcn measurements from the frontal cortex were 28% lower in AD patients but mtDNAcn from blood samples, 
hippocampus, and cerebellum tissues was not different between controls and  AD11. Similarly, in cerebellum tissue, 
lower mtDNAcn has been noted in  AD12.
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Epigenetic alterations, including DNA methylation (DNAm), have been linked to AD pathology and cognitive 
 aging14,15. In epigenome-wide association studies of AD brain samples from several regions, differential DNAm 
at several loci has been related to AD  pathology16–19. Several studies highlight the differential methylation pat-
terns of ANK1 in AD, including our  own15–17. A recent study identified differential methylation of 121 genes that 
were associated with neuropathologies in a cross-cortex meta-analysis20. In addition there are several “epigenetic 
clocks” which are biomarkers of aging generated from DNAm states across select sites. We have previously shown 
that the Horvath clock and Phenoage were associated with cognitive decline and AD-related neuropathologic 
traits in DLPFC brain  samples21,22. Telomere attrition has been associated with aging and numerous diseases 
including  AD23–26. Studies linking telomere length (TL) to AD have largely been conducted in leukocyte  cells27–31, 
and the role of TL in brain tissue in AD has only previously been examined in cohorts with small sample  sizes32,33.

In the Religious Orders Study and the Rush Memory and Aging Project (ROSMAP) data, two signatures of 
biological aging in the brain were previously studied. We found that dorsolateral prefrontal cortex (DLPFC) 
mtDNAcn is nearly 10% lower in pathologic AD relative to non-AD  participants34. We previously reported 
associations between mtDNAcn and clinical measures of AD including lower global cognitive function and 
greater cognitive decline. We also reported a modest association between mtDNAcn and higher quantitative 
global AD pathology score and higher  tau34. Recently, a “Cortical” clock trained in human cortex tissue was 
developed which was more strongly associated with AD diagnosis and β-amyloid than other  clocks35. Cortical 
clocks were assessed in DLPFC brain samples from ROSMAP data and each standard deviation higher corti-
cal clock age was related to 90% greater likelihood of pathologic AD. Higher cortical clock age was associated 
with clinical dementia-related phenotypes and quantitative AD traits including global AD pathology, tau tangle 
density, and β-amyloid36.

Here, we introduce a third genomic predictor of biologic age in the same set of samples, TL, and expand on 
prior findings from the individual measures of biological age by determining multimodal age acceleration—i.e., 
accelerated aging across epigenetic cortical clock age, brain mtDNAcn and brain TL. We bioinformatically esti-
mated TL from whole exome sequencing data, generated from ROSMAP DLPFC brain samples, and leveraged 
the existing mtDNAcn and epigenetic cortical clock estimates of the same  samples34,36 to understand the effect 
of multiple genomic signatures of aging on clinical and pathologic features of AD, other neurodegenerative 
diseases, and cerebrovascular disease (CVD).

Methods
Cohorts. ROS includes older priests, nuns, and brothers from across the  US37,38. MAP includes older men 
and women from across the Chicago metropolitan  area39. These two cohort studies of aging and dementia share 
common clinical and post-mortem data collection at the item level allowing data to be merged. Participants 
entered these studies without known dementia and agreed to annual clinical and cognitive assessments and 
brain donation after death. Both studies were approved by an Institutional Review Board of Rush University 
Medical Center and all experiments were performed in accordance with university guidelines. All participants 
signed an informed consent, an Anatomical Gift Act for organ donation, and a repository consent allowing their 
data to be shared.

Clinical evaluation. Diagnosis of dementia and mild cognitive impairment (MCI) were based on a sum-
mary diagnostic opinion by a neurologist with expertise in dementia after death and was made blinded to post-
mortem  data40. Raw scores for overall cognitive function were generated from 19 cognitive tests. These were 
converted to Z scores and averaged to yield global cognition. 38 Cognitive decline is the person-specific rate of 
change in global cognition over time. It is estimated from a linear mixed effects effect model that controls for age 
at baseline, sex, and years of  eduction41.

Neuropathologic evaluation. The NIA-Reagan diagnosis of pathologic AD is based on consensus rec-
ommendations for postmortem diagnosis and the criteria rely on the distribution and density of neurofibrillary 
tangles and neuritic  plaques42,43. Global AD pathology is a quantitative summary of neuritic plaques, diffuse 
plaques, and neurofibrillary tangles determined by microscopic examination of silver-stained slides from five 
brain regions (mid-hippocampus, entorhinal cortex, midfrontal cortex, middle temporal cortex, and inferior 
parietal cortex)44. Amyloid beta protein and tau tangles were assessed in 8 brain regions by molecularly specific 
immunohistochemistry by image analysis and stereology  respectively45.

Other neurodegenerative disease pathologies were assessed. Presence of TDP-43 inclusions in neurons and 
glia was determined by immunohistochemistry of 8 brain regions and four stages of TDP-43 distribution were 
 assigned46. Lewy body disease was described in four stages determined by α-synuclein distribution based on 
algorithm accepted  criteria47. The presence of hippocampal sclerosis was evaluated unilaterally in a coronal 
section of the mid hippocampus at the level of the lateral geniculate body and graded based on severe neuronal 
loss and gliosis in CA1 and/or  subiculum48.

Several indices of CVD were characterized. The presence, size and age of gross chronic infarcts were identi-
fied at the time of autopsy and verified microscopically; microscopic infarctions were identified on hematoxylin 
and eosin stained  slides49,50. A semiquantitative summary of cerebral amyloid angiopathy (CAA) was assessed 
in four neocortical regions by β-amyloid immunostaining. Meningeal and parenchymal vessels were assessed 
for amyloid-β deposition in each region and scored from 0 to 4 and then averaged across the four  regions51,52. 
Cerebral atherosclerosis rating was determined by visual inspection after paraformaldehyde fixation at the Circle 
of Willis at the base of the brain and severity was graded by visual examination.53 Arteriolosclerosis described 
as fibrohyalinotic thickening of arterioles with consequent narrowing of the vascular lumen was examined in 
the basal  ganglia49,50,54.
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Whole genome sequencing. Whole-genome sequencing (WGS) was performed on DNA extracted from 
the DLPFC using Qiagen’s QIAamp DNA kit (n = 367) as previously  described55. Briefly, WGS libraries were 
prepared using the KAPA Hyper Library Preparation Kit. DNA was sheared using a Covaris LE220 sonicator 
(adaptive focused acoustics). DNA fragments underwent bead-based size selection and were subsequently end 
repaired, adenylated, and ligated to Illumina sequencing adapters. Ligated DNA libraries were evaluated by 
fluorescent-based assays including qPCR with the Universal KAPA Library Quantification Kit and Fragment 
Analyzer (Advanced Analytics) or BioAnalyzer (Agilent 2100). Libraries were sequenced on an Illumina HiSeq 
X sequencer (v2.5 chemistry) using 2 × 150 bp cycles.

Biologic age estimates from WGS data. Telomere length. TL was estimated bioinformatically from 
a single time point using WGS by Telseq. TelSeq estimates telomere length of each individual by counting the 
number of contiguous repeats of the telomere-identifying hexamer TTA GGG 56. Given that most of our data was 
sequenced using read lengths of 151, we chose to use a repeat number of 12. Read counts are then normalized 
according to the number of reads in the individual WGS dataset with 48%-52% GC content. TelSeq generates 
an estimate of TL in bp similar to laboratory assays Southern blot21 and flowFISH and our group has previ-
ously demonstrated in detail that TelSeq estimates are highly correlated with both Southern blot and flowFISH 
 measurements57.

mtDNAcn. Raw mtDNAcn estimates were calculated as (covmt/covnuc) × 2 using mtDNA and nuclear DNA 
from the WGS data where covnuc is the median sequence coverages of the autosomal chromosomes and covmt of 
the mitochondrial genome. These were calculated using R/Bioconductor (packages GenomicAlignments and 
GenomicRanges). Ambiguous regions were excluded using the BSgenome package. For analyses, mtDNAcn was 
standardized and logarithmized by methods described  previously34.

Cortical clock age. DNA methylation profiles, measured in DLPFC tissue from brain samples, were generated 
using the Illumina Infinium Human Methylation450 platform. Preprocessing and quality control was previously 
described in  detail36. The cortical clock was designed in postmortem cortical specimens to predict chronologic 
age from 347 CpG  sites35.

Estimation of neuronal proportion from RNA-seq data. Proportion of neurons were estimated as 
previously  described34. Briefly, the Digital Sorting Algorithm (DSA) was applied to a set of published marker 
genes that were used previously to deconvolute cortical RNA-seq  data58,59. RNA-seq samples were extracted 
using Qiagen’s miRNeasy mini kit (cat. No. 217004) and the RNase free DNase Set (cat. No. 79254). Sequencing 
was conducted on the Illumina HiSeq and NovaSeq6000. RNA-seq data were trimmed mean of M values (TMM) 
normalized and technical variables were regressed out. Only marker genes with a mean transcription  level3 2 
counts per million reads mapped (cpm) were used and the median transcription level of all marker genes per 
cell type was calculated.

Binary definition of age acceleration. We defined multi-modal aging by creating a binary definition 
of accelerated biological aging (i.e. accelerated vs. not accelerated) based on cortical clock age and mtDNAcn. 
For cortical clock, residuals were obtained from the regression of clock age on chronologic age. Samples with 
positive residual values were categorized as accelerated cortical clock age  (CCage+) and negative residual values 
were categorized as non-accelerated cortical clock age  (CCage-). Age acceleration on mtDNAcn  (mtDNAage+) was 
defined as below median of the estimates; values larger than the median  50th were considered not accelerated 
 (mtDNAage-). Individually, biological aging measures were examined in multivariate regression models adjust-
ing for covariates:  CCage+ vs.  CCage- and  mtDNAage+ vs.  mtDNAage-. Furthermore, to examine the impact of age 
acceleration on multiple measures (i.e., mtDNAcn and cortical clock), we also categorized individuals using a 
combination of these binary biological age acceleration predictors;  CCage+/  mtDNAage+ represents an individual 
who is age accelerated on both cortical clock and mtDNAcn and  CCage-/  mtDNAage- represents an individual who 
is not age accelerated on either mtDNAcn or cortical clock.

Statistical analysis. Standard multivariable regression analysis pipelines were run in R. In the first analysis, 
the three biologic predictors of age (TL, mtDNAcn, and cortical clock) were the primary predictors and they 
were examined as quantitative measures individually in univariate and jointly in multivariate analysis models. 
Quantitative outcomes, (global cognition, cognitive decline, global AD pathology, amyloid, and tau) were stand-
ardized to obtain comparable effect sizes and assessed by linear regression. Binary (dementia diagnosis, cognitive 
impairment diagnosis, NIA-Reagan diagnosis, hippocampal sclerosis, gross chronic infarcts, and microinfarcts) 
and ordinal outcomes (TDP-43, Lewy bodies, cerebral amyloid angiopathy, cerebral atherosclerosis, and arteri-
olsclerosis) were assessed by logistic and ordinal regression models. Age at death and sex were covariates for all 
analyses and education was also included as a covariate when assessing clinical outcomes, i.e., dementia, MCI, 
global cognition, and cognitive decline. Post-mortem interval (pmi) was not included as a covariate because 
there was no relationship between pmi and any of the three biologic predictors of age or age at death. Therefore, 
we did not include pmi as a covariate in our analysis. For the multi-modal analysis  CCage+ vs.  CCage-,  mtDNAage+ 
vs.  mtDNAage-, and  CCage+/  mtDNAage+ vs.  CCage-/  mtDNAage-, the same covariates referenced above were used 
except age at death because the dichotomization of age acceleration was based on residuals of epigenetic age vs. 
age at death. For each statistical test, a significance threshold of p-value < 0.05 was applied.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14747  | https://doi.org/10.1038/s41598-023-41400-1

www.nature.com/scientificreports/

To test departure from additivity for multi-modal models, a likelihood ratio test was performed comparing 
a 3-factor categorical age acceleration variable vs. an additive model with a numeric age acceleration variable. 
In the 3-factor model, baseline was  CCage-/mtDNAage- and two categories were each compared to the baseline 
group: 1 =  CCage−/mtDNAage+ or =  CCage+/mtDNAage- and 2 =  CCage+/mtDNAage+. In the additive model, these 
groups were coded as a linear variable.

Ethical approval. All methods were carried out in accordance with relevant guidelines and regulations. 
All experiments were performed in accordance with university guidelines for human research and the study 
was approved by the Institutional Review Board of Rush University Medical Center. All participants signed an 
informed consent, an Anatomical Gift Act for organ donation, and a repository consent allowing their data to 
be shared.

Results
Sample characteristics. Our sample included N = 367 non-Latino white subjects from  ROSMAP28,29. 
There were more females than males (64% vs 35%) and the average age at death was 88 years old (Table 1). In 
this sample, nearly half had dementia and about a quarter had MCI proximate to death. The APOE e4 allele (e4/
e4 or e3/e4) was carried by 25.9% of the population. All of N = 367 study subjects had WGS generated on brain 
DNA, N = 258 had brain methylation data, N = 256 had brain RNASeq with N = 171 having an overlap for all 
three assays available.

Measures of biological aging in brain. Figure  1 shows the correlation between the three measures 
of biological aging in the ROSMAP brain samples, and their association with age and sex. Adjusting for age, 
sex, and neuronal fraction, we found brain mtDNAcn and TL measures to be positively correlated (R = 0.16, 
p = 0.0123), mtDNAcn and cortical clock age to be negatively correlated (R = − 0.19, p = 0.0018), and no correla-
tion between TL and cortical clock age (R = − 0.059, p = 0.3412). Associations between sex and TL, mtDNAcn, or 
cortical clock age were not significant. No significant correlation with age was noted for TL and mtDNAcn, but 
there was a very strong positive correlation with Cortical age (R = 0.85, p = 2.8e−72).

Association between TL and clinical and pathological indices. Given that this is the first evalua-
tion of TL in the ROSMAP brain samples, Table 2 shows the individual association between TL on a quantita-
tive scale and clinical and neuropathologic phenotypes. Adjusting for age, sex, and neuronal fraction using cell 
composition derived from RNASeq on these samples, we did not find associations with any clinical traits. For 
AD traits, we identified an inverse association between β-amyloid levels and TL (beta = − 0.15, p = 0.0232). We 
also identified an inverse association between TL and hippocampal sclerosis (OR = 0.56, p = 0.0015) but a direct 
association with cerebral atherosclerosis (OR = 1.44, p = 0.0007). None of the other pathologic phenotypes were 
significantly associated with TL.

Evaluating independence in association between three biological measures of brain aging with 
clinical outcomes and pathological indices. In the joint multivariate analysis in which all three esti-
mates of biologic age were included as linear predictors in a single model for each clinical and neuropathologic 
phenotype (Table 2, Supplemental Fig. 1), we observed that mtDNAcn was associated with dementia (OR = 0.61, 
p = 0.0008), MCI (OR = 0.69, p = 0.0318), and both level of (beta = 0.32, p = 1.7 ×  10–5) and change in cognition 
(beta = 0.03, p = 1.8 ×  10–5). The cortical clock was inversely associated with global cognition (beta = − 0.06, 
p = 0.0134). By contrast, TL no longer remained significant for any clinical trait. Interestingly, cortical clock age 
was positively associated with all four pathologic measures of AD; NIA-Reagan diagnosis (OR = 1.19, p = 0.0029), 
global AD pathology (beta = 0.03, p = 0.0003), amyloid beta (beta = 0.06, p = 0.0047), and tau tangles (beta = 0.07, 
p = 0.0183). Additionally, mtDNAcn was associated with global AD pathology (beta = − 0.07, p = 0.0034), and tau 
tangles (beta = − 0.30, p = 0.0007). TL length was not significant for any measure of AD.

For the non-AD neurodegenerative disease pathologies, mtDNAcn was positively associated with hippocam-
pal sclerosis and the cortical clock positively associated with Lewy bodies. Among the cerebrovascular patholo-
gies, mtDNAcn was positively associated with macroscopic infarctions and CAA. No associations with CVD 
pathologies were found with the cortical clock and TL was not associated with any of the non-AD neurodegen-
erative or CVD pathologies.

Multimodal aging model shows that the combination of acceleration in both mtDNAcn and 
epigenetic age are associated with clinical outcomes and pathological indices. To build upon 
the above observation that mtDNAcn and Cortical clock have independent effects on clinical outcomes and 
pathological indices when modeled together, we looked at multi-modal brain aging (i.e. age acceleration on 
multiple measures). A binary age predictor that combined  CCage and  mtDNAage had a stronger relation with 
most traits compared to either  CCage or  mtDNAage alone (Fig. 2). For example, individuals with age acceleration 
on both measures  CCage+/mtDNACage+ together have a stronger association with global cognition (beta = − 1.01, 
p = 7.8 ×  10–7) than either  CCage+ (beta = − 0.55, p = 1.5 ×  10–4) or  mtDNACage+ (beta = − 0.60, p = 6.0 ×  10–5). The 
multi-modal aging models did not show departure from additivity for any outcomes except tau tangles. The 
effect of  CCage+/mtDNAage+ age acceleration on tau tangles was greater than twice the effect of age acceleration on 
only one parameter, indicated by a statistically significant likelihood ratio test (p = 0.018) (Supplemental Table 1). 
As with the multivariate model above where in the inclusion of all three measures of biological brain aging TL 
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Table 1.  Characteristics of ROSMAP study subjects with multi-omics data available from brain DLPFC 
samples.  N(%) presented for categorical variables and mean ± se for quantitative traits. There is a difference in 
the set of samples used in each analysis. The analysis of mtDNAcn and TL used N = 256 samples with neuronal 
cell composition estimates from RNASeq data. The analysis of mtDNAcn, TL, and Cortical clock used N = 258 
samples with available methylation data and cell composition was estimated from methylation. There are 
N = 171 samples that are a direct overlap between the two sets.

All samples

N 367

Sex (male) 128 (34.9%)

Age at death (years) 88.4 ± 6.7

Whole Genomce Seq 367

Methylation profiles 258

RNA seq 256

ApoE e4 carriers (n(%)) 95 (25.9%)

Dementia diagnosis

 No Dementia 195 (53.1%)

 Dementia 172 (46.9%)

Cognitive Impairment diagnosis

 NCI 102 (27.8%)

 CI 265 (72.2%)

Global cognition − 1.02 ± 1.18

Cognitive decline − 0.03 ± 0.10

NIA-Reagan diagnosis

 No AD 108 (30.5%)

 AD 246 (69.5%)

Global AD pathology 0.84 ± 0.66

Amyloid 1.85 ± 1.16

Tau 2.34 ± 1.35

TDP-43

 None 172 (51.3%)

 Amygdala 54 (16.1%)

 Limbic 79 (23.6%)

 Neocortical 30 (9.0%)

Lewy Bodies

 None 270 (76.9%)

 Nigral 6 (1.7%)

 Limbic 24 (6.8%)

 Neocortical 51 (14.5%)

Hippocampal sclerosis

 Not present 321 (88.7%)

 Present 41 (11.3%)

Gross chronic infarcts

 None 226 (61.6%)

 One or more 141 (38.4%)

Microinfarcts

 None 263 (71.7%)

 One or more 104 (28.3%)

Cerebral amyloid angiopathy

 None 69 (19.3%)

 Mild 158 (44.1%)

 Moderate 87 (24.3%)

 Severe 44 (12.3%)

Cerebral atherosclerosis

 None 50 (13.7%)

 Mild 165 (45.2%)

 Moderate 117 (32.1%)

 Severe 33 (9.0%)

Arterioloscerosis

 None 102 (27.9%)

 Mild 120 (32.8%)

 Moderate 103 (28.1%)

 Severe 41 (11.2%)
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was no longer significant, in the multi-modal definition we found that including TL age acceleration  (TLage+/−) 
did not add additional information beyond  CCage+/mtDNACage+ (data not shown).

Discussion
We bioinformatically estimated TL from DLPFC brain samples. Most previous studies assessing the role of TL 
in AD have been in small sample size populations using leukocyte  cells27–31. We assessed three biologic markers 
of aging independently and in a multi-modal aging model. We are not aware of other studies bringing together 
multiple genomic markers of biologic age measured directly in brain tissue for clinical or neuropathologic 
phenotypes.

We show, in DLPFC postmortem brain tissue, that longer TL has a statistically significant relationship with 
lower levels of β-amyloid, less hippocampal sclerosis, and more atherosclerosis. However, once other measures 
of brain aging are accounted for, these TL-specific relations are no longer observed. In the joint analysis includ-
ing all three estimates of biologic age, higher mtDNAcn was associated with lower odds of dementia and MCI, 

Figure 1.  Distribution of mtDNAcn, cortical clock, and TL by gender and age. TL unit is kilobase (kb). Cortical 
clock unit is age in years. (A) Correlation between mtDNAcn, Cortical clock, and TL where each measure was 
adjusted for age, sex, and neuronal fraction. (B) Correlation between age and mtDNAcn, Cortical clock and TL, 
where each measure was adjusted for sex and neuronal fraction. (C) mtDNAcn, Cortical clock, and TL by sex, 
where each measure was adjusted for age and neuronal fraction. The yellow dots indicate median mtDNAcn, 
Cortical clock, and TL values. Note: Cortical clock is adjusted for age in panels A and C, and therefore on a 
different scale from panel B.
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higher global level of and change in cognition, tau tangles but only modestly associated with other pathologies. 
Tauopathies are known to occur without β-amyloid60. Cortical clock age was associated with all four AD patholo-
gies but only had a modest association with global cognition, the continuous measure with the greatest power. 
We suspect that might be due to having more power for intermediate pathologic AD phenotypes compared to 
their downstream consequences on cognition as we previously  reported61. Grouping multiple genomic measures 
of aging to create a binary variable predicting accelerated age has the largest association with clinical dementia-
related outcomes and neuropathologic traits.

The APOE genotype has a known relationship with neuropathic outcomes. In previous ROSMAP studies, 
the APOE e4 allele was shown to be associated with lower mtDNAcn except when AD pathology was included 
as a  covariate34. We also found previously a 50% greater likelihood of APOE e4 genotype with greater cortical 
clock age (OR = 1.49)36. Here, we did not find differences in TL by APOE e3 carrier status; carriers of the APOE 
e3 allele did not have different TL than APOE e4 allele carriers (p value = 0.603) or APOE e2 allele carriers (p 
value = 0.358).

We recently showed that incidence of AD peaks in the  10th decade of life with a slight decrease  afterward62; 
chronological age is a major risk factor of AD. We have also shown that genomic measures of aging are a risk fac-
tor, we reported associations between mtDNAcn and higher Cortical clock age and common  neuropathologies34,36. 
The present results are consistent with this prior work, but we expand the findings by showing that brain age 
acceleration on multiple measures of aging, mtDNAcn and cortical clock age, has a stronger relation with out-
comes than either measure individually.

While each measures brain aging, and while they are often correlated, mtDNAcn, epigenetic age and tel-
omere length may each capture different underlying mechanisms of aging. The inverse correlation between age 
and mtDNAcn that has been documented in  blood63 may be a feature of cell composition and attenuated after 
accounting for the contribution of  platelets64. The regulation of mtDNAcn within a cell occurs to meet metabolic 
demands of the cell resulting in a range of mtDNAcn depending on tissue type and pathological  conditions65. 
Lower mtDNAcn could be driven by certain pathologies rather than  aging34. In contrast, the cortical age clock 
has a clear correlation with chronologic age, as it was designed using chronologic age as the benchmark for 
selecting CpG sites into the clock  signature35,36. Distinct epigenetic changes that occur with aging, including 
DNA hypomethylation with CpG island hypermethylation, influence subsequent aging and  longevity66. How-
ever, epigenetic modifications have not been established as causal in the process of brain  aging36. While brain 
TL is itself associated with some outcomes, this measure of brain aging does not add independent information 

Table 2.  Association of brain TL with clinical and neuropathologic phenotypes adjusting for cell composition 
from RNAseq data in N = 256 DLPFC brain samples and joint analysis evaluating the association of mtDNAcn, 
Cortical age and TL with outcomes adjusting for neuronal proportions from methylation data in N = 258 
DLPFC brain samples. Effect sizes are presented as Odds Ratios for categorical traits. For quantitative traits 
(indicated by *) the effect size is the β coefficient. Each outcome was analyzed separately in a regression 
model adjusted for age, sex, and neuronal fraction from either RNA seq data (Modeling brain TL alone) or 
methylation data (Joint analysis of mtDNAcn, cortical clock, and brain TL). Clinical dementia diagnosis, 
MCI diagnosis, global cognition, and cognitive decline were adjusted for age, sex, neuronal fraction, and 
years of education. The beta values represent the change in pathologic outcomes for every 1 unit increase in 
TL, mtDNAcn, or Cortical clock age. The odds represent the increase or decrease in odds of moving into a 
higher group relative to baseline for every 1 unit increase in TL, mtDNAcn, or Cortical clock age. Associations 
between outcomes and mtDNAcn and Cortical clock age have been published previously in ROSMAP  data34,36. 
Significant values are in bold.

Phenotype

Modeling brain TL 
alone Joint analysis of mtDNAcn, cortical clock, and brain TL

Effect TL P TL Effect mtDNAcn P mtDNAcn Effect clock P clock Effect TL P TL

Dementia diagnosis 0.94 0.6077 0.61 0.0008 1.06 0.2468 1.06 0.6780

Cognitive Impairment diagnosis 0.89 0.3948 0.69 0.0318 1.04 0.5315 0.96 0.7997

Global cognition* 0.00 0.9677 0.32 1.7E−05 − 0.06 0.0134 − 0.06 0.3946

Cognitive decline* 0.00 0.8450 0.03 1.8E−05 0.00 0.0676 0.00 0.5286

NIA-Reagan diagnosis 0.97 0.7944 0.79 0.1584 1.19 0.0029 1.12 0.4652

Global AD pathology* 0.00 0.9922 − 0.07 0.0034 0.03 0.0003 0.03 0.2242

Amyloid* − 0.15 0.0232 − 0.05 0.4450 0.06 0.0047 0.11 0.0910

Tau* 0.04 0.5576 − 0.30 0.0007 0.07 0.0183 0.10 0.2711

TDP-43 0.89 0.2771 0.92 0.5433 1.03 0.5170 1.07 0.6056

Lewy bodies 0.88 0.3745 0.88 0.4216 1.16 0.0063 1.02 0.9001

Hippocampal sclerosis 0.56 0.0015 1.67 0.0298 1.08 0.3035 1.03 0.9133

Gross chronic infarcts 0.88 0.2655 0.75 0.0374 1.04 0.4195 0.98 0.8591

Microinfarcts 0.83 0.1443 0.84 0.2445 1.06 0.2829 1.03 0.8388

Cerebral amyloid angiopathy 1.08 0.4459 0.78 0.0449 1.02 0.5810 1.03 0.8204

Cerebral atherosclerosis 1.44 0.0007 0.81 0.0900 0.94 0.1565 1.10 0.4244

Arteriolsclerosis 0.95 0.6200 0.81 0.0867 0.94 0.1327 0.88 0.2632
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above that captured by mtDNAcn and cortical age. Gene co-expression network analysis of AD could be used to 
explore genomic mechanisms of aging. In blood, genes associated with two DNAm clocks and two measures of 
TL were associated with gene pathways that may suggest the underlying mechanism of biological aging in  AD67.

This study does have limitations in sample size, and in that TL is bioinformatically captured which may 
impact the power to study the brain TL associations. We did not find TL to be associated with chronologic age 
or gender. Previous studies have linked leukocyte telomere length to age; however, brain TL is highly dependent 
on tissue type and cell  composition68–70. Previous studies have largely reported longer TL in females. However, 
the length difference is not consistent and is varied across TL measurement  assays71,72. Extensions to laboratory 
assays or polygenic risk scores for TL can be considered to address this issue. A parallel approach to polygenic 
risk scores which assigns differential weight to each biologic marker of aging could also be assessed as a future 
analysis. Additionally, since the analyses are cross-sectional, it does not differentiate whether the biologic pro-
cesses of the genomic markers of aging are predictors or consequences of clinical or pathologic traits. We also 
did not have history of medication usage in study participants which may influence the relationship between the 
biologic predictors of age and trait outcomes. Nonetheless, this does offer some early insight into the importance 
of considering brain aging on multiple biological age predictors, and suggests that while these can be themselves 
correlated, they have independent aging related effects and potentially different biology as it relates to AD/ADRD 
pathogenesis.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request. Further inquiries may be directed to the corresponding author. ROSMAP resources can be requested 
at https:// www. radc. rush. edu.

Received: 20 March 2023; Accepted: 25 August 2023

Figure 2.  Association between binary age acceleration based on mtDNAcn and cortical clock age and 
clinical outcomes and pathologies. To show the impact of age acceleration on multiple aging measures, three 
comparisons are shown: individuals with age acceleration on mtDNA vs. those without acceleration on mtDNA 
in green, individuals with age acceleration on cortical clock vs. those without acceleration on cortical clock in 
blue and individuals with age acceleration on both mtDNA and cortical clock vs. those with age acceleration 
on neither in purple. Forest plots show effect sizes and confidence intervals presented as β coefficients for 
quantitative traits (left panel) and Odds Ratios for categorical (right panel).

https://www.radc.rush.edu
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