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Generative design of large‑scale 
fluid flow structures 
via steady‑state diffusion‑based 
dehomogenization
Sarah N. Hankins , Yuqing Zhou *, Danny J. Lohan  & Ercan M. Dede 

A computationally efficient dehomogenization technique was developed based on a bioinspired 
diffusion‑based pattern generation algorithm to convert an orientation field into explicit large‑scale 
fluid flow channel structures. Due to the transient nature of diffusion and reaction, most diffusion‑
based pattern generation models were solved in both time and space. In this work, we remove the 
temporal dependency and directly solve a steady‑state equation. The steady‑state Swift‑Hohenberg 
model was selected due to its simplistic form as a single variable equation and intuitive parameter 
setting for pattern geometry control. Through comparison studies, we demonstrated that the 
steady‑state model can produce statistically equivalent solutions to the transient model with 
potential computational speedup. This work marks an early foray into the use of steady‑state pattern 
generation models for rapid dehomogenization in multiphysics engineering design applications. To 
highlight the benefits of this approach, the steady‑state model was used to dehomogenize optimized 
orientation fields for the design of microreactor flow structures involving hundreds of microchannels in 
combination with a porous gas diffusion layer. A homogenization‑based multi‑objective optimization 
routine was used to produce a multi‑objective Pareto set that explored the trade‑offs between flow 
resistance and reactant distribution variability. In total, the diffusion‑based dehomogenization 
method enabled the generation of 200 unique and distinctly different microreactor flow channel 
designs. The proposed dehomogenization approach permits comprehensive exploration of numerous 
bioinspired solutions capturing the full complexity of the optimization and Swift‑Hohenberg design 
space.

Computational efficiency, structural performance, and manufacturability continue to drive the field of topology 
optimization. In particular, the density-based method has become popular in the field for research and industrial 
 applications1. The method is well-known for its ability to generate designs that meet both the loading and 
fabrication requirements for an array of applications in areas such as structural  mechanics2, fluid  flow3, and heat 
 transfer4. However, large giga-resolution design domains, such as  bridges5 and airplane  wings6, require thousands 
of CPU cores (i.e., access to supercomputers) to perform density-based topology optimization in an acceptable 
amount of time. Additionally, for fluid flow structure design, explicit optimization involving only ~ 50 channels 
becomes “large-scale” computationally, necessitating millions of elements and solution on a  GPU7; this is due 
to the high resolution required to adequately resolve pressure and velocity fields across the entire design space. 
As a result, numerous research efforts have been aimed at developing innovative approaches that can overcome 
such limitations.

The well-established homogenization-based  method8 has recently resurfaced as a computationally efficient 
option to design high-resolution structures when paired with novel dehomogenization techniques. For methods 
that assemble 2D square (3D cube) unit cells with parameterized  geometries9–11 (such as square, rectangular, 
circular, and crossbar) and non-parametric cell  geometries12, readers are referred  to13 for a comprehensive review. 
The connectivity across the interface of adjacent cells can pose challenges if distinct topologies are allowed in 
the cell  level13.

The homogenization-based method is generally not used as a stand-alone design tool due to homogenization 
solutions that cannot be easily manufactured. The post-processing step to generate explicit microscale geometries 
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such that they match the optimized homogenized property is known as dehomogenization. For periodic unit 
cells, this process is also previously known as inverse  homogenization14. Such a two-step design approach is 
appealing because the homogenization-based optimization can be performed on a coarse mesh, reducing the 
computational cost, while the dehomogenization can be performed on a fine mesh to obtain explicit designs 
with high-resolution intricate details.

To obtain the well-connected high-resolution design from a spatially varying homogenization design defined 
by a scalar field and/or an orientation field, a projection-based post-processing method was  proposed15, followed 
by recent simplifications and  improvements16,17. The projection-based dehomogenization concept has also been 
extended to 3D  problems18,19 and a convolutional neural network  implementation20. An important requirement 
for the projection-based dehomogenization is that the spatially varying orientations are smooth throughout the 
 domain13.

In parallel, an alternative approach has emerged which uses pattern generation algorithms, derived from work 
by Alan  Turing21, to develop a partial differential equation (PDE) based class of bioinspired dehomogenization 
solutions for engineering design  applications22–29, just to name a few. Among them, a fluid flow experiment 
was conducted to validate the dehomogenized microchannel  design30. Many pattern generation algorithms are 
rooted in Turing’s theory of a reaction–diffusion system that models the interaction of two chemical species (or 
morphogens)21. Mathematically, this model can be represented by a system of coupled PDEs that describe the 
evolution of the chemicals in both time and space. Reaction–diffusion models generally create patterns using 
the fundamental concept of local-activation and long-range inhibition (LALI). In the two-system model, the 
slowly diffusing activator morphogen promotes the production of itself along with the inhibitor morphogen. 
This creates regions with high concentration of activator species. The purpose of the rapidly diffusing inhibitor 
morphogen is to ensure that the high concentration regions are separated by a distance, defined by the diffusion 
rates of the two chemical species, which creates the formation of periodic  patterns31,32.

Reaction–diffusion models provide a clear and intuitive understanding of the LALI pattern generation 
mechanism. However, there is a simpler model that encompasses the LALI mechanism in a single variable PDE 
known as the Swift-Hohenberg  equation33. The model takes advantage of the fact that the activator chemical 
in the reaction–diffusion system is the primary driver of the pattern generation process. This is because the 
morphogen not only activates itself locally, but it also indirectly inhibits itself due to the simultaneous production 
of the inhibitor morphogen. Therefore, the Swift-Hohenberg equation models the cumulative effect of the local 
activation and long-range inhibition using a single variable PDE that evolves in time and  space31. Within the 
equation, a fourth order gradient operator is used to capture the long-range features, while a second order 
gradient operator is used to capture the short-range  features27. Despite its simplicity, the LALI logic embedded 
within the equation enables the model to produce periodic patterns like those found in more complex 
reaction–diffusion systems, as shown herein. Nonetheless, exhaustive studies may reveal that the equation may 
not be capable of modeling all conceivable pattern generation phenomena, and in some cases different models 
might still be  required27,31.

The purpose of this paper is to demonstrate a computationally efficient approach for novel bioinspired 
diffusion-based dehomogenization of multiphysics microreactor channel structures. Pattern generation models 
can exploit an anisotropic diffusion tensor such that structural elements emerge according to the prescribed 
orientation field. Here, we work with the anisotropic permeability of a porous flow medium in contrast to the fiber 
angle in prior solid mechanics  research27. As a result, the process of diffusion promotes continuous flow channels, 
for our microreactor problem at hand, and a seamless transition between features despite the complexity of 
the design domain. These characteristics are geometrically distinct and can be difficult to achieve without a 
diffusion-based model. Intrinsically, diffusion is conceived as a process that evolves in time and space. Therefore, 
it is natural to solve bioinspired diffusion-based dehomogenization in time and space, as in the  work22,23,25,27,29. 
However, the temporal process may be computationally time consuming and diminish the usefulness of the tool 
in the early concept generation phase. To overcome this barrier, we propose removing the temporal domain by 
directly solving the steady-state single variable Swift-Hohenberg equation.

Through several numerical experiments, our results reveal that the steady-state Swift-Hohenberg model 
generally converges faster than a transient diffusion-based model without significant tuning of solver parameters. 
The dehomogenization time of steady-state cases range from 70 to 124 s for a fluid flow channel design problem 
involving hundreds of microchannels. To highlight the efficiency of the proposed technique when newly applied 
to our multiphysics problem, a Pareto set was developed, using a homogenization-based optimization routine, 
to explore the design tradeoffs between pressure drop and reactant distribution variability for microreactor 
flow channels including a porous gas diffusion layer. In total, 200 distinctly different microreactor flow channel 
designs were generated using the steady-state dehomogenization technique. The designs span the multi-objective 
optimization space as well as the design space that is unique to the Swift-Hohenberg model to obtain relevant 
flow control features such as pin fins, channels, and hybrid structures beneficial for fluid flow problems. As a 
further contribution, it was demonstrated that this method can be effectively employed to design functionally 
graded channel structures for microreactors comprising multiple zones with spatially varying physical length 
scales. Thus, this paper highlights an early foray in the use of a steady-state pattern generation model as a rapid 
generative engineering design tool for large-scale, multiphysics, fluid flow applications.

Results
A multi-objective Pareto set for the design of microreactor flow channels was developed by performing a grid 
search on a multi-objective weighting scheme for the optimization problem of interest. The weights were specified 
with a linear interval spacing of 0.02. In our problem, the first objective function term weight, w1 , controls 
the reactant distribution variability, while the second objective function term weight, w2 , controls the flow 
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resistance; refer to Eq. (1 )in Methods. Figure 1 reveals a grid search results for our multi-objective optimization 
problem with non-dominated Pareto optimal designs labeled in red. The Pareto set illustrates how the flow 
resistance and reactant distribution variability change as the objective function’s weighting scheme is altered 
during optimization.

The limits of the weighting interval represent a single objective optimization problem as one of the weights 
becomes zero. Figure 2a,b, respectively, reveal the optimized orientation fields and resultant dehomogenized 
microchannel designs at the limits of our designated design space, where only one objective is solved for. In the 
case where only the flow resistance is minimized, clear parallel channel flow paths connecting the inlet region 
to the outlet region emerge, left image in Fig. 2b, with minimal flow under walls or ribs into the underlying 
microreactor porous gas diffusion layer. In contrast, when only the reactant distribution variability is minimized, 
vertical channel flow paths emerge to impede the natural flow of the fluid and disperse it into the gas diffusion 
layer, right image in Fig. 2b, where the reaction would ultimately occur. Figure 2c,d illustrate the corresponding 
velocity and reactant concentration fields, respectively, for the corresponding single objective designs. When 
the flow resistance is minimized, a velocity field with smooth streamlines emerges, but at the expense of a non-
uniform reactant concentration field. Conversely, when the reactant distribution variability is minimized, a 
chaotic velocity field emerges to permit a more uniform reactant concentration field, but logically at the expense 
of a higher fluid flow resistance.

For a deeper understanding of how the flow field transforms throughout the Pareto set, three designs were 
selected and presented in Fig. 3. The optimized orientation field, pressure field, and reactant concentration field 
for the selected designs are presented in Fig. 3. As the reactant distribution variability weight ( w1 ) increases, the 
reactant concentration distribution becomes more uniform, as shown in Fig. 3c. However, Fig. 3b reveals that 
reactant distribution uniformity comes at the cost of a significant increase in the pressure drop. The solution that 
appropriately balances these two competing design objectives uses a balanced weighting scheme, w1 = 0.58 and 
w2 = 0.42 , which maintains a relatively low pressure drop while yielding a more uniform reactant distribution.

The steady-state equation-based dehomogenization technique was used to convert the selected optimized 
orientation fields into distinct microchannel designs. Figure 4a presents the microchannel structures for design 
described in Fig. 3. A comparison of the three designs reveals that as the reactant distribution variability weight 
( w1) increases, more fluid flow channels emerge perpendicular to the primary inlet-to-outlet flow path to 
encourage a greater dispersion of the reactant fluid into the underlying gas diffusion layer of the microreactor.

Rapid generative design expansion. A steady-state equation-based dehomogenization technique was 
used to convert the selected optimized orientation fields into distinct microchannel designs. Figure 4a presents 
the microchannel structures using the “balanced” dehomogenization setting (Table  1) for design described 
in Fig. 3. A comparison of the three designs reveals that as the reactant distribution variability weight ( w1) ) 
increases, more fluid flow channels emerge perpendicular to the primary inlet-to-outlet flow path to encourage 
a greater dispersion of the reactant fluid into the underlying gas diffusion layer of the microreactor.

Due to the rapid dehomogenization speed of the proposed steady-state model, a generative design approach 
could be deployed to greatly expand the number of flow channel designs. The parameters in the Swift-
Hohenberg model were adjusted, per Table 1, to permit the generation of three additional and distinctly different 
microchannel geometries for each optimized orientation field in the grid search.

First, “parallel” designs were established by reducing an anisotropic parameter, α [refer to Eq. (8) in Methods], 
to soften the orientation requirement and encourage flow fields with primarily parallel channels. Figure 4b 

Figure 1.  Multi-objective Pareto set generated from the homogenization-based optimization routine. Plotted 
are the normalized reactant distribution variability (X axis) versus the normalized flow resistance values (Y axis) 
for different weighting schemes defined within the objective function. Larger red circles indicate non-dominated 
Pareto optimal solutions. Smaller gray circles indicate dominated solutions.
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illustrates the dehomogenized “parallel” designs for the three different weighting schemes. The resultant flow 
fields favor parallel channels, but at the expense of smoothing out some of the details found in the “balanced” 
design configurations. Next, “wide” designs were established by increasing the channel width parameter, w (refer 
to Eqs. 7 and 8 in Methods), to foster designs at a larger length scale. Figure 4c reveals the dehomogenized “wide” 
designs for the three different weighting schemes. The resultant flow fields respect the optimized orientation 
while introducing the potential of larger channel geometries into the design space. Finally, a “semi-discrete” 
design was established by adjusting the pattern-type control parameters, ε and g [refer to Eq. (4) in Methods], 
and reducing the anisotropic parameter, α , to encourage the generation of discrete microstructures. Figure 4d 
reveals the dehomogenized “semi-discrete” designs for the three different weighting schemes. The resultant flow 
fields appear to favor discrete features in locations where the orientation is not ideal for easily producing parallel 
channels. For demonstration purposes, only three additional designs were generated here for each orientation 

Figure 2.  Single-objective optimization results for a representative microreactor design problem. In each image 
the fluid inlet is in the upper left and the outlet is in the lower right. (a) Optimized orientation fields from the 
homogenization-based optimization. (b) Diffusion-based dehomogenized microreactor flow channels. (c) 
Velocity field (units: m/s). (d) Reactant concentration field (units: mol/m3). Left column: the flow resistance 
objective was minimized; Right column: the reactant distribution variability objective was minimized.
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Figure 3.  Results of the homogenization-based optimization routine for the three different weighting schemes 
in the Pareto set. Each column represents a different combination of the objective function weights. (a) 
Optimized orientation field. (b) Pressure field (units: Pa). (c) Reactant concentration field (units: mol/m3).

Figure 4.  Diffusion-based dehomogenized microreactor flow channel designs for the three different weighting 
schemes in the Pareto set. Each column represents a different combination of the objective function weights. 
Each row represents a different design type defined by the Swift-Hohenberg model parameter settings. (a) 
“Balanced” design. (b) “Parallel” design. (c) “Wide” design. (d) “Semi-discrete” design.
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field. The number of generative designs can be efficiently further expanded using the proposed rapid steady-state 
dehomogenization technique with the caveat that the multiphysics performance of expanded generative designs 
should be further validated to confirm consistency with homogenization-based optimization assumptions. For 
example, in the “parallel” case, the optimized orientation is not strictly consistent with the optimization result 
after dehomogenization. In the “wide” and “semi-discrete” cases, the assumed unit cell geometry is not precisely 
recovered after dehomogenization.

It is noted that the performance mismatch before and after the dehomogenization step is still an open question 
across many disciplines due to the unpredictable nature of local features after dehomogenization. For solid elastic 
structures, the structural stiffness mismatch caused by discontinuous load transfer has been  reported34,35. For 
flow-driven structures, the pressure and velocity mismatch due to undesired local branching, recombining, 
and dead ends has also been recently  reported11,25. While the “balanced” design type in Table 1 is intended to 
closely match the homogenization-based performance, it should be acknowledged that additional geometric fine 
tuning is needed in order to mostly recover the optimized performance. To demonstrate the agreement between 
the predicted 2D homogenized response and the dehomogenized 3D response, Fig. 5 shows both pressure 
distributions for the “balanced” design  (w1 = 0.08 &  w2 = 0.92). While both their global trends and magnitudes 
generally agree well, local disagreements are still present. Solving any performance mismatch issue in detail is 
less of a focus for this work since our primary motivation is to explore the generative design concept by rapidly 
producing many “near optimal” designs. Nonetheless, such in depth validation can be performed, and the reader 
is referred  to30 for a representative study.

Multi‑region microreactor designs. During the diffusion-based dehomogenization process, the pattern 
or structure designer has an added layer of control and flexibility that may be exploited to create unique multi-
region microreactors with functionally graded channel geometries. For example, Fig.  6a illustrates a design 
domain where zones have been identified based on different physical objectives. To address the localized 
requirements, a spatially varying channel width parameter can be defined to promote wider channels in the 
minimum flow resistance zone and narrower channels in the reaction uniformity zone. In addition, buffer 
regions can be introduced to ensure a gradual transition between discrete design features. Figure 6b,c illustrates 
the multi-region dehomogenized flow channel designs with and without the buffer region, respectively. It is 
worth noting that the feature transition is seamless between the neighboring zones, even if the buffer region 
is not included. This characteristic is unique to the Swift-Hohenberg model and can be challenging to achieve 
without a diffusion-based technique, particularly when there is a hard boundary between zones.

To further highlight the versatility of the approach, Fig. 7 illustrates a unique six-zone microreactor with 
subdomains that vary in shape, size, and channel width. This type of architecture could prove to be useful in 
lab-on-a-chip applications where different channel designs and scales are required to meet separate designated 
physical  objectives36,37. For example, the flow field could be constructed such that “Zone 1” is the inlet region, 
“Zone 2” and “Zone 3” are mixing regions, “Zone 4” is the reaction region, “Zone 5” is the drainage region, and 
“Zone 6” is the outlet region. Due to the computational efficiency of the steady-state dehomogenization process, 
a generative design approach could be implemented to explore the vastness of the multi-region design domain 

Table 1.  Swift-Hohenberg model parameter settings for different types of designs.

Design type

Swift-Hohenberg model 
parameter settings

w α ε g

Balanced 0.9 0.7 1 0

Parallel 0.9 0.2 1 0

Wide 1.5 0.7 1 0

Semi-discrete 1.25 0.1 0.01 0.99

Figure 5.  Pressure distribution for the “balanced” design  (w1 = 0.08 &  w2 = 0.92) (units: Pa). (a) 2D anisotropic 
porous media. (b) 3D dehomogenized microchannels including the porous gas diffusion layer; refer to Fig. 8.
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for an array of applications. It should be noted that both the zone partitioning, and the spatially varying design 
features can also be fine-tuned within an additional corresponding optimization representation.

Discussion
In total, 200 microreactor flow channel designs were created for our multiphysics design problem using the 
proposed steady-state dehomogenization technique. The solutions spanned the full range of objective function 
weights defined by a grid search, in addition to the four distinct categories of design features controlled by 
the parameter settings, Table 1, in the Swift-Hohenberg model. For each design category, 50 structures were 
generated representing every sampled point in the grid search. The average time required to produce a single 
dehomogenized flow field design was 119 s for the “balanced” setting, 70 s for the “parallel” setting, 124 s 
for the “wide” setting, and 81 s for the “semi-discrete” setting, as listed in Table 1. All of the results from the 
computational experiments that are reported in this article were performed on a desktop computer with a 
Xeon Gold 6230 CPU (2.1 GHz) and 384 GB memory. It should also be noted that the reported computational 
time is based on a COMSOL and MATLAB implementation. Timing studies are logically dependent on the 
selection of the solver, software, programing language, and computational hardware. In general, larger values 
of the anisotropic parameter ( α ) required slightly longer computational time due to the heightened orientation 
requirement that had to be satisfied in the final design. Altogether, 200 unique and distinctly different 
microreactor flow channel designs were created in just over 5.5 h, rendering the steady-state dehomogenization 
technique a viable tool in generative design applications. The supplementary material contains all 200 individual 
microchannel flow field designs that were created and animations that reveal how the flow fields evolve as the 
weighting scheme in the objective function changes.

Methods
Multi‑objective optimization. The multi-objective optimization problem of minimizing fluid flow 
resistance (i.e., pressure drop) and reactant distribution variability, common in the design of  microreactors38, 
was considered in this study. A gradient-based anisotropic porous media optimization method, as presented in 
the work of Zhou et al.25, was employed to generate optimized orientation fields for equivalent porous materials. 

Figure 6.  Multi-region microreactor flow field designs. (a) Design domain with zones identified based on 
different physical objectives. (b) Diffusion-based dehomogenized design including the buffer region. (c) 
Diffusion-based dehomogenized design without the buffer region.

Figure 7.  Microreactor design domain with subdomains of arbitrary shapes and sizes. (a) Zone partitioning. 
(b) Diffusion-based dehomogenized multi-region flow channel design with spatially varying channel widths.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14344  | https://doi.org/10.1038/s41598-023-41316-w

www.nature.com/scientificreports/

A unit cell microstructure is adopted assuming microchannels positioned on top of a thin, porous gas diffusion 
layer, as illustrated in Fig.  8. Each optimized orientation field was then converted into a microreactor flow 
channel design using the proposed steady-state dehomogenization process.

The method proceeds by optimizing the material orientation at each point in space by mapping the design 
variables to an orientation tensor. Next, an anisotropic porous medium permeability tensor is rotated according to 
the local material orientation. The unidirectional anisotropic porous medium contains two effective permeabilities 
along and orthogonal to the channel direction. In the case of the specific unit cell dimensions reported  in25, they 
are 8.65× 10−9m2 and 2.33× 10−11m2 , respectively. Finally, laminar fluid flow through the designed equivalent 
porous media is analyzed using the Stokes equation, Darcy’s law, and the advection–diffusion-reaction equation. 
The design variables are updated based on the sensitivity analysis of the objective function, which is given by 
the following,

The objective function, F , in Eq. (1) contains a weighted sum of two design requirements, given by the average 
variation of reactant concentration, f1 , defined in Eq. (2), and the flow resistance, f2 , defined in Eq. (3). Both 
terms are normalized by their initial values at the first optimization iteration f (0)1  and f (0)2  . Again, the weights, 
w1 and w2 , control how much the optimization favors designs with a more uniform reactant distribution versus 
designs with a lower flow resistance, respectively. Within Eqs. 2 and 3, c represents the reactant concentration 
field; v represents the velocity field. As illustrated in Fig. 9, �r represents the prescribed reaction domain and � 
represents the entire design domain. The design domain consists of a fluid inlet region in the upper left-hand 
corner and an outlet region in the bottom right-hand corner. Refer  to25 for greater details about dimensions and 
physical properties.

COMSOL and MATLAB were used to solve the multiphysics and multi-objective optimization problem, 
for which automatic sensitivity analysis was performed using the “sensitivity” module in the COMSOL 
“mathematics” interface. Finally, the optimization routine was performed using the method of moving asymptotes 
 optimizer39. Although not the primary focus of this article, further extensive details about the homogenization-
based anisotropic porous media optimization approach for this problem setup are available  in25.

Steady‑state dehomogenization. Bioinspired patterns were used to dehomogenize the optimized 
orientation field into microreactor flow channel designs via the Swift-Hohenberg model. The Swift-Hohenberg 

(1)F = w1f1/f
(0)
1 + w2f2/f

(0)
2 ,

(2)f1 =
∫

�r

(

c−cavg
cavg

)2

d�r ,

(3)f2 = 1
2

∫

�
∇v ·

(

∇v + (∇v)T
)

d�.

Figure 8.  Microreactor unit cell configuration with microchannels and a thin, porous gas diffusion layer.

Figure 9.  Microreactor design domain, � . The reaction domain, �r , is highlighted in blue. The inlet is located 
at the top left corner and the outlet is located at the bottom right corner.
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model was originally established to study the Rayleigh-Bénard system where convective instability causes rolls 
and hexagon patterns to  emerge33,40,41. The system is given by the single equation,

The last term in Eq. (4) was introduced to the model,  in27, as a production gradient to permit anisotropic 
diffusion such that the patterns evolve according to a prescribed orientation field. The anisotropic diffusion tensor 
( D ) was defined using a normalized orientation vector, p = (p1, p2) , as follows,

where ϕ⊥ represents the optimized orientation vector that has been rotated 90°. The vector must be rotated 90° 
so that the major axis of a striped pattern is aligned with the primary axis of the flow field to create distinct 
microchannels during the dehomogenization  process25,27. This is due to an underlying feature of the Swift-
Hohenberg model which orients patterns perpendicular to the production  gradient31.

Various geometric features of the microreactor flow channels can be introduced using additional parameters 
presented in the Swift-Hohenberg model. The parameters, k and q , in Eq. (4) were defined as follows,

(4)∂u
∂t = −

(

∇2 + k2
)2
u+ εu+ gu2 − u3 − 2q2∇ · (D∇u).

(5)ϕ⊥ =
[

cosθ −sinθ

sinθ cosθ

][

p1
p2

]

=
[

0 −1

1 0

][

p1
p2

]

=
[

−p2
p1

]

,

(6)D(ϕ̄) = ϕ̄⊥ ⊗ ϕ̄⊥ =
[

p̄2p̄2 −p̄1p̄2
sym. p̄1p̄1

]

,

(7)k =
√

π2

w2 − q2,

(8)q = απ
w ,

Figure 10.  Parameter adjustment in the Swift-Hohenberg model. The arrow in each sub-figure indicates the 
direction of increase for the parameter value. (a) Channel width parameter, w (prescribed radial orientation). 
(b) Striped or spotted pattern control parameter, g (ε is held constant). (c) Anisotropic control parameter, α 
(prescribed radial orientation).
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such that the parameter, w , controls the frequency of the pattern. In the case of striped patterns, larger values 
of w correspond to wider channels while smaller values correspond to narrower channels, as described  in27 and 
illustrated in Fig. 10a. The constants, ε and g , in Eq. (4) control whether a striped or spotted bioinspired pattern 
emerges, as shown in Fig. 10b, where ε is held constant and g is varied (since g > 0 drives the development 
of spotted patterns)27. In Eq. (8), the parameter, α , controls the level of anisotropy which defines how tightly 
the patterns must adhere to the prescribed orientation field. For uniformly spaced striped patterns, higher 
anisotropic values correspond to designs with more branching to respect the prescribed orientation field, while 
lower anisotropic values correspond to designs with more parallel channels, as illustrated in Fig. 10c.

Due to the transient quality of pattern development in nature, the Swift-Hohenberg model is often solved in 
time to capture the temporal dynamics of the  system27,40,42–45. However, when applied as a dehomogenization 
technique to engineering structural design applications, the details on exactly how the pattern evolves throughout 
time are not a priority. Therefore, when used for this application, the time evolution process can be skipped by 
solving the steady-state equation. Compared to other pattern generation models (e.g., the Brusselator  model46, the 
Schnackenberg  model47, and the Gray–Scott  model48) the Swift-Hohenberg model is unique, because it generates 
patterns from a single variable equation instead of a system of coupled equations. Despite this distinctive attribute, 
steady-state solution demonstrations have been predominantly limited to numerical  exercises49–51.

Here, the partial differential equation was discretized to solve the steady-state Swift-Hohenberg equation 
by assigning,

A stationary solver was used in combination with the Newton–Raphson method for the nonlinear component 
of the equation. The nondimensionalized design domain was discretized into ~ 60 k free triangular elements 
(in two dimensions) with initial conditions given by, u0 ≈

√
ε . There are two key benefits of solving a steady-

state pattern generation model over a transient model. First, the steady-state model guarantees convergence 
of the solution. This is because the solution must satisfy Eq. (9) which states that the change in concentration 
with respect to the change in time is zero. Second, the steady-state model generally solves faster without the 
need to extensively optimize solver parameters. To demonstrate this, a set of both steady-state and transient 
simulations are performed. Their convergence properties are presented in Fig. 11. The transient models were 
run until t = 1 s using two time stepping techniques. The first transient implementation, Transient 1 in Fig. 11, 
used an implicit backward differentiation formula (BDF) time stepping strategy with default adaptive steps 
from the commercial software. The second transient implementation, Transient 2 in Fig. 11, used the same BDF 
strategy with a fixed time step of 0.005 s. It is observed that transient solutions can behave differently based on 
solver parameter settings. The steady-state model was run until the relative solver convergence tolerance was 
below 0.1. The average change in the state variable, u, is shown in Fig. 11a, where the steady-state model initially 
experiences large changes in the state variable before fine tuning the design with relatively smaller changes. By 
comparison, both transient simulations begin with smaller changes in u before experiencing a large change in 
state, then smaller changes to convergence. The average amount of non-binary states, relating to the convergence 
of the solution, for each simulation is shown in Fig. 11b. Similar trends are observed where the steady-state 
solver reaches a nearly converged solution much faster than the transient solvers. Note that the transient solvers 
may possibly be heuristically adjusted through a trial-and-error approach to achieve comparable convergence 
performance. However, the convergence criteria for steady-state solvers can be set more straightforwardly with 
minimal manual adjustment required. A series of time stamped design images, focusing on the left half of the 
design domain for clarity, from each simulation are provided in Fig. 11c to support visual comparison. The red 
circled regions in Fig. 11c highlight representative portions of the design where changes are observable from 
the earlier time snapshot to the next. 

Furthermore, the steady-state solver produces structurally similar designs to those produced with the transient 
solver. Consider the two fully converged designs shown in Fig. 12. The final solutions generated in the spatial 
domain maintained structural similarities but with slightly different branching locations, as highlighted by the 
magnified regions in Fig. 12a,b. Next, a two-dimensional Fourier transform analysis was adopted to verify the 
statistical similarity between the spatial patterns produced by each model. Figure 12c,d shows the steady-state and 
transient solutions in the frequency domain, respectively. A pixel-wise average difference of amplitudes between 
the two images was computed to reveal a 3.6% difference. This confirms the structural similarity achieved using 
the steady-state solution, and justifies the interchangeable use of models for engineering design. Therefore, the 
steady-state Swift-Hohenberg model may be applied to the rapid dehomogenization process with confidence 
that the proper solutions are being generated.

Conclusion
In this paper, the steady-state Swift-Hohenberg model was proposed as a rapid diffusion-based dehomogenization 
technique for a multiphysics, fluid flow-based, microreactor application. Bioinspired diffusion-based pattern 
generation models yield designs that are geometrically distinct and can be formed in complex design domains, 
while maintaining the seamless transition between structural features (e.g., orientation and channel dimension). 
However, these models are often computationally expensive to solve, as they are conventionally represented 
in time and space. By utilizing a steady-state equation, we removed the time dependency, which resulted in a 
simpler solver setup and potential computational speed-up. As a result, this work presents a diffusion-based 
dehomogenization tool that can be practically implemented to enable generative design for structural engineering 
applications. To highlight the feasibility and uniqueness of the proposed method, the dehomogenization tool 
was used to explore the design space of a multi-objective optimization problem for microreactor flow channels. 
Altogether, 200 unique and distinctly different designs were generated to illustrate the optimization and parameter 

(9)∂u
∂t = 0.
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Figure 11.  Comparison of convergence criteria with respect to simulation time for one steady-state and 
two transient dehomogenization implementations. (a) The average change in state variable, u; note that the 
overlaid time stamps correspond to the images in the (c) subfigure. (b) Amount of non-binary elements on the 
domain. (c) Select design images (showing the left half of the full domain for clarity) at different times; note that 
the Transient 1, Transient 2, and Steady State design images are shown in the top, middle, and bottom rows, 
respectively. The red circles highlight a representative region where design changes are observed from the earlier 
time snapshot to the next.
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space that becomes easily accessible when implementing this unique form of the Swift-Hohenberg model. The 
diffusion-based dehomogenization tool was further extended to the design of multi-region microreactor flow 
channels. The capability of spatially varying design parameters presents an added layer of fluid flow control 
that can be exploited to adjust the functionality of different microreactor subdomains to meet specific physical 
objectives. For future work, we propose applying the rapid steady-state dehomogenization technique to other 
multiphysics engineering design applications, e.g., thermal-fluid systems.

Data availability
The supplementary material contains all 200 individual microchannel flow field designs that were created, and 
animations that reveal how the flow fields evolve as the weighting scheme in the objective function changes. 
Further details are available upon request from the corresponding author.
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