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Signature methods 
for brain‑computer interfaces
Xiaoqi Xu 1*, Darrick Lee 2, Nicolas Drougard 3 & Raphaëlle N. Roy 3

Brain‑computer interfaces (BCIs) allow direct communication between one’s central nervous system 
and a computer without any muscle movement hence by‑passing the peripheral nervous system. 
They can restore disabled people’s ability to interact with their environment, e.g. communication and 
wheelchair control. However, to this day their performance is still hindered by the non‑stationarity 
of electroencephalography (EEG) signals, as well as their susceptibility to noise from the users’ 
environment and from their own physiological activity. Moreover, a non‑negligible amount of 
users struggle to use BCI systems based on motor imagery. In this paper, a new method based on 
the path signature is introduced to tackle this problem by using features which are different from 
the usual power‑based ones. The path signature is a series of iterated integrals computed from a 
multidimensional path. It is invariant under translation and time reparametrization, which makes 
it a robust feature for multichannel EEG time series. The performance can be further boosted by 
combining the path signature with the gold standard Riemannian classifier in the BCI field exploiting 
the geometric structure of symmetric positive definite (SPD) matrices. The results obtained on 
publicly available datasets show that the signature method is more robust to inter‑user variability 
than classical ones, especially on noisy and low‑quality data. Hence, this study paves the way towards 
the use of mathematical tools that until now have been neglected, in order to tackle the EEG‑based 
BCI variability issue. It also sheds light on the lead‑lag relationship captured by path signature which 
seems relevant to assess the underlying neural mechanisms.

A brain-computer interface (BCI) is a system that allows for interaction with machines using only brain activ-
ity and no muscular activity. The major motivation of early BCIs was restoring the ability of severely paralyzed 
people to communicate and interact with the  environment1. A BCI is composed of several  parts2: the signal 
acquisition system records, amplifies and digitizes brain signals; the preprocessing steps consist of removing noise 
and artifacts in order to improve the signal-to-noise  ratio3; and the feature extraction and classification steps to 
finally transform brain signals into labels sent to the computer as information for explicit or implicit control.

There are many types of BCIs according to the brain signal used and the way to use the system. In this paper 
we focus on electroencephalography (EEG)-based BCIs using sensorimotor rhythms (SMR). EEG records the 
extracellular field potentials associated with neural activity with electrodes placed over the scalp. It is non-
invasive, accessible, and has a high temporal resolution. It has been  found4–6 that motor movement as well as 
motor imagery (MI, i.e. imagination of movement without actually moving) cause modulation in SMR mani-
fested as a decrease of power in the alpha (8–13 Hz)/beta(13–30 Hz) frequency bands, known as event-related 
desynchronization (ERD), followed by an increase in the beta band, also known as beta rebound or event-related 
synchronization (ERS), after the actual or imagined movement. Movement or MI of different body parts is associ-
ated with an SMR modulation of different regions of the sensorimotor cortex, which leads to discriminant brain 
signals that allows the control of MI BCI.

One major obstacle to bring EEG-based BCI into everyday life for ordinary people is its lack of robustness due 
to the high variability of EEG signals. The distribution of EEG data changes between sessions and users which 
makes it difficult to establish a robust classifier that works across time and users. To deal with this problem, most 
studies have focused on applying transfer learning techniques to align the data  distributions7,8. However, there 
are some less well known tools that enjoy interesting properties to tackle the variability problem, for example 
the path signature of a time series is translation invariant and independent of time parametrization. So the path 
signature-based features may be more robust to the variance related to change of power and speed. This is the 
initial motivation of applying path signature to BCI applications.

The path signature was originally introduced by  Chen9 in the framework of piece-wise smooth curves, then 
developed by Lyons et al.10 to study stochastic differential equations. Recently, it has been used as a feature 
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generation method for time series in various applications such as handwritten character  recognition11, diagnosis 
of bipolar disorder and borderline personality disorder based on daily mood  ratings12, and diagnosis of Alzhei-
mer’s disease based on hippocampal and brain volume time  series13, just to name a few. To our knowledge, to 
this day this method has never been applied to BCI applications.

In this study, we propose two signature-based methods for EEG-based BCI applications to tackle the user-
variability issue. The main tools are detailed in the next section, then the experiments performed on several pub-
licly available datasets and their results are presented, followed by a discussion of the results and further analyses.

Methods
The main tools used to compute the signature for EEG-based BCI applications are given in this section. To go 
further, interested readers can find more details of the theory and also the practical use cases of path signature 
in the tutorial written by Chevyrev and  Kormilitzin14.

Path signature
Suppose we have a d-dimensional multivariate time series Xt = (X1

t , . . . ,X
d
t ) , where Xi : [a, b] → R is a 

component of this continuous time series. We can interpret this multivariate time series as a continuous path 
Xt : [a, b] → R

d from [a, b] to Rd . The path signature of Xt is an infinite sequence of tensors (arrays) of increas-
ing dimension,

where Sk(X)a,b ∈ R
dk is a k-dimensional array of numbers of length d in each dimension, which we call the level 

k path signature of X. A component of the array Sk(X)a,b is indexed by a multi-index I = (i1, . . . , ik) , where each 
ij ∈ {1, . . . , d} . The I-coordinate of Sk(X)a,b is defined by the iterated integral

In the following we will use the terms path signature or signature interchangeably. Furthermore, we omit the 
subscript for the endpoints (a, b) when the signature is taken over the entire domain of the path, S(X):=S(X)a,b.

Here we explicitly describe the first two levels of the signature to gain a more intuitive understanding. For 
i ∈ {1, . . . , d} , the i-component of the first level signature S1(X) is

the displacement of the path in the i component (i.e. the difference between the ending and starting point in 
dimension i).

The second level signature captures richer information about the relationship between the pair of path com-
ponents and it has a beautiful geometric interpretation. Suppose i, j ∈ {1, . . . , d} . As in the first level, we can 
perform the explicit computation to obtain

This quantity can be interpreted as the area bounded by the path X[a,b] and the Xj-axis, as shown in Fig. 1a and b. 
From this, we can see that the signature is in general not symmetric with respect to its components; for instance 
S
i,j
2 (X)  = S

j,i
2 (X) . In fact, the difference
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Figure 1.  Geometric interpretation of level 2 signature. The shaded area in the subfigures represents (a) S(X)1,2a,b , 
(b) S(X)2,1a,b , and (c) the signed area (thedifference between areas “ + ” and “−”) respectively.
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is the signed area bounded by the path X (appended with a linear path from the end point Xb to the initial point 
Xa , see Fig. 1c).

While higher levels of the signature are more difficult to interpret geometrically, we can see from these two 
examples that the signature captures geometric features of the path. In fact, the path signature fully characterizes 
the path up to an equivalence relation called tree-like equivalence (roughly speaking, two paths are tree-like 
equivalent if they differ by a finite number of retracings)15. Even more crucial for data science applications, finite 
linear combinations of signature terms,

where aj ∈ R , and each Ij is a multi-index (possibly of different lengths), can approximate nonlinear functions 
on the space of paths under suitable  conditions16. This property allows us to transform a non-linear classification 
problem on the space of paths into a linear classification problem on the space of signature features.

The application of path signatures for EEG-based BCI is strongly motivated by its invariance properties. 

1. (Translation Invariance.) For any path Xt : [a, b] → R
d and any vector v ∈ R

d , we have S(X)a,b = S(X + v)a,b
.

2. (Reparametrization Invariance.) For any path Xt : [a, b] → R
d and any reparametrization φ : [a, b] → [c, d] , 

which is a monotone increasing, bijective function, we have S(X)a,b = S(X ◦ φ)c,d.

In practice, the path signature is truncated at a certain level so it provides a fixed length feature vector of 
the time series regardless of the number of time steps. The path signature has further algebraic properties 
which leads to effective algorithms in an online context. Suppose Xt : [a, b] → R

d is signal for which we have 
already computed the path signature, and Yt : [b, c] → R

d is a newly obtained signal. We can compute the 
signature of the concatenated path (X ∗ Y)t : [a, c] → R

d by taking the tensor product of the two signatures, 
S(X ∗ Y)a,c = S(X)a,b ⊗ S(Y)b,c ; this relation is called Chen’s identity14. In practice, Yt would consist of one 
additional time point, and by using the fused multiply-exponentiate  algorithm17, the complexity of computing 
S≤k(X ∗ Y) given S≤k(X) is O(dk) , where k is the truncation level of the signature.

Indeed, as mentioned earlier, EEG data vary greatly between sessions and users. By using the path signature, 
we expect some of these variations (e.g. the covariate shift or the temporal difference) to be absent for the features 
using this method, and would therefore allow us to build more robust BCIs.

Cyclicity analysis
The cyclic structure or lead-lag relationship (the temporal ordering of cyclic signals) of a multidimensional path 
can be recovered from the second level signature and has been applied successfully to analyse fMRI  data18–20. 
We define the lead matrix18 L ∈ R

d×d by

where S2(X) ∈ R
d×d is the second level signature as a d × d matrix, and S2(X)⊺ is its transpose. In particular, 

the (i, j) entry of L is

the signed area of the path X projected onto the coordinates (Xi
t ,X

j
t) , as discussed in the previous section. An 

observation from Baryshnikov and  Schlafly18 is that a positive value of Li,j(X) (or equivalently, a negative value 
of Lj,i(X) due to the skew-symmetry of L(X)) can be interpreted as an indicator that the signal Xi is leading the 
signal Xj.

In fact, we can gain further insight into the temporal ordering of cyclic signals from the lead matrix. 
We consider a simple example to demonstrate this fact. Consider the time series Xt : [0,T] → R

n , where 
Xi
t := sin(t − αi) , where αi denotes a phase shift.

The goal is to recover the cyclic order of the components, or equivalently the system of offsets αi , from the 
lead matrix. The lead matrix of Xt can be explicitly computed, where

 We can rewrite L = T
2
(xy⊺ − yx⊺) , where x = (sin α1, . . . , sin αn)

⊺ and y = (cosα1, . . . , cosαn)
⊺ ; in particular, 

it is a rank 2 matrix. Following the analysis in Baryshnikov and  Schlafly18, the eigenvectors corresponding to 
the nonzero eigenvalues are
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v1 = eiψ(e2π iα1 , . . . , e2π iαn), v2 = v̄1,
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where ψ is a phase, and v̄1 denotes the complex conjugate of v1 . Thus, we find that the phase of the complex 
components in the eigenvector v1 recovers the temporal ordering of the signals, and we show an numerical 
illustration of this example in Fig. 2.

If the path X contains more than one set of lagged sine waves, there will be the same number of non zero con-
jugate pairs of eigenvalues as the number of sets of sine waves. The cyclic order of each set of sine waves can still 
be recovered from eigenvectors. The magnitude of the eigenvalues indicates the magnitude of the sine wave and 
the magnitude of the elements in each eigenvector indicates the correlation with the corresponding sine  wave21.

Figure 3 shows an example with 2 sets of sine waves. There are 2 conjugate pairs of eigenvalues and 2 blocks 
in the lead matrix. With the eigenvectors corresponding to the 2 non zero eigenvalues, the cyclic order is again 
completely recovered. While we only considered simple sinusoids in this example, we emphasize that the same 
results would hold for any reparametrization of the sine waves, due to reparametrization invariance.

Riemannian classifier
The Riemannian classifier is the gold standard classifier in the field of brain-computer  interfaces7. It takes as 
features the covariance matrices of multi-channel EEG data. When estimated with enough samples, covariance 
matrices are symmetric positive definite (SPD) matrices, i.e. they belong to the set {A |A⊺ = A, �i > 0, ∀i} , 
where �i are eigenvalues of A. This set is an open subset of Rn×n , so it is a manifold. However, geodesics induced 
by the Euclidean embedding may leave the SPD manifold. To remedy this, an intrinsic Riemannian metric of 
the manifold has to be used. The most popular solution in the medical imaging domain is the affine-invariant 
 metric22, and the Log-Euclidean  metrics23 provides a fast approximation when the data are concentrated with 

Figure 2.  The signals are sin(t − αi) shown at the left. In the middle is the lead matrix in which yellow 
corresponds to positive values and blue to negative values. If Li,j is positive it means signal i is leading signal j. At 
the right is the first eigenvector of the lead matrix. We see a perfect recovery of the cyclic order from the phase 
of the elements of the first pair of eigenvectors.

Figure 3.  First row: on the left is the plot of 2 sets of sin waves; in the middle is the corresponding lead 
matrix; on the right is the absolute value of the eigenvalues of the lead matrix. Second row: the 2 eigenvectors 
corresponding to the 2 pairs of non zero eigenvalues.
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respect to the curvature. The following study used  pyRiemann24 package for the implementation of the Riemann-
ian classifier, and only the affine-invariant metric is used.

The Riemannian classifier has its name since it uses Riemannian geometry to compute the distance between 
covariance matrices, but the core of the classification algorithm could be any classical machine learning algo-
rithm. For example, with the minimum distance to mean (MDM) classifier, it computes the distance between a 
sample and the mean of each class and labels it with the label of the nearest class. The novelty is due to the fact 
that the distance and mean are computed in the Riemannian sense. Another variant is to project all covariance 
matrices to the tangent plan of a reference point (e.g. identity matrix, geometric mean) via the logarithmic map 
and then apply classical classifiers such as support vector machine (SVM) in the Euclidean tangent  space25.

Datasets
In accordance with the principles of open science, we have exclusively worked with publicly available datasets. 
We have further chosen the most used datasets among open EEG-based BCI datasets for MI BCI applications: 
the BCI competition IV 2a  dataset26 and the Physionet motor imagery  dataset27.

The BCI competition IV 2a dataset is an indispensable classical MI BCI dataset which consists of data col-
lected from 9 subjects on 2 sessions on different days. Each session contains a total of 288 trials of 4 tasks: imagi-
nation of movement of left hand, right hand, feet and tongue. Each trial lasts for 6 s with 2 s of resting state at the 
beginning. After the cue appears on the screen at t = 2 s, participants have to perform the motor imagery task. 
EEG signals were recorded using 22 Ag/AgCl electrodes placed according to the international 10–20 system with 
the left mastoid as reference and right mastoid as ground electrode. Signals were down-sampled to 250 Hz and 
band-pass filtered into the 0.5–100 Hz band. A 50 Hz notch filter was applied. There were also 3 EOG channels, 
but they were not used in our experiments. Trials were checked by human experts and those containing artifacts 
were marked by the dataset providers. The trials marked with artifacts were excluded in our study.

The Physionet MI dataset contains data recorded from 109 subjects performing motor movement and imagery, 
but only motor imagery data were used in our experiments. There is only 1 session consisting of 14 runs, each 
including 2 trials of 1 min resting state (eyes open/closed), and 3 runs of 2 min with the following 4 tasks: open 
and close left or right fist, imagine opening and closing left or right fist, open and close both fists or both feet, 
imagine opening and closing both fists or both feet. EEG signals were recorded using the BCI2000 system with 
64 channels placed according to the international 10–20 system and were down-sampled to 160 Hz. The data 
of 4 subjects were rejected because they do not have the same number of trials and time steps as other subjects.

Results and discussion
In this section two ways of applying the path signature on EEG-based BCIs, as illustrated in Fig. 4, are presented, 
followed by a cyclicity analysis on EEG data. We use the  Signatory17 Python package for signature computations.

First study
In the first study, the use of the path signature as a feature map was explored. More precisely, we considered the 
EEG signal Xt as an n-dimensional path X : [0,T] �→ R

n and computed the truncated signature up to level k. 
Then a classical classifier was applied on this feature vector. The focus here was exploring the performance with 
different truncation levels and classifiers, so only the most classical dataset, the BCI competition IV 2a dataset, 
was used.

Cross-validation (Ten-fold for intra-subject and leave-one-out for inter-subject) was performed on the data 
with the left versus right motor-imagery paradigm. The results are summarized in Table 1 and Fig. 5. The full 
name of the classifiers associated with the acronyms used in the table are: support vector machine (SVM), linear 

Figure 4.  The first study uses the path signature directly as a feature vector. The second study takes the negative 
square of the lead matrix constructed from the second level signature and adds a regularization term to get a 
symmetric positive definite (SPD) matrix to be used as features with the Riemannian classifier.
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discriminant analysis (LDA), logistic regression (LR), random forest (RF), and multilayer perceptron (MLP). 
Note that even though we call it “raw data”, the data was still filtered into the 8–30 Hz frequency band relevant 
to motor imagery before computing path signature.

In both intra- and inter-subject classification, the best results were achieved by level 2 signature: 67.1% 
with LR for intra-subject classification and 58.7% with MLP for inter-subject classification. As discussed in the 
Methods section, the second level signature captures the cyclic order and can be reformulated by lead matrices. 
By focusing our analysis on the second level, we can employ the matrix structure, leading to the second study 
of this paper.

Second study
It is clear that the lead matrix L is skew-symmetric, i.e. L⊺ = −L . We can turn this into a symmetric positive 
semi-definite matrix by taking the negative square, as A = −L2 = L⊺L . In fact, let v be an arbitrary vector, we 
have v⊺Av = v⊺L⊺Lv = �Lv�2 ≥ 0.

The matrix A can be further turned into an SPD matrix by adding a small value on its  diagonal28. Now that we 
have the SPD matrix A+ εI , we can use them as features and leverage the advantages of Riemannian classifiers. 
This idea is tested here on both publicly available BCI datasets, both for intra- and inter-subject classification to 
further evaluate the usefulness of signature features, including a benchmark with usual covariance features. The 
results are summarized in Table 2 ( ε was set to 0.001).

Although the signature-based method falls behind traditional Riemannian method for intra-subject classifi-
cation, the difference is not substantial for inter-subject classification, and it shows better robustness, especially 
on Physionet dataset with a much larger number of subjects and a relatively low mean classification accuracy 
with the state-of-the-art methods. Not only is the mean accuracy slightly better (47.0% vs. 46.2%), the standard 
deviation is also smaller: 11.0% for signature based method and 14.8% for the traditional Riemannian classifier.

Table 1.  Mean cross-validation score (standard deviation in parentheses) of various classifiers and truncation 
levels of path signature applied on raw data of the BCI competition IV 2a dataset (left vs. right). The values in 
bold are the best performances in intra-subject and inter-subject classification respectively.

level 1 2 3 4

Intra

 SVM 50.5(12.9) 66.1(15.2) 55.7(13.3) 56.9(13.9)

 LDA 51.0(12.6) 63.4(14.0) 54.7(14.2) 54.6(14.2)

 LR 50.9(11.3) 67.1(13.5) 56.6(13.3) 56.6(14.0)

 RF 49.7(11.6) 59.7(16.1) 58.0(16.8) 56.6(18.0)

 MLP 52.3(11.2) 61.6(16.4) 54.8(13.3) 56.8(15.1)

Inter

 SVM 52.6(3.6) 53.9(6.1) 54.2(6.2) 52.8(4.9)

 LDA 52.5(4.9) 53.5(6.2) 53.2(4.9) 53.9(6.0)

 LR 53.5(4.4) 54.7(5.8) 54.4(6.4) 53.6(4.9)

 RF 51.0(4.5) 54.6(6.0) 54.2(7.8) 52.0(4.6)

 MLP 53.1(5.6) 58.7(8.3) 56.5(5.2) 52.2(5.7)

Figure 5.  Classification accuracy of standard classifiers using different truncation levels (x-axis) of path 
signature on BCI Competition IV 2a dataset (left vs. right).
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If we divide subjects into more and less responsive subjects according to their score under traditional Rie-
mannian classifier with a 50% threshold (chance  level29), we were able to see the clear advantage of the signature 
based method for subjects with low classification accuracy from Fig. 6. Note that 67 of the 105 subjects are 
categorized as less responsive.

Cyclicity analysis on EEG data
To better understand the stronger performance of the second level signature, a cyclicity analysis as described 
in the Methods section was conducted on the same EEG data used in the first study (BCI Competition IV 2a 
dataset). The eigenvalues and eigenvectors of the lead matrices were computed. Figure 7 shows the absolute value 

Table 2.  Intra- and inter-subject cross-validation accuracy (standard deviation between parentheses) using 
Riemannian tangent space classifier on signature based SPD matrices and covariance matrices respectively on 
two open MI-BCI datasets.

Signature Covariance

Intra Inter Intra Inter

BCI competition IV 2a 71.4(18.1) 66.1(11.8) 81.1(16.6) 69.2(15.9)

Physionet MI-BCI 60.1(23.9) 47.0(11.0) 63.8(24.2) 46.2(14.8)

Figure 6.  Inter-subject classification accuracy (grouped by performance under RC with a 50% threshold) on 
the Physionet dataset with leave-one-out cross-validation. A Riemannian classifier is applied on covariance 
matrices (RC) and on signature-based SPD matrices (Sig) respectively. The p-values of the paired t-test with 
Bonferroni correction applied on accuracy of RC and Sig for good and bad groups are 6.828e − 05 and 
8.351e − 06 respectively (marked with **** in the figure).

Figure 7.  Absolute value of the eigenvalues of the lead matrix averaged across trials.
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of the eigenvalues averaged across trials and participants. The first 2 conjugate pairs of eigenvalues dominate, 
which guarantees a good power of explicability of the corresponding eigenvectors.

Figure 8 shows the number of times that one channel appeared in the top 10 largest elements of the first 2 
eigenvectors corresponding to the 2 largest pairs of eigenvalues. The color of the bars indicates left/right MI. 
For the first eigenvector, the channel POz (labeled as 22 in the dataset) from the parieto-occipital region had 
the largest counts. This might be due to the fact that during a task, brain signals are dominated by visual related 
signal processed in the occipital lobe and attentional networks related signals from the parietal lobe. Note that 
there was little difference between left/right conditions. For the second eigenvector, there was a large contribu-
tion from channels located above the sensorimotor cortex (e.g. C5 and C6 or 7 and 13 according to the channel 
labels in the dataset) and a clear difference between left/right conditions.

Conclusion
This paper explored applications of the path signature for EEG-based BCIs. The first study used the path signature 
directly as a feature vector. Promising results were achieved with the signature truncated at the second level. 
The second study used the negative square of the lead matrices constructed from the second level signature and 
added a regularization term to obtain SPD matrices as features. A Riemannian classifier was applied on these 
signature-based SPD matrices. The classification results on several publicly available MI BCI datasets were com-
pared to those with a Riemannian classifier applied on covariance matrices. The signature-based method showed 
better performance and robustness on users where the traditional use of Riemannian classifier fails although 
remaining close to the chance level.

Even though lead-lag relationships in EEG signals could be established by estimating phase differences via a 
traditional time-frequency analysis, the benefit of using the signature is that it does not rely on the assumption 
of periodicity, which is more realistic. Moreover, there is no need to first filter the signal into a narrow frequency 
band to get an interpretable phase. The lead matrix contains the phase information of oscillations of different 
frequencies.

Moreover, there is evidence that the lead-lag relationship, i.e. the ordering information, does encode infor-
mation and have a functional role in the brain. At the macroscopic level, cortical travelling waves (oscillations 

Figure 8.  Frequency that a channel appears in the top 10 largest elements of the first (a) and second (b) 
leading eigenvectors of the lead matrix in the left/right MI conditions separately (over all subjects in the BCI 
Competition IV 2a dataset). The channel  locations26 are shown in (c).
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with systematic phase offsets) have been observed in the EEG recording at a wide range of brain areas, e.g. motor 
cortex, visual cortex and  hippocampus30. In particular, the travelling waves in the motor cortex are suggested to 
have the functional role of movement preparation and motor  coordination31, which may justify the relevance to 
the motor imagery based BCI. At the microscopic level, the neural sequence (the sequence of neuronal activity 
in which neurons are transiently active during task trials with different neurons active at different parts of the 
trial) has been used as the representation for a sensorimotor task of a mouse navigating a T-maze32. Zhou et al. 
argued that the neural sequences represent an ideal and flexible dynamical regime for the brain to read out time 
 information33. However the link between mental states and the lead-lag relationship between channels needs to 
be further investigated and validated. The lead-lag relationship should also be interpreted with caveat since the 
implication of lead/lag based on the sign of a signed area assumes that the signals are consubstantial. This is not 
the case with EEG signal which might have opposite trends in different channels.

Hence, this article advocated for the use of a mathematical method that was until now unexplored for both 
EEG analysis and BCI applications. Promising results are found which open new perspectives on how to design 
BCIs that would be more robust to inter-subject variability and that might help tackle – at least in part– the so-
called BCI illiteracy. The path signature provides a novel way to generate features from multi-channel EEG data. 
The features are invariant under time reparametrization and translation and they capture the lead-lag relation-
ship between channels. In the future, a thorough comparison with more methods and on more open datasets 
via  MOABB34 need to be done to further validate the utility of path signature for BCI applications. Ensemble 
learning could be employed to combine the covariance-based features and the signature-based features to further 
boost classification accuracy, as it has been shown to be effective with functional  connectivity35. Besides, some 
general techniques to improve the performance of the signature  method36, such as the lead-lag augmentation 
of the times series, could be attempted. It would also be interesting to investigate the link between the lead-lag 
relationship and other connectivity measures.

Data availibility
The datasets analysed during the current study are publicly available. The BCI competition IV 2a  dataset26 can 
be downloaded from https:// www. bbci. de/ compe tition/ iv/. The Physionet motor imagery  dataset27 can be down-
loaded from https:// physi onet. org/ conte nt/ eegmm idb/1. 0.0/.

Code  availability
The code is available at https:// github. com/ Xiaoq iXu77/ Signa ture_ BCI.
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