
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14263  | https://doi.org/10.1038/s41598-023-41355-3

www.nature.com/scientificreports

Thermoelectric properties 
of ballistic Normal–Weyl 
semimetal‑Normal junction
Jafar Lotfi  & Babak Abdollahipour *

Weyl semimetals are a new class of topological materials possessing outstanding physical properties. 
We investigate the thermoelectric properties of a ballistic Weyl semimetal specimen connected to 
two normal contacts. We introduce a model to evaluate the thermoelectric coefficients of the junction 
and analyze its features along two distinct directions, one along the chiral axis of the Weyl semimetal 
and the other perpendicular to it. We demonstrate that the thermoelectric response of this junction 
depends on whether it is along the chiral axis of the Weyl semimetal or not. Electrical and thermal 
conductances of this junction reveal considerable dependence on the length and chemical potential 
of the Weyl semimetal layer. In particular, we observe that, decreasing the chemical potential in the 
normal contacts enhances the Seebeck coefficient and thermoelectric figure of merit of the junction 
to substantial values. Hence, we unveil that a ballistic junction of Weyl semimetal can serve as a 
fundamental segment for application in future thermoelectric devices for thermal energy harvesting.

Weyl semimetals (WSMs) are a new class of topological matter that have recently attracted an immense interest1. 
The conduction and valance bands in the energy dispersion of WSMs touch each other at even number of Weyl 
nodes and have linear dispersions around them2,3. The number and chirality of Weyl nodes are specified by 
symmetry class of the material4. WSMs are categorized into type-I5 and type-II6 depending on whether they 
have a point like or open Fermi surfaces around the Weyl nodes. Some novel and exotic phenomena such as 
chiral anomaly7, anomalous Hall effect8,9, negative magnetoresistance10, and anomalous Nernst effect11 has been 
observed in WSMs.

Heat is dissipated in most of the devices and is mainly wasted or caused to overheating the device leading 
to interference in its functionality. Thermoelectric effects (TEs) are promising for renewable energy harvesting 
and sorting out energy waste in devices via the heat-voltage conversion, as well for other applications such as 
thermometry, refrigeration12,13. Thermoelectric materials with high thermoelectric efficiency can convert waste 
heat into useful electricity14,15. The efficiency of a system to generate electrical power from a temperature gradi-
ent is determined by thermoelectric coefficients16. The Seebeck coefficient specifies a current (closed boundary 
condition) or a bias (open boundary condition) which is induced due to the temperature difference maintained 
between two reservoirs connected to the system17,18. The Nernst coefficient, or transverse Seebeck coefficient, 
determines the thermally induced current (bias) generated in the direction transverse to both the temperature 
gradient and the applied magnetic field19. Identifying materials with high thermoelectric responses is crucial for 
developing novel electric generators and coolers. In addition, thermoelectric coefficients provide information 
about the flow of energy and charge due to the high impact of the density of states on thermodynamic coefficients 
than the electrical conductance20–22. Therefore, investigating TEs can pave as a robust implement for exploration 
of the system dynamics.

Electronic contribution to the thermal conductivity and the thermopower of WSMs and Dirac semimetals 
(DSMs) has been studied using a semiclassical Boltzmann approach23. It was found that the thermal conductivity 
and thermopower have an exciting dependence on the chemical potential which is characteristic of the linear 
electronic dispersion of these materials24. It has been shown that these materials have very singular behavior at 
zero doping and zero temperature due to a quantum anomaly. The thermopower and the thermoelectric figure of 
merit of DSMs and WSMs subjected to a quantizing magnetic field grows linearly with the field without satura-
tion and can reach extremely high values25,26. The impact of the Berry curvature and orbital magnetization on 
the thermopower in tilted WSMs has been investigated27. It was found that the tilt of Weyl nodes induces linear 
magnetic field terms in the conductivity and thermopower matrices. The linear-B term appears in the Seebeck 
coefficients when the B-field is applied along the tilt axis. Nernst effect in DSMs and inversion asymmetric WSMs 
has been calculated within the semiclassical Boltzmann approach28. It was found that at the Dirac points, the low 
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temperature and low magnetic field Nernst response is dominated by anomalous Nernst effect, arising from a 
non-trivial profile of Berry curvature on the Fermi surface. Moreover, the anomalous Nernst and thermal Hall 
effects in a linearized low-energy model of tilted WSMs have been studied29–32.

To the best of our knowledge, there is no investigation about the thermoelectric properties of ballistic junc-
tions composed of WSMs. Here we propose studying the thermoelectric characteristics of a ballistic junction 
consisting of a WSM layer connected to two normal contacts. We introduce a model to derive the thermoelectric 
properties of this junction along two perpendicular directions characterizing the band structure of WSM. We 
find highly direction-dependent electrical and thermal conductances for this junction. However, the Seebeck 
coefficient of this junction displays slight direction dependence only at low chemical potentials of the leads. 
Moreover, we demonstrate that this junction acquires high values of the Seebeck coefficient and thermoelectric 
figure of merit at vanishingly small chemical potentials of the normal leads.

The remnant of the paper is organized as follows. In “Theoretical model and equations”, we present a theoreti-
cal model and equations for calculating TEs for the considered structure. “Results and discussions ” is devoted 
to representing and discussing the main results of this study involving the investigation of the electrical and 
thermal conductances and Seebeck coefficient in terms of the junction parameters. Eventually, a conclusion is 
given in “Conclusion”.

Theoretical model and equations
We consider a ballistic junction composed of a WSM layer with length L sandwiched between two semi-infinite 
normal contacts as shown in Fig. 1. We suppose that the chemical potential in WSM layer can be adjusted via 
doping or gate voltage. Our aim is investigation of the electronic contribution to the thermoelectric properties 
of this junction such as electrical conductance (G), electronic contribution to thermal conductance ( κel ) , and 
Seebeck coefficient (S). To take into account the asymmetric properties of this junction we study two distinct 
cases, one when junction is along the z axis (the chiral axis) and the second case is when junction is along the 
x axis (perpendicular to the chiral axis) as depicted in Fig. 1a,b, respectively. We consider a minimal model 
Hamiltonian to describe inversion symmetric WSMs in the full range of energy33,34,

where kx,y,z represent the components of the wave vector, σ0 is the 2 ∗ 2 unit matrix, σx,y,z are the Pauli’s matrices 
and µW indicates the electrochemical potential. In this model Hamiltonian M, γ , k0 > 0 are parameters that 
are determined through the experimental or ab-initio calculation results. In this model kz = ± k0 denote the 
location of the two Weyl nodes in the momentum space. This minimal model gives a generic description of a 
pair of Weyl nodes with opposite chirality and, hence, all the topological properties of the inversion symmetric 
WSMs. In contrast, in the case of the time-reversal symmetric WSMs, a minimal model should support at least 
four Weyl nodes as two time-reversed pairs of nodes. In a ballistic sample with no scattering between the nodes, 
two pairs of time-reversed nodes treat independently. The only difference between these pairs is the energy 
shift relative to each other. Hence, the present model describes the contribution of each of these pairs very well, 
and by some reflection, it is possible to find the total result. The normal contacts can be described by a simple 
parabolic energy dispersion. Therefore, the following Hamiltonian is assumed to describe the normal contacts,

where µN represents the electrochemical potential in the normal contacts. We use scattering approach to calcu-
late the thermoelectric coefficients of the considered junctions. Solving the Hamiltonian given by Eq. (1), gives 
eigenvalues and eigenvectors corresponding to WSM as follows,

(1)HWSM = −M(k2x + k2y + k2z − k20)σz + γ (kxσx + kyσy)+ µWσ0,

(2)HN = −M(k2x + k2y + k2z )σ0 + µNσ0,

Figure 1.   Schematic representation of the considered junctions. (a) Junction is along the z axis and parallel to 
the line connecting two Weyl nodes (the chiral axis) of WSM in the momentum space. (b) It is along the x axis 
and perpendicular to the chiral axis of WSM.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14263  | https://doi.org/10.1038/s41598-023-41355-3

www.nature.com/scientificreports/

where we have defined εk = M(k2x + k2y + k2z − k20) , kW is the wave vector obtained from the eigenvalue equation 
Eq. (3), u and v are given by the following relations,

The eigenvalue and corresponding eigenvectors in the normal region are given by,

where k = (kx , ky , kz) is the wave vector in the normal region obtained from Eq. (6). Now, we can set up the 
scattering problem for an electron incident from the left side of the junction. We aim to calculate the properties 
of the junction in two perpendicular directions. First, we assume that the junction direction be along the z axis. 
We can express the wave function in the left normal ( z < 0 ) for an electron incident in the first or second states 
respectively as follows,

where kL,z is the z component of the wave vector in the left normal, r1,1 , r2,1 , r1,2 and r2,2 describe reflection 
amplitudes into the first and second states when incident electron is in the first or second states, respectively. In 
the WSM region ( 0 ≤ z ≤ L ) the wave function reads,

where g, f, p, q are unknown coefficients, and solutions of z component of the wave vector are derived from the 
eigenvalue relation of WSM region given by Eq. (3) as follows,

Finally, the wave function in the right normal ( z > L ) for incidentelectron in the first and  second states 
respectively are given by,

where kR,z is the z component of the wave vector in the right normal. t1,1 , t2,1 , t1,2 and t2,2 express the transmission 
amplitudes to the first and second states in the right normal when the incident electron is in the first and second 
states, respectively. To calculate the transmission coefficients, we apply the following boundary conditions which 
guaranties the particle current conservation,

where v̂z = ∂H/∂kz is the velocity operator along the z direction. Eventually, the transmission probabilities are 
defined according to the following relations,
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In the case of a junction along x axis, we can simply rewrite the scattering wave functions in different regions 
by interchanging kz and kx in the scattering wave functions given by Eqs. (8), (9) and (11), respectively. Moreover, 
the corresponding boundary conditions and definition of the transmission coefficients are obtained through Eqs. 
(12) and (13) by replacing z → x and kz → kx , respectively. The solutions of x component of the wave vector are 
derived from the eigenvalue relation in WSM region given by Eq. (3) as follows,

In the linear-response regime, the electrical and thermal currents passing through the junction are given 
respectively by35,

where Tn , In and Qn are total transmission probability, electrical and thermal currents for the electrons incident in 
the state n = 1, 2 . In this equation k⊥ denotes the transverse wave vector, fL(E) and fR(E) are Fermi distribution 
function of electrons in the left and right normal contacts, and µ is the chemical potential. In the continuum 
limit we can replace the summation over the transverse wave vector by an integration over it,

where A denotes the cross section area of the junction, θ and ϕ are the polar and azimuthal angles for the 
k = (kx , ky , kz).

Now, we consider that there is a voltage difference �V = (µL − µR)/e , and temperature difference 
�� = �L −�R between two normal contacts. For small values of �V  and �� we can apply a Teylor expan-
sion for the distribution functions up to the first order of these quantities. As a result we find the electrical and 
thermal currents in terms of the linear electrical and thermoelectrical conductances Gn , Ln and Kn as follows,

where µ = (µL + µR)/2 and �0 = (�L +�R)/2 are common equilibrium chemical potential and temperature 
of the normal contacts. At low temperatures Gn , Ln and Kn reduce to the following equations using the Som-
merfeld expansion36,

where we have defined Tn(E) = Tn(E)/E . Consequently, the total electrical and thermal currents are given by 
adding up the contribution of all accessible states for the incident electrons as follows,
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junction in response to a temperature difference under open circuite conditions, S = (�V/��)I=0 . From Eq. 
(19) we find that the Seebeck coefficient is simply given by,

Eventually, the electronic contribution to the thermal conductance is defined as the thermal current pass-
ing through the junction as a response to a temperature difference in the absence of the electrical current, 
κel = (Q/��)I=0.

The efficiency of a junction for presenting the thermoelectric effects are estimated by the thermoelectric 
figure of merit defined as follows,

where κT and κph are total and phononic contribution to the thermal conductance. In the following section, 
we calculate the electrical conductance G, thermoelectrical conductance L, Seebeck coefficient S, electronic 
contribution to the thermal conductance κel and thermoelectric figure of merit ZT of the proposed junction 
in terms of its parameters. We only consider the electronic contribution to the thermal conductance. Since 
the phononic contribution to the thermal conductance is negligible at low temperatures κph ≃ 0 , it means that 
we investigate the low-temperature thermoelectric response of the proposed junction. Meanwhile, we have 
neglected the contribution of the Fermi arc surface states on the surface of WSM and only calculated the bulk 
states contribution in the thermoelectric coefficients. In fact, we can see that these states do not contribute at all 
to the thermoelectric properties of the junction along the z axis, and omitting their contribution and retaining 
the bulk states contribution for the junction along x axis is an excellent approximation for this junction (for 
details see the Supplementary Information).

Results and discussions
In this section, we investigate the electronic and thermoelectric properties of N-WSM-N junction in terms of 
its parameters. We survey features of the junction along two perpendicular directions, one along the chiral axis 
(z axis) and the other perpendicular to the first one (x axis). Then, we compare the thermoelectric properties of 
the junction along these two perpendicular directions.

N‑WSM‑N junction along the z axis.  First, we investigate the electrical and thermoelectric con-
ductances of the junction along z axis. In Fig.  2, we have presented the normalized electrical conduct-
ance, G/G0 with G0 = (e2/h)(µA/8π2M) , and normalized thermoelectrical conductance, L/L0 with 
L0 = (eπ2k2B�0/3h)(A/8π

2M) , in terms of the chemical potential of the normal leads for different values of 
the parameters of the junction. We can see that for high chemical potentials G and L show negligible depend-
ence on the parameters of the junction, and considerable changes only happen at lower chemical potentials. As 
we can see, an increase in the length of the junction leads to a decrease in the electrical and thermoelectrical 
conductances. Nevertheless, increasing the chemical potential of WSM layer from negative values to zero leads 
to enhancement of them, in particular at lower chemical potentials. Moreover, an increase in the value of k0 can 
substantially increase both conductances at lower chemical potentials, while they do not show considerable 
dependence on γ . It should be mentioned that the parameters γ and k0 are inherent characteristics of a WSM, 
and variation of these parameters generally means replacing the WSM sample with another one. Although, these 
parameters slightly change by imposing a strain on the WSM sample37. For more details about the electrical 
conductance see the supplementary information.

Figure 3 exhibits the Seebeck coefficient of the junction in terms of the chemical potential of the normal leads 
for different values of the parameters of the junction. As we can see from the figures, the Seebeck coefficient shows 
negligible dependence on the parameters of the junction. It can be attributed to the nearly similar effect of these 
parameters on the electrical and thermoelectric conductances, as is evident in Fig. 2. In addition, the applica-
tion of the Sommerfeld approximation may remove small dependencies of the quantities on the parameters. 
Seebeck coefficient exhibits considerable values at very low chemical potentials where the conductance vanishes. 
Moreover, it diverges at vanishingly small chemical potentials, while it sharply approaches zero by increasing it. 
Furthermore, we do not observe a sign change in the seebeck coefficient by changing the chemical potential. It 
is reasonable for this junction since only electrons can involve in the thermoelectric effects.

We have presented dependence of the electrical conductance and Seebeck coefficient on the length and 
chemical potential of WSM layer in Fig. 4 in terms of the inherent properties of this layer, γ and k0 , at very low 
chemical potential of the leads. As is clear from these figures, the conductance and Seebeck coefficient of the 
junction represent essential dependence on the length and chemical potential of WSM layer. On the other hand, 
we can infer that these parameters can serve as tuning parameters for electrical conductance and the Seebeck 
coefficient. Moreover, we see that conductance and Seebeck coefficient show nearly periodic peaks at the approxi-
mately common values of L and µW.
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Figure 2.   Normalized electrical conductance (left panel) and normalized thermoelectrical conductance (right 
panel) as a function of the chemical potential of the normal leads. The other parameters are M = 5 eV nm2 , 
k0 = 0.5 nm−1 , µW = −0.5 eV, L = 30 nm for figures (a) and (e), M = 5 eV nm2 , γ = 1.0 eV nm, µW = −0.5 
eV, L = 30 nm for figures (b) and (f), M = 5 eV nm2 , γ = 1.0 eV nm, k0 = 0.5 nm−1 , L = 30 nm for figures (c) 
and (e), M = 5 eV nm2 , γ = 1.0 eV nm, k0 = 0.5 nm−1 , µW = −0.5 eV for figures (d) and (h).

Figure 3.   Seebeck coefficient as a function of the chemical potential of the normal leads for different values of 
the junction parameters. All of the other parameters are same as Fig. 2.
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Figure 4.   Electrical conductance (left panel) and Seebeck coefficient (right panel) as a function of the length 
(figures (a,b,e,f)), and chemical potential of the WSM layer (figures (c,d,g,h)) in terms of different values of k0 
and γ . Here M = 5 eV nm2 , µ = 3.0 meV and the values of the other parameters are considered as k0 = 0.5 
nm−1 , µW = −0.5 eV for figures (a) and (e), γ = 1.0 eV nm, µW = −0.5 eV for figures (b) and (f), k0 = 0.5 
nm−1 , L = 30 nm for figures (c) and (g), γ = 1.0 eV nm, L = 30 nm for figures (d) and (h).

Figure 5.   The electronic contribution to the thermal conductance as a function of the chemical potential of the 
normal leads for different values of the junction parameters. All of the other parameters are same as Fig. 2.
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We have presented in Fig. 5 the normalized electronic contribution to the thermal conductance, κel/κ0 with 
κ0 = (π2kB/3h)(A/8π

2M) , in terms of the chemical potential of the leads for different values of the other 
parameters. As we can see, κel displays an increasing trend as a function of µ , with a tiny slope at small chemical 
potentials and a nearly linear increase at large values of the chemical potential. For large values of k0 , it shows 
a peak and the chemical potential where this peak appears increases by increasing µW . In addition, it presents 
little dependence on the values of γ , while it generally increases by increasing µW and decreases by increasing 
k0 and L. As a result, we can adjust the electronic contribution to the thermal conductance by changing values 
of µW and L as the junction parameters.

Figure 6 exhibits the thermoelectric figure of merit of the junction in terms of the chemical potential of the 
normal leads. As is apparent, ZT represents extremely high values at small chemical potential of the normal leads 
and suppresses rapidly by increasing it. The appearance of high values for ZT originates essentially from the 
distinction in the electrical and thermal response of the junction at low chemical potentials of the leads, as can 
be seen in Figs. 2 and 5. In addition, ZT shows negligible dependence on the junction parameters at all chemical 
potentials except for small values. This extraordinarily high values of the thermoelectric figure of merit at low 
values of the leads chemical potential is vital for application in thermoelectric devices.

N‑WSM‑N junction along the x axis.  Figure  7 represents normalized electrical and thermoelectrical 
conductances in terms of the chemical potential of the leads for different values of the junction parameters. An 
essential difference in the conductances of junctions along z and x axes is their considerable variation as a func-
tion of chemical potential at lower values in the last case in comparison to the former. Meanwhile, L represents 
higher variations by increasing γ in the case of the junction along the x axis, while the variation of the other 
parameters approximately leads to the same values for L in both cases. For more details about the electrical con-
ductance see the supplementary information.

We have presented in Fig. 8 the Seebeck coefficient of the junction along x axis in terms of the chemical 
potential of the leads for different values of the junction parameters. The overall behavior is very similar to the 
case of the junction along the z axis. It diverges at vanishingly small chemical potentials, and by increasing the 
chemical potential, it suddenly drops to small values. Furthermore, it does not show considerable dependence 
on the junction parameters.

The dependence of the electrical conductance and Seebeck coefficient on the length and chemical potential 
of WSM layer is exhibited in Fig. 9 for different values of γ and k0 . As we can see in figures (a), (b), (e), and (f), 
conductance and Seebeck coefficient show a nearly oscillatory behavior in terms of the length of the junction. 
They show negligible dependence on the variation of γ , while change in the values of k0 leads to the considerable 
variation in the conductance and Seebeck coefficient in terms of the length of the junction. Moreover, they show 
peaks in some values of µW , and the hight of these peaks increases by increasing the value of γ and k0 as we can 
observe in figures (c), (d), (g) and (h).

The normalized electronic contribution to the thermal conductance in terms of the chemical potential of the 
leads has been presented in Fig. 10 for the junction along the x axis. As we can see, the overall behavior of κel , in 
this case, is very similar to the junction along the z axis. The essential difference is the appearance of the threshold 
value for the chemical potential to maintain a nonzero thermal conductance in the junction along the x axis. This 
threshold chemical potential appears for large values of γ and some values of µW . Another significant difference 
is the substantial dependence of the thermal conductance on γ in contrast to the former case.

Figure 6.   Thermoelectric figure of merit as a function of the chemical potential of the normal leads for different 
values of the junction parameters. All of the other parameters are same as Fig. 2.
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Figure 7.   Normalized electrical conductance (left panel) and normalized thermoelectrical conductance (right 
panel) as a function of the chemical potential of the normal leads. All of the other parameters are same as Fig. 2.

Figure 8.   Seebeck coefficient as a function of the chemical potential of the normal leads for different values of 
the junction parameters. All of the other parameters are same as Fig. 2.
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Figure 9.   Electrical conductance (left panel) and Seebeck coefficient (right panel) as a function of the length 
(figures (a,b,e,f)), and chemical potential of the WSM layer (figures (c,d,g,h)) in terms of different values of k0 
and γ . All of the other parameters are same as Fig. 4.

Figure 10.   The electronic contribution to the thermal conductance as a function of the chemical potential of 
the normal leads for different values of the junction parameters. All of the other parameters are same as Fig. 2.
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Eventually, we put forward the results for the thermoelectric figure of merit of the junction along the x axis. 
Figure 11 illustrates the behavior of this quantity in terms of the chemical potential of the leads. As is apparent, 
the results are very similar to the case of the junction along the z axis. As before, the significant values of the 
figure of merit take place at the small chemical potentials of the leads. Nonetheless, this junction offers high 
figures of merit for both perpendicular directions. This intriguing results can be particularly noteworthy from 
a practical point of view.

Conclusion
In summary, we have investigated the electronic and thermoelectric properties of a ballistic junction comprised 
of a WSM layer attached to two normal leads. We studied the properties of this junction in two different direc-
tions, one along the chiral axis of WSM and the other along the direction perpendicular to the first one. We 
found inherently direction-dependent electrical and thermal conductances for this junction originating from the 
anisotropic band structure of WSM. In the first case, electrical and thermal conductances show a broad peak in 
terms of the chemical potential of the leads, while in the second case, they represent a threshold for the chemi-
cal potential of the leads. In contrast to the conductances, the Seebeck coefficient and figure of merit exhibit 
approximately equivalent behavior in both directions. In particular, they reveal extremely high values at the small 
chemical potentials of the leads. According to these results, we can infer that this junction provides essentially 
direction-dependent and extremely high thermoelectric efficiency. These exciting properties demonstrate the 
high potential of this junction for application in thermoelectric devices.

We utilized a simplified version of the more accurate lattice Hamiltonian in our calculations, which describes 
all peculiarities of the inversion-symmetric WSMs very well. The reason for doing this is the complexities in 
dealing with the lattice Hamiltonian and the belief that it does not make a qualitative change in our results. 
Furthermore, this simplified Hamiltonian is exact at low energies, where the significant thermoelectric effects 
appear in the proposed junction. In addition, we have ignored the contribution of the Fermi arc surface states 
appearing on the surface of WSM in our investigation. However, we demonstrated in detail in the supplementary 
information that this contribution is negligible in contrast to the participation of the bulk states for the junction 
along x axis, and particularly, it becomes irrelevant for the z direction.

The experimental studies performed on the topological materials have revealed very high mobilities, even 
better than graphene, and long mean free paths of the order of ∼ 1µm for this class of materials38. Hence, most 
of the current samples of WSMs can readily satisfy the ballistic conditions. Recently, a growing number of materi-
als have been recognized as the magnetic or time-reversal breaking WSMs, such as Co2MnGa39 and Co3Sn2S240, 
and so on. Since the obtained results for the Seebeck coefficient and thermoelectric figure of merit were not so 
sensitive to the inherent parameters of WSM, then they are valid for most of WSMs. Besides, we observe that the 
significant thermoelectric response of this junction takes place at small values of the chemical potential of the 
leads. To realize this condition experimentally, we need normal contacts possessing vanishingly small chemical 
potentials. Such feature can be satisfied by degenerate semiconductors with a relatively large gap, which allows 
for adjustment of the chemical potential via heavy doping41. Consequently, regarding the recent progresses in 
manufacturing multilayered structures composed of complex materials, the junction proposed in this article 
can be feasible in the experiment.

Figure 11.   Thermoelectric figure of merit as a function of the chemical potential of the normal leads for 
different values of the junction parameters. All of the other parameters are same as Fig. 2.
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Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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