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A novel plasmonic metal–s emi con 
duc tor–insulator–metal (MSIM) 
color sensor compatible with CMOS 
technology
A. Beheshti Asl 1, H. Ahmadi 1,2 & A. Rostami 1,2*

Color detection is one of the top interests in both biological and industrial applications. Specifically, 
the Determination of the light wave characteristics is vital in photonic technology. One of the features 
in the color sense that should be found out is its wavelength or color. In this work, we propose a 
structure that can be used to detect RGB colors separately in an efficient way. The proposed detector 
consists of the plasmonic filter sensing desired wavelength (red, green, and blue) and the PN diode 
to convert the received photons to the electrical current. At the input intensity of 1 mW ×  cm−2, 
the current density for blue, green, and red colors are 27, 35, and 48 µA ×  cm−2, respectively. It is 
shown that the intensities needed to obtain the current densities of 0.1 µA ×  cm−2 are 3.94, 2.98, and 
2.25 µW ×  cm−2 for the blue, green, and red spectra respectively. It should mention that by using high-
precision photodetector structures such as PIN diode, the minimum detectable level can be decreased. 
Simple adjusting for desired wavelength and linear operation for different input intensities are the 
characteristics of the designed structure. This detector is compatible with CMOS technology and can 
be easily utilized in numerous applications, such as charge-coupled devices, displays, and cameras.

Since photonic technology’s appearance, designing an efficient detector has been of great interest to research-
ers. Photodetectors are such devices in which the intensity of incident light is converted to an electrical current. 
Generally, this conversion is sensitive to the wavelength of incident light. Infrared (IR) and visible light detec-
tors (VLDs) have myriad applications in photonic-based issues such as medical and military imaging, optical 
communication, and modern  cameras1–8. The electromagnetic spectrum between 400 and 700 nm is called 
visible light that should be detected through VLDs. Detection of red, green, and blue (RGB) colors separately 
and efficiently is the basic duty of VLDs. In other words, color filtering has to be performed in these detectors.

Color detection is the base function of image-sensing devices such as CMOS-based  ones9–11, and multicolor 
 holograms12. Color filters based on pigments and dyes have traditionally been used in organic light-emitting 
devices (OLEDs) and liquid crystal displays (LCDs)13,14. These filters are not sufficiently reliable because organic 
materials have low chemical  stability11. Moreover, the organic filtering materials are incompatible with the inte-
gration  processes11. Making use of metamaterials, nanowire waveguides, quantum dots, and plasmonics are the 
alternatives to designing color  filters15–18. In the plasmonic phenomenon, the surface resonance at the metal–insu-
lator interface, called surface plasmon resonance (SPR), can be utilized to design a multilayer structure to trap a 
desired wavelength and act as a  filter19–21. The simple implementation of plasmonic structures leads researchers 
to use plasmonics in broad applications such as waveguiding, optical sensing, absorbers, and  filters22–25. From 
a filtering point of view, the plasmonic structure can be easily adjusted by the thickness of the insulator layer to 
change the resonance frequency and, subsequently, the filtered  spectrum26–28.

Plasmonic filters can be mainly divided into two types: static and  dynamic29. In contrast to the static case, 
the dynamic one shows different characteristics depending on the polarization of the incident  light30,31, heat, or 
mechanical stress applied to the  device32–34. Grating, periodic, subwavelength, and hybridized  nanoholes35–37, 
and nanodisk  arrays17,37 are some examples introduced for static filters. The durability and resolution of the 
plasmonic filters are better than the non-plasmonic ones. For this reason, we have used the plasmonic-based 
structure to design the color  filter29,38–40.
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In this paper, we propose a multilayer plasmonic photodetector that includes three isolated parts related to 
RGB colors. Each part generates a current, connected with the light intensity at the corresponding wavelength. 
Furthermore, because of the filtered wavelength’s dependency on the semiconductor layer’s thickness that can 
be realized by lithography, any requested wavelength at the visible spectrum can be achieved. The finite differ-
ence time domain (FDTD) simulation of the designed structure is carried out to demonstrate the transmission 
spectrum. The current densities generated in the PN diode associated with each color are obtained afterward. 
It is expected that utilizing the more efficient photodiode instead of simple PN results in better functions. This 
capability makes the proposed device compatible with the existing planar technology. Moreover, the current 
dependency on the incident light intensity, the type of oxide layer  (SiO2 and  Si3N4), and the detector dimensions 
are investigated.

The proposed structure
The device is designed to detect some of the predefined wavelengths in the visible spectrum. The schematic of 
the structure (color filter) is depicted in Fig. 1. It consists of three isolated parts for red, blue, and green colors. 
Each part is mainly divided into the filtering section and the photodiode. The filter results in the maximum 
transmission at the desired wavelength, and then the photodiode generates the current at the relevant wave-
length. The filter is a metal–semiconductor–insulator–metal (MSIM) structure. Silver and silicon are the metal 
and semiconductor parts, respectively. The insulator layer can be silicon oxide or silicon nitride. The thickness 
of the sliver and insulator layer are 10 and 50 nm. However, the thickness of the silicon layer depends on the 
wavelength that should be detected. Herein, the silicon is determined at 50, 70, and 100 nm for blue, green, and 
red, respectively. The photodiode includes simple silicon PN diode with a thickness of 10 µm.

Simulation method
At first, the finite difference time domain (FDTD) method is used to evaluate the transmission spectrum of the 
proposed device by solving Maxwell’s equations. This spectrum is utilized to calculate the absorption via integrat-
ing absorption spectra using A(r) = ∫A(r, ω)dω. Position-dependent absorption, A(r,ω), is given by Eq. 1 where 
E(r, ω) is the total electric field, including the incident and scattered fields, Im ε(r, ω) is the imaginary part of 
permittivity and Pin is the power of input  intensity41.

The generation rate is necessary to obtain the current density. The total generation rate is calculated by 
G(r) = ∫g(r, ω)dω in which G and g are the total and frequency-dependent generation rates, respectively. The 
generation rate at the specific frequency is obtained by Eq. (2) where Pabs is the absorbed  power41,42.

Finally, The Poisson, continuity, and drift–diffusion equations represented in Eqs. (3), (4), and (5), respec-
tively, are solved in the diode self-consistently by applying the obtained generation rate and using the finite 
element method.
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Figure 1.  (a) 3D view of the device.  VR,  VG, and  VB are the bias voltages applied to the contact in the red, green, 
and blue regions. (b) 2D view of the device. The silver and silicon dioxide layers’ thickness is 10 and 50 nm for 
all regions. The thickness of the silicon layers for the red, green, and blue regions are  LR = 100 nm,  LG = 70 nm, 
and  LB = 50 nm, respectively. The thickness of the diode is 10 µm.
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In Eq. (3),  ND and  NA are the density of ionized donor and acceptor atoms, respectively. The generation rate 
mentioned above is used in the continuity equations. In this equation, R represents the recombination rate. In 
the drift–diffusion equations that result in current densities, μn, μp,  Dn, and  Dp are electron and hole mobilities 
and their diffusion coefficients,  respectively43.

The silicon layer of the filter is considered intrinsic; however, in the diode, the doping of the P and N 
are assumed 2 ×  1016  cm−3 and 2 ×  1017  cm−3, respectively. Moreover, the mobilities are considered 1471 and 
470.5  cm2/V s for electron and hole, respectively. Furthermore, the incident visible light is supposed to be the 
plane wave.

Results and discussion
The transmitted light has been evaluated below every part of the structure corresponding to RGB colors to 
investigate the operation of the device from a transmission point of view. Figure 2 demonstrates the transmission 
spectra of the device in the visible band. The solid blue, the dashed green, and the dotted red line correspond 
to the transmission in which the output wave has been monitored separately below the part of the structure 
designed for blue, green, and red, respectively. The peak frequencies and related quality factors are given in 
Table 1. In the blue region, the maximum value of the transmission is 0.47 at the wavelength of 450 nm. This 
maximum emerges at 530 and 610 nm wavelengths for the green and red parts of the spectrum with values of 
0.6 and 0.71, respectively. The quality factors for blue, green, and red spectra are 7.5, 7.91, and 7.92, respectively. 
The difference in amplitude of the output light at RGB colors occurs due to the refractive index’s dependency on 
the wavelength. The obtained spectra are analogous to CIE 1931; hence the device is substantially suitable for 
cameras and artificial  eyes44. Moreover, in every RGB region, the peak wavelength can be easily changed by the 
adjustment of the dimension of the silicon layer.

The color filter’s crosstalk, an important parameter for using the filter as an image sensor, has been calculated 
by Eqs. 6, 7, and 8 for the blue, green, and red spectra,  respectively45.  TB,  TG, and  TR represent the transmissions 
for the blue, green, and red regions. The calculated crosstalks are given in Table 2. The colors mentioned in the 
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Figure 2.  The transmission spectra for a device with the  SiO2 layer. The solid blue line corresponds to the 
transmission just below the part of the structure related to the blue color. Similarly, the dashed green and dotted 
red lines represent the transmissions in which the output waves are monitored above the PN diode exactly below 
the respective region.
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rows and columns refer to the reference and overlapping spectra inserted in the denominators and numerators 
of Eqs. (6), (7), and (8), respectively.

Absorption has been obtained using the equations mentioned in the previous section. Consequently, the 
position-dependent generation has been acquired for every color, depicted in Fig. 3a. Herein, z represents the 
position of the diode from z = − 10 um to z = 0. As expected, the generation is maximum at z = 0 and exponentially 
decreased due to the absorption reduction in the diode down to the common contact. Applying this generation 
to the continuity equation and utilizing the drift–diffusion equations result in current densities demonstrated in 
Fig. 3b. This figure shows the current densities given by three contacts of the structure. The solid blue line is the 

(6)CB,i =

∫ 480nm
420nmd�Ti

∫ 480nm
420nmd�TB
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Table 1.  Peak wavelengths and quality factors for RGB spectra.

Spectrum Central wavelength (nm) Quality factor

Blue 450 7.5

Green 530 7.91

Red 610 7.92

Table 2.  Crosstalks for the color filter.

Reference spectrum Blue Green Red

Blue – 0.306 0.298

Green 0.249 – 0.261

Red 0.127 0.244 –
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Figure 3.  (a) Position-dependent generation across the Diode. Solid blue, dashed green, and dotted red lines 
are the generation obtained at the end of the three regions of the filtering part corresponding to RGB colors. (b) 
Current densities for RGB colors versus the bias voltage. The blue solid line is the current density given in the 
contact of  VB. The densities in the contacts of  VG and  VR have been demonstrated by green dashed and dotted 
red lines, respectively. Without illumination, the black dash-dotted line is obtained in which the current density 
is roughly zero in all contacts.
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current density in the contact  VB (Fig. 1) related to the region in which the silicon layer is 50 nm. Similarly, the 
dashed green and dotted red lines are current densities in the contacts  VG and  VR, respectively. Furthermore, the 
black dash-dotted line shows the current density where the device has not been illuminated, and for this reason, 
the density is approximately zero in all contacts. As is clear, the higher transmission for the red color leads to 
higher total generation, resulting in further current density compared to the blue and green colors.

The structure has been illuminated by the wave containing the part of the visible spectrum for a further 
qualitative evaluation of the crosstalk. At first, the spectrum between 440 and 460 nm (within the blue spectrum) 
depicted in Fig. 4a has been applied to the device. In this situation, the obtained current densities are shown in 
Fig. 4b. As is seen, the current given by the  VB contact is more than others. The current density in the contact 
related to the blue color is 27.1 µA ×  cm−2; however, it is 35.1 and 47.7 µA ×  cm−2 for the green and red colors. The 
intensity required to obtain the current density of 0.1 µA ×  cm−2 has been acquired as a criterion. This intensity 
for the blue, green, and red regions is 3.94, 2.98, and 2.25 µW ×  cm−2, respectively.

Applying the spectrum between 520 and 540 nm (Fig. 5a) to the color filter results in the current densities 
depicted in Fig. 5b, in which the green region represents the current density of 97 µA ×  cm−2 that is at least three 
orders more than other regions. These results indicate that the absorption share of the blue and red regions is 
significantly less than the green part.

For evaluation of the red region of the color filter, the input spectrum of light is considered between 600 and 
620 nm shown in Fig. 6a. The obtained current densities demonstrated in Fig. 6b show that the current in the red 
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Figure 4.  (a) The incident wave spectrum is a Gaussian beam with a center frequency of 450 nm and 
bandwidth of 20 nm. (b) The obtained current densities from three regions of the structure. The blue solid, 
green dashed, and red dotted lines are the current densities of the respective regions.
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Figure 5.  (a) The incident wave spectrum is a Gaussian beam with a center frequency of 530 nm and 
bandwidth of 20 nm. (b) The obtained current densities of three regions of the structure. The blue solid, green 
dashed, and red dotted lines are the current densities of the respective regions.
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region is 147 µA ×  cm−2. This value is approximately six orders more than the current density of the blue region 
and seven orders more than the red one.

The Gaussian beams shown in Figs. 4 and 5 with different intensities are applied to the device to investigate 
the effect of input intensity on the current density. The results are illustrated in Fig. 7. The higher the input 
intensity, the more the current density. In Fig. 7a, the blue spectrum between 430 and 460 nm with intensities 
of 0.5, 1, 2, 3, and 4 mW ×  cm−2 are applied to the color filter. It leads to the maximum current densities of 18.1, 
41.7, 88.9, 136, and 184 µA ×  cm−2, respectively. When the input intensity is within the green spectrum (520 to 
540 nm), the maximum current densities are 41.17, 89, 183, 278, and 373 µA ×  cm−2 for the so-called respective 
input intensities. The higher transmitted intensity in the red spectrum results in the current intensities higher 
than the green and blue spectra. The maximum current densities of 66.9, 139, 284, 429, and 574 µA ×  cm−2 are 
obtained for input intensities of 0.5, 1, 2, 3, and 4 mW ×  cm−2, respectively, when the input spectrum is between 
615 and 635 nm. As is seen from Fig. 7, the current density is linear concerning the input intensity. Figure 8 dem-
onstrates this linear operation better. In this figure, the current densities are depicted at the 0.25 [V] versus input 
intensities when the electric field is considered Gaussian within the mentioned blue, green, and red spectrums.

As mentioned previously, the thickness of the  SiO2 layer is 50 nm. The change in this dimension may result 
in an alteration of the current density; hence, an investigation of the influence of the  SiO2 layer’s thickness 
has been done, and the results are depicted in Fig. 9. As is seen, the best dimension of the  SiO2 layer is 50 nm 
leading to the maximum current densities for all three colors even though the changing of current densities is 
negligible for thicknesses between 45 and 55 nm. Therefore, in device fabrication, a few nanometer variances in 
 SiO2 thickness are insignificant.

Another crucial dimension in the filter operation is the dimension of the Si layer. This layer determines which 
wavelength can be transmitted with a minimum reflection. Similar to the  SiO2 layer, the thickness of the Si layer 
has been altered to evaluate its effect on the current densities. In the blue region, as is clear from Fig. 10a, the 
influence of this alteration around the selected value (50 nm) is negligible. For the green and red colors, the 
change in the Si layer results in small changes in the current densities, as demonstrated in Fig. 10b,c. For these 
reasons, the proposed device is reliable from the fabrication point of view.

For better operation, the  SiO2 layer can be replaced with another insulator, such as the  Si3N4. The thickness 
of the  Si3N4 layer is considered 50, 70, and 100 nm for the blue, green, and red spectra, respectively, which are 
precisely the thicknesses of the  SiO2 layers. This replacement led to the transmission spectrums in Fig. 11a. 
Comparing this figure with Fig. 2 indicates that the operation of the device is promoted. The transmission value 
for all colors is better than before. Higher transmission value causes higher current densities demonstrated in 
Fig. 11b. The maximum current densities for the blue, green, and red regions are 37.7, 49.3, and 60.9 µA ×  cm−2, 
respectively.

Conclusions
The color filter based on the plasmonic multilayer structure was proposed in which three isolated parts were 
designed to detect three RGB colors separately. Every part consists of two main sections: filtering and diode. The 
filtering includes The  SiO2 or insulator, The Si, and two silver layers. The thickness of silver and insulator are 10 
and 50 nm, respectively. However, the Si layer’s thickness is considered 50, 70, and 100 nm for the respective blue, 
green, and red colors. The diode was considered a simple PN. For better operation, more sophisticated structures 
can be used for the diode. The device was simulated to obtain the transmission spectra for three RGB regions. 
Continually, the generation and current densities related to every color were obtained using the transmission. 
Furthermore, the effect of the insulator and Si layer’s thickness on current densities was investigated. Finally, 
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Figure 6.  (a) The incident wave spectrum is a Gaussian beam with a center frequency of 610 nm and 
bandwidth of 20 nm. (b) The obtained current densities of three regions of the structure. The blue solid, green 
dashed, and red dotted lines are the current densities of the respective regions.
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(Fig. 4a). (b) The incident wave spectrum is a Gaussian beam with a center frequency of 530 nm and bandwidth 
of 20 nm (Fig. 5a). (c) The incident wave spectrum is a Gaussian beam with a center frequency of 610 nm and 
bandwidth of 20 nm (Fig. 6a).
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the  SiO2 layer was replaced with the  Si3N4 to show that the operation of the device can even be promoted. The 
current densities increase approximately 40 percent for blue and green and 10% for red.

Data availability
All data generated and analysed during the current study are available from the corresponding author on rea-
sonable request.
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have been demonstrated by green dashed and dotted red lines, respectively. Without illumination, the black 
dash-dotted line is obtained in which the current density is roughly zero in all contacts.
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