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Attention U‑net for automated 
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Computed Tomography (CT) imaging is routinely used for imaging of the lungs. Deep learning can 
effectively automate complex and laborious tasks in medical imaging. In this work, a deep learning 
technique is utilized to assess lobar fissure completeness (also known as fissure integrity) from 
pulmonary CT images. The human lungs are divided into five separate lobes, divided by the lobar 
fissures. Fissure integrity assessment is important to endobronchial valve treatment screening. Fissure 
integrity is known to be a biomarker of collateral ventilation between lobes impacting the efficacy 
of valves designed to block airflow to diseased lung regions. Fissure integrity is also likely to impact 
lobar sliding which has recently been shown to affect lung biomechanics. Further widescale study of 
fissure integrity’s impact on disease susceptibility and progression requires rapid, reproducible, and 
noninvasive fissure integrity assessment. In this paper we describe IntegrityNet, an attention U‑Net 
based automatic fissure integrity analysis tool. IntegrityNet is able to predict fissure integrity with 
an accuracy of 95.8%, 96.1%, and 89.8% for left oblique, right oblique, and right horizontal fissures, 
compared to manual analysis on a dataset of 82 subjects. We also show that our method is robust to 
COPD severity and reproducible across subject scans acquired at different time points.

Pulmonary fissures have recently gained attention due to their implications in endobronchial valve treatment 
screening and lobar  sliding1–5. The lungs are divided into lobes by invaginations of visceral pleural surface called 
fissures (see Fig. 1). Fissures can completely or partially separate the lobes from each other. Incomplete separa-
tion of pulmonary lobes has been shown to be a biomarker of collateral ventilation between lobes which reduces 
the efficacy of treatments (e.g., endobronchial valves) that aim to improve lung function by blocking airflow to 
diseased lung  regions1–4. Complete fissures may also allow lobes to slide past each other during respiration which 
has been shown to affect lung  biomechanics5.

Pulmonary fissure completeness, or integrity, varies greatly between  individuals6–9. A study visually examining 
250 high-resolution computed tomography (CT) images reported that the left oblique fissure was incomplete 
in 24% of subjects, while 35% of right oblique fissures were incomplete, and 74% of right horizontal fissures 
showed  incompleteness6. In a separate study, fifty lungs from cadavers were examined for variations in fissure 
completeness showed the oblique fissure was incomplete in over 30% of right lungs and in over 50% of the left 
lungs  examined8.

Visual assessment of pulmonary fissures from CT images can be a time-consuming and arduous process 
given the potential for hundreds of image slices to be analyzed. A high degree of reader experience is required 
to correctly identify fissure integrity from CT images, and it has been demonstrated that inter-reader variability 
is statistically  significant10. Rapid, reproduceable, and non-invasive collateral ventilation screening requires 
automatic fissure integrity assessment from medical images. Automatic fissure integrity analysis is also needed 
for widescale analysis of lung biomechanics and disease in large datasets. Previous methods have been developed 
to perform evaluation of pulmonary fissure  integrity10–13. The method  in11 utilizes a five-step pipeline to detect 
fissures, estimate complete/incomplete lobar boundary regions, and estimate fissure integrity using overlap 
between detected fissure and the estimated complete lobar regions. Another study detected incompleteness by 
identifying regions where the fissure and lobar segmentations did not align and reported areas under the ROC 
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curve above 0.80 for each  fissure10. A recent study developed an open-source framework to measure the surface 
area overlap between the lobar boundary surface and the derived fissure mesh surface as an indicator of fissure 
 integrity12. The method described  in12 reported correlation coefficients between visual scores and their approach 
of 0.542, 0.679, and 0.851 for the left oblique, right oblique, and right horizontal fissures, respectively. In the past 
year, a patch-based deep learning model was developed to assess fissure  integrity13.

In this study we present a deep-learning method for whole-image automatic pulmonary fissure integrity 
analysis. Utilizing a variation of U-Net, a network architecture that has shown promising results in imaging 
segmentation tasks, we show that our method can accurately and quickly assess the extent of fissure completeness 
by classifying voxels on the predicted lobar boundary as intact or incomplete fissure.

Methods
In this section, we outline the data used in this study and the ground truth labeling process used to generate 
training data for our method as well as the pipeline we propose for automatic fissure integrity assessment. Figure 2 
depicts the IntegrityNet pipeline described below.

Imaging Data. The SubPopulations and InteRmediate Outcome Measures in COPD Study (SPIROMICS) 
was the source of the 3D CT images used to train and test the model proposed in this work. SPIROMICS is a 
multicenter (including 12 US-based university clinics) and prospective cohort study of subjects with chronic 
obstructive pulmonary disease (COPD) and non-smoking  controls14. This study was approved by the institu-
tional review board at the University of Iowa (IRB-01). The SPIROMICS protocol was approved by the IRBs 
of all participating institutions (Columbia University IRB 2, University of Iowa IRB-01, Johns Hopkins IRB-5, 
University of California Los Angeles Medical IRB 1, University of Michigan IRBMED B1 Board, National Jewish 
Health IRB, University of California San Francisco IRB Parnassus Panel, Temple University IRB A2, University 
of Alabama at Birmingham IRB #2, University of Illinois IRB #3, University of Utah IRB Panel Review Board 5, 
Wake Forest University IRB #5, and University of North Carolina at Chapel Hill Non-Biomedical IRB). All pro-
cedures were carried out in accordance with relevant guidelines and regulations and written informed consent 
was provided by all subjects. Participants have CT scans at baseline, two-year, three-year, and five-year follow-
ups. For each subject both total lung capacity (TLC) and residual volume (RV) scans were  acquired14. Further 
scanning protocol details are described  by15.

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) system is widely used to classify COPD 
subjects by disease severity based on spirometric lung  function16. Measurement of expiratory flow rate and vol-
ume by spirometry is used to assign subjects to a GOLD stage. GOLD 1 is mild, GOLD 2 is moderate, GOLD 3 is 
severe, and GOLD 4 is very severe disease. Additionally, in this study we used GOLD 0 subjects who are asymp-
tomatic, but also have a history of smoking, and subjects with no smoking history labeled as “never smokers.”

This work used baseline TLC scans for network training and testing. The one-year and five-year follow-up 
scans were used to test the reproducibility of network predictions, with the assumption that fissure integrity 
would not change during the course of the study. Subjects from each of the six classes (GOLD 0–4, and never 
smokers) and with baseline, one-year, and five-year follow-up scans were randomly selected, for a total of 108 

Figure 1.  Fissures of the lungs. The right horizontal fissure separates the right upper lobe (RUL) and middle 
lobe (RML). The right oblique fissure divides the middle lobe (RML) and the lower lobe (RLL) anteriorly, and 
the RUL and RLL posteriorly. The left oblique fissure separates the left upper lobe (LUL) and lower lobe (LLL).
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subjects in the cohort. Twenty-six subjects were omitted from the study due to poor image quality and/or ana-
tomic variation leading to errant fissure segmentations that were not able to be used as inputs to the network. Of 
the 82 subjects remaining, the number of subjects in each disease group is displayed in Table 1.

FissureNet and LobeNet. Several automated fissure detection methods have been developed; however, a 
key challenge has been the detection of weak and abnormal fissures and reducing the detection of false positive 
 structures17–20. FissureNet is a deep learning framework for detection of fissures in CT images which consists 
of a cascade of two  CNNs18. FissureNet has been evaluated on several large datasets and compared to other 
fissure detection methods it is robust to detecting radiographically weak fissures, blurred or abnormal fissure 
appearance, poor image quality, and images acquired at expiration (RV and FRC). In the case of missing or 
incomplete fissures, FissureNet does not necessarily provide the complete information to separate the lungs into 
lobes. LobeNet was developed to utilize the output of FissureNet and enforce the lungs to be separated into five 
unique  lobes21. In this work, IntegrityNet utilizes the fissure confidence from FissureNet, along with the original 
CT image, to assess fissure integrity.

Ground truth labeling. Ground truth fissure integrity segmentations were obtained by having a pair of 
trained image analysts (ZA and AE) hand annotate images overseen by a board-certified chest radiologist (MG). 
LobeNet (see section "FissureNet and LobeNet") was used to generate lobe  segmentations21. The complete fissure 
boundary was extracted from the lobe segmentation by identifying lobe boundary voxels adjacent to another 
lobe. The result is a complete fissure boundary which includes intact fissure as well as incomplete fissure. The 
complete fissure segmentation was manually inspected, and all voxels were marked as either intact or incom-
plete. Manual edits were performed by simultaneously viewing the three imaging planes with open-source 3D 
Slicer  software22. One analyst (AE) inspected each subject’s scan carefully and marked challenging cases for 

Figure 2.  IntegrityNet pipeline. A CT image is input to the LungNet–FissureNet–LobeNet pipeline to obtain 
segmentations or the lungs, fissures, and lobes. During preprocessing the CT intensity values are clipped to 
(−1024, 200) and then linearly rescaled to (−1, 1). Next, the lung mask is used to compute a bounding box for 
each of the left and right lungs. The bounding boxes are used to crop the CT image and the fissure probability 
image to the left and right lungs. Lastly, the cropped CT and fissure probability images are concatenated along 
the channel dimension and the result is used as input to IntegrityNet. The output of each IntegrityNet is a fissure 
integrity mask where green and red represents intact and incomplete fissure, respectively.

Table 1.  Number of subjects from each disease group used in this study.

Status Count

Never smokers 16

GOLD 0 14

GOLD 1 15

GOLD 2 12

GOLD 3 13

GOLD 4 12
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radiologist review. The second analyst (ZA) reviewed each ground truth image generated by the first analyst to 
ensure quality and consistency of edits.

Preprocessing. The proposed method assumes that each CT image has a corresponding lung segmentation, 
lobe segmentation, and FissureNet’s confidence information in the form of a fissure probability map. All images 
were resampled to isotropic voxel size (1  mm3). The lung mask was used to crop each image into two separate 
smaller images representing the images localized to the left and right lung, respectively. This reduces input size 
which reduces memory use during training as well as removing irrelevant information. The right lung image 
was used twice for each subject, once for right oblique fissure integrity assessment and once for right horizontal 
fissure integrity assessment. The CT image is further processed to clip intensities to the range (−1024, 200) HU 
and then the intensities are linearly scaled between (−1,1).

IntegrityNet. A diagram of IntegrityNet’s architecture can be seen in Fig. 3. The input to the network is 
the 3D CT image and fissure probability map, concatenated along the channel dimension. The output of the 
network is a map which indicates the probability of each voxel being visible fissure, incomplete fissure, or back-
ground. Spatial dimensions of the input and output are identical. Four encoding steps were used convolving the 
inputs with a set of kernels to produce increasingly lower resolution/higher order features that describe the input 
data. The decoding path mirrors the encoding up-sampling the encoded representation of the inputs. Finally, a 
full-resolution output image is produced identifying regions of visible completeness and incompletes along the 
fissure. The U-Net structure’s advantage is the skip connections that prevent the loss of high-frequency infor-
mation by passing information from the encoding path directly to the decoding  path23. Features are adaptively 
filtered so that only the most useful information is passed to the expanding path by adding attention gates at skip 
 connections24. Three independent networks, each having the proposed IntegrityNet architecture were trained 
separately on one of the three pulmonary fissures.

Post‑processing. Three post-processing steps are applied to the network output to produce the final fissure 
integrity image. The first step is to remove false positives from the network prediction. This is done by assigning 
all voxels outside of the complete fissure to the non-fissure class (background). Next, regions within the complete 
fissure labeled background are assigned to the majority vote class of its neighbors that were labeled intact or 
incomplete. This process removes false negatives from the image. Finally, a smoothing operation is performed 
to remove inconsistent labels. A 26-connectivity neighborhood is used to smooth each voxel along the complete 
fissure segmentation, where the output label is the majority vote of all of the non-background neighbors.

Implementation. The IntegrityNet architecture is implemented with the open-source framework  Keras25. 
The network was trained using NVIDIA GPU card Tesla P40 with 24 GB RAM. Adam  optimization26 was used 
for training with a static learning rate of 0.0002. Tversky  loss27 was used with α = 0.05 in order to handle the large 
class imbalance between background and the incomplete and complete fissure classes that lie along the thin fis-
sure surface (i.e., there are many more voxels labeled background in the output image than voxels assigned to 
intact or incomplete fissure classes).

During training, random cropping to fixed input size of (128, 128, 64) for each image was used to diversify 
the data seen in training for each epoch. The effect of this method is to increase the amount of data within the 
training set without the need for more subject images. A validation set was also used to identify the epoch that 
produced the best results for a set that was held out from training and testing. The train, test, and validation 
proportions used were 0.75, 0.15, and 0.10 respectively.

Results
In order to evaluate the IntegrityNet’s performance, k-fold cross validation ( k = 8 ) was performed to reduce bias 
in the metrics reported. We examine fissure integrity score error to assess the model’s success in predicting the 
quantitative representation of the degree of fissure completeness. Fissure integrity percent (FI%) is computed as:

In this way FI% is always a value [0.00, 100.0]. The corresponding FIS error [−1.0, 1.0] between the ground 
truth image and the model predicted image is then calculated from:

At each voxel along the complete fissure the label accuracies were computed as:

In this way ACCFIS% falls within the range [0.0,100.0]. Area under the ROC curve was also computed for 
classifying fissures as “complete” (≥ 90% complete; as the positive class) versus “partial” (≥ 10% complete) and 
“missing” (< 10% complete) as defined  in11,12. Finally, IntegrityNet’s performance on different levels of COPD 
severity was assessed to evaluate the model’s robustness to disease status.

In order to test the reproducibility of the fissure integrity predictions, subjects’ images across time (one-year, 
two-year, and five-year follow-up) were processed independently and their FI% were compared.

Results from the FISerror , ACCFIS% , and AUC studies are shown below in Table 2. It can be seen that Integri-
tyNet correctly classified voxels along the fissure as complete/incomplete over 89% for all three fissures. Figures 4, 

FI% = (#voxels intact fissure/#voxels complete fissure) ∗ 100.

FISerror = (FI%Pred − FI%GroundTruth)/FI%GroundTruth.

ACCFIS% = #correctly labeled voxels/#voxels complete fissure ∗ 100.
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5, 6 show predicted and ground truth FI scores for each fissure.  R2 values for the distributions were equal to 0.84 
for both left and right oblique fissures and 0.85 for the right horizontal fissure. Comparison of results across 
COPD severity groups are given in Table 3 and show similar accuracies for each fissure across all severity groups 
analyzed in this study. Reproducibility results are shown in Table 4. The average absolute difference in assessed 
FI% for each fissure and time point comparison did not exceed 4%.

Figure 3.  IntegrityNet architecture. The left side of the network represents the contracting path where 
inputs are progressively down-sampled and features are extracted at each layer. The right side of the network 
represtents the expanding path where feature maps are progressively up-sampled to generate the final fissure 
integrity labels. The skip connections bring infromation from the contracting path into the expanding path to 
improve performance at each layer of up-sampling.
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Discussion
We have shown that IntegrityNet is able to accurately assess fissure integrity compared to manually annotated 
fissures. Our method shows results that are comparable to methods reported in the  past10–13. After training, 
the average processing time was around 25 s per case (2.5 ± 1.6 s preprocessing, 8.0 ± 2.1 s model prediction, 
12.2 ± 0.4 s postprocessing), greatly reducing the analysis time compared to visual assessment which can take 
anywhere from several minutes to an hour to perform if annotations are required. We have also shown that the 
model is robust to differences in GOLD stages of COPD severity as the results are consistent across all groups. 
Model predictions were also shown to be consistent across images taken from the same subject at different time 
points within SPIROMICS. Widescale deployment of our method across the imaging dataset used in this study is 
possible, however further validation of the robustness to different study imaging protocols (e.g., slice thickness, 
CT dose, CT kernel, etc.) is necessary before deployment on other cohorts.

One important limitation of IntegrityNet, as well as other imaging-based fissure integrity assessment tools, 
is that the method is trained and validated only on the radiographic appearance of the fissure surface. There are 
many factors outside of fissure completeness that can impact how the fissure is visualized in the CT image. Image 
motion artifacts, metal artifacts, and pathologies resembling the fissure can all lead to incorrect classification 
of the fissure surface. An example motion artifact obscuring the appearance of the fissure can be seen in Fig. 7.

Another limitation of IntegrityNet is that it relies on fissure segmentation success. If abnormal anatomy is 
present and the segmentation method cannot segment the anomalous features properly, IntegrityNet will not 
be able to handle this case. Since this study only used cases with normal three-fissure anatomy and successful 
fissure segmentations, our results are likely biased toward the positive.

Additional work is needed to examine robustness to variations in image acquisition protocols, anatomic vari-
ants, and to pulmonary pathologies beyond COPD. Although only inspiratory CT scans were used in this work, 
FissureNet has been validated on expiratory images as  well18. Assessment of model performance on expiratory 
images using the network trained on the inspiratory images will illuminate its ability to be readily deployed on 
exhale scans or the need for a separately trained model for use on expiratory images.

Table 2.  FIS error, ACC FIS%, and AUC results from the eightfold cross validation study (mean ± standard 
deviation).

Fissure FISerror ACCFIS% AUC 

LOBL 0.045 ± 0.066 95.828 ± 4.882 0.973 ± 0.047

ROBL 0.029 ± 0.026 96.061 ± 2.618 0.914 ± 0.095

RHOR 0.163 ± 0.223 89.810 ± 8.583 0.851 ± 0.114

Figure 4.  Left oblique fissure predicted fissure integrity score compared to ground truth. Red dashed line 
represents linear trendline.
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There is a range of fissure completeness within the cohort used for this study. A breakdown of the average 
manually-assessed FI% for each fissure is given in Table 5. Similar to distributions discussed by studies exam-
ining fissure integrity trends in  cadavers6–9 each fissure is seen to be fully intact less than 80% of the time. The 
right horizontal fissure was observed to have the most variability in fissure completeness, again consistent with 
reports from prior study of fissure integrity  trends6–9.

Figure 5.  Right oblique fissure predicted fissure integrity score compared to ground truth. Red dashed line 
represents linear trendline.

Figure 6.  Right horizontal fissure predicted fissure integrity score compared to ground truth. Red dashed line 
represents linear trendline.
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We have developed a novel deep-learning based fissure integrity assessment method that is suitable for 
deployment on large collections of CT image data, such as those collected in clinical trials. Our method builds 
off a state-of-the-art fissure segmentation method and utilizes global information by processing the whole lung 
CT image data rather than local image patches, in contrast to other methods. By applying our method to a large, 
well-characterized cohort of subjects with and without smoking history who have COPD, we have validated our 
model’s performance across a range of disease levels. We have also reproduced the results of prior non-automated 
studies of fissure integrity variation by showing that fissure completeness in our cohort varied greatly between 
subjects using our automatic method (Table 5)6–9. Beyond the publicly available CT data used in this study, we 
are releasing our fissure segmentations and ground truth fissure integrity annotations so that others can repro-
duce our work and develop fissure integrity analysis tools of their own. Automated fissure integrity assessment 
methods will allow future study of fissure integrity’s relation to disease severity and progression, pulmonary 
biomechanics, and other demographic variables of interest that have yet to be well defined.

Table 3.  Study of model robustness against disease severity (mean ± standard deviation).

COPD severity Left oblique ACC FIS% Right oblique ACC FIS% Right horizontal ACC FIS%

Normal 97.155 ± 3.829 98.116 ± 2.089 94.170 ± 4.163

GOLD 0 98.411 ± 2.704 98.897 ± 1.229 90.237 ± 10.276

GOLD 1 97.476 ± 2.140 97.853 ± 3.681 95.706 ± 2.485

GOLD 2 96.985 ± 2.841 97.875 ± 1.945 94.736 ± 4.244

GOLD 3 94.600 ± 7.653 97.768 ± 1.240 94.126 ± 4.601

GOLD 4 96.582 ± 3.073 98.423 ± 0.979 94.975 ± 3.837

Table 4.  Reproducibility study. Model predictions compared across study time points by absolute percent 
error between FI% measurements. (mean ± standard deviation).

Fissure

Absolute percent difference

Baseline versus 1-year 1-year versus 5-year Baseline versus 5-year

LOBL 1.372 ± 2.072 1.521 ± 2.380 1.133 ± 1.846

ROBL 1.074 ± 2.368 1.056 ± 1.769 0.805 ± 0.982

RHOR 3.945 ± 6.272 2.412 ± 2.241 2.791 ± 2.981

Figure 7.  Example of a motion induced blurring artifact in a CT image.

Table 5.  Average Fissure Integrity within the Dataset.

Fissure Average ground truth fissure integrity

Left oblique 89.818 ± 16.496%

Right oblique 91.850 ± 9.253%

Right Horizontal 67.621 ± 28.487%
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Data availability
The CT image data, fissure segmentations, and fissure incompleteness annotations used in this study are avail-
able from the SPIROMICS data coordinating center. See https:// www. spiro mics. org/ for instructions on how to 
request access to the data.

Received: 1 February 2023; Accepted: 24 August 2023
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