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The reliability of assistance 
systems modulates the sense 
of control and acceptability 
of human operators
Quentin Vantrepotte 1,2, Valérian Chambon 1,3,4* & Bruno Berberian 2,3,4*

Individuals are increasingly required to interact with complex and autonomous technologies, which 
often has a significant impact on the control they experience over their actions and choices. A better 
characterization of the factors responsible for modulating the control experience of human operators 
is therefore a major challenge to improve the quality of human-system interactions. Using a decision-
making task performed in interaction with an automated system, we investigated the influence of 
two key properties of automated systems, their reliability and explicability, on participants’ sense of 
agency (SoA), as well as the perceived acceptability of system choices. The results show an increase 
in SoA associated with the most explicable system. Importantly, the increase in system explicability 
influenced participants’ ability to regulate the control resources they engaged in the current decision. 
In particular, we observed that participants’ SoA varied with system reliability in the "explained" 
condition, whereas no variation was observed in the "non-explained" condition. Finally, we found that 
system reliability had a direct impact on system acceptability, such that the most reliable systems 
were also considered the most acceptable systems. These results highlight the importance of studying 
agency in human–computer interaction in order to define more acceptable automation technologies.

Healthy adults generally feel in control of their own actions and the effects of those actions—a feeling that is 
sometimes also referred to as “sense of agency”1. The importance of the sense of agency in human life cannot 
be understated. The ability to envision oneself as an agent, endowed with the capacity to bring about changes in 
the external environment, plays a key role in assigning moral and legal  responsibility2 and would serve as a key 
motivational force for human  behaviour3–5.

The potential impact of technology on human operators’ sense of control has received increasing attention in 
recent years. Indeed, individuals are increasingly required to interact with more or less complex and autonomous 
technologies. A paradigmatic example of such human–machine interaction is embodied by the relationship 
between an airplane pilot and the flight assistance system. In the cockpit, the increasing level of automation 
introduced by the assistance system can sometimes generate ambiguities as to who controls the aircraft—the 
pilot themselves or the automated flight assistance system. In a pioneering study, Berberian and  colleagues6 
experimentally demonstrated this detrimental influence of automation on sense of agency (SoA). Using a flight 
simulator, they investigated the evolution of participants’ SoA during an aircraft navigation task with different 
levels of automation. They demonstrated a decrease in SoA as the level of automation increased, both at the 
explicit (verbal report) and implicit levels (temporal binding measure)6.

The opposite, however, has also been observed. According to Wen et al.7, being assisted during a pointing 
task can potentially enhance agentive experience. The authors used a pointing task in which participants were 
assisted by a computer, but only relevant commands from the participant were taken into account, with incorrect 
commands being ignored, so that the participant did not have full control over pointing movements. The results 
showed that computer assistance significantly increased participants’ SoA compared to the condition in which 
all participant commands were executed (see  also8,9). This apparent contradiction reflects the paradoxical effects 
of automation on human behavior: automation can induce an effective loss of control in the human operator, 
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while improving  performance10. Ueda and  colleagues9 suggest that the effect of automation on SoA is in fact 
non-linear: while the assistance provided by automation increases operator performance, and therefore SoA, for 
low to medium levels of automation, the effect becomes detrimental to operators’ SoA when the level of automa-
tion exceeds 90%, even though their performance continues to increase—the reason being that at these levels 
of automation, participants are no longer able to attribute the (good) performance of the system to themselves.

While these results underline the flexible nature of SoA, they also demonstrate that automation often has a 
significant impact on the experience of the operators in charge of controlling them. This complex relationship 
between automation and agentive experience can also have dramatic consequences in terms of system accept-
ability, operator engagement and  performance10. In this paper, we assume that a better characterization of the 
relationship between automation and sense of agency could help identify guidelines on how to enhance opera-
tors’ SoA in interacting with technological systems. For example, a recent line of research proposes to mitigate 
the decrease in SoA induced by automation by reducing system opacity. System opacity refers to the difficulty 
for human operators to understand how intelligent systems work, which can make their objectives confusing or 
difficult to represent, and their future behavior difficult to predict. Critically, system opacity has been proposed 
as a potential mediator of these changes in SoA when interacting with automation  technology6. Remedying this 
opacity by increasing the predictability of the system’s actions (i.e., the human operator’s ability to anticipate 
the system’s actions or choices) could therefore improve the SoA of human operators in charge of their control. 
For example, Le Goff and  colleagues12 used the communication of system action intentions to increase system 
predictability, and showed that such communication improved operator SoA and performance, as well as system 
acceptability. Moreover, this type of communication would also have an impact on trust in artificial agents, as 
well as on willingness to cooperate with these  agents12.

In a more recent study, we found a similar effect using metacognitive information feedback during decision 
 making13. For an artificial system, metacognitive information refers to what the system understands about its 
own internal procedures—and more generally refers to the system’s ability to monitor its operation and report 
on the product of this monitoring, in the form of a measure such as confidence in its  response14,15. We designed 
an avoidance task in which an assistance system could impose a choice and communicate its confidence in that 
choice. Participants’ choice as well as participant’s SoA (implicit and explicit) and acceptability in the system’s 
decision were collected throughout the experiment. The results showed that the metacognitive information pro-
vided by the system helped restore the operator’s SoA, and this increased SoA was also associated with greater 
system acceptability. In contrast, and as expected, our measure of “control used” (i.e. the resources the subject 
reported having invested in the task) showed a negative relationship with the explicability factor. These results 
complement those obtained  previously11 and demonstrate the positive role of system intelligibility on the SoA 
of operators interacting with automated systems.

Interestingly, we also observed an unexpected effect of task difficulty on SoA. In particular, we found an 
increase in SoA with increasing difficulty, a relationship similar to that observed between difficulty and our 
measure of control used. This finding suggests that cognitive resources—as measured by reports of "control 
used"—can modify individuals’ SoA. This relationship between cognitive resources and control experience is 
not new, but conflicting results have been reported in this regard so  far13,16,17. Further, we also found that task 
difficulty modulates the relationship between explicability and automation. When the subject acts alone and 
receives no assistance, the uncertainty related to the difficulty of the task prevents the formation of a reliable 
SoA. On the other hand, when the subject is assisted and the assistance system is well calibrated, both in terms of 
objective performance and metacognitive evaluation, the subject’s SoA naturally benefits from the cues provided 
by the system. Together, these results suggest that (1) the SoA can be influenced by the level of cognitive control 
invested in the task, and that (2) metacognitive information (e.g. confidence) communicated by a support system 
can help the human operator control the amount of cognitive resources to invest in the task. Note that a recent 
 study18 similarly suggests that the decision to invest cognitive resources in a task is mediated at a higher-order 
level through metacognitive control.

Taken together, our results support the idea that the explicability of the system (i.e., the metacognitive infor-
mation it returns) guides the allocation of cognitive resources needed to maintain control over the action, and 
that this level of cognitive control impacts the participant’s SoA. If this is the case, the control resources invested 
in the task and, through them, the participant’s SoA, should be modulated by the system’ reliability (i.e., the 
probability that the system will provide accurate information). Furthermore, this relation between reliability 
and control resources should be modulated by the explicability of the system. The present study sought to test 
these hypotheses directly, by selectively manipulating the reliability of an assistance system and measuring the 
impact of this manipulation on human participants’ SoA and acceptability.

Methods
The experimental task described in this work is based in part on a previous  study13. In what follows, we focus 
on presenting the essential information needed to understand the current study, and refer to the original article 
for a full description of the methods.

Participants. Forty participants were recruited (27 females, mean age = 32.4; SD = 10.4). Sample size calcula-
tion was based on the effects observed in a previous study using a similar  protocol13. A priori power calculation 
was performed using G*Power  software19, with a power of 0.80 and two-sided alpha level set at 0.05. The number 
of participants required to detect a mean effect size of d = 0.4 (based on a similar  study13) in a pairwise compari-
son, with exclusion of ~ 10% of the sample on the basis of predefined exclusion criteria, was forty. In practice, 40 
participants were recruited to reach 34 analyzable subjects (6 excluded) on the basis of our exclusion criteria (see 
“Data analysis” section for more details). The study was approved by the Inserm Ethics Evaluation Committee 
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(CEEI, n. 21-810). All participants gave written informed consent before inclusion in the study, which was car-
ried out in accordance with the declaration of  Helsinki20,21. The inclusion criteria were being older than 18 years, 
reporting no history of neurological or psychiatric disorders, no auditory disorders, and a normal or corrected-
to-normal vision. Participants were all naive to the purpose of the study.

The studies were conducted on the experimental platform (PRISME) of the Institut du Cerveau et de la Moelle 
épinière (ICM) in Paris. The participants were tested in groups (maximum 12 participants) in a large testing 
room designed for this purpose. Each participant was brought individually in front of a computer, isolated by 
partitions, and was equipped with noise-cancelling headphones. The study was divided into two sessions, on 
two different days to reduce the effect of fatigue. Each session lasted 2 h, and participants were paid 40 euros 
after completing both sessions. The procedure was the same for both sessions 1 and 2 (training and calibration 
phases, followed by the experimental task).

Material and stimuli. The participants were seated in front of a screen at approximatively 60 cm (HP 23i; 
resolution: 1980 × 1080, 60 Hz). A keyboard and a noise cancelling headphone were used to perform the experi-
ment. As in the previous study, the experiment consisted of a combination of an avoidance task, derived from the 
Random Dot Kinematogram (RDK) experimental protocol, and a temporal estimation task between an action 
and its effect, used as an implicit measure of participants’ sense of  control22. The stimuli presented to participants 
were identical in every respect to those used previously (for details,  see13). Matlab R2016b (MathWorks Inc.) and 
the Psychophysics  Toolbox23–25 were used to develop and run the experiment.

General procedure. Training and calibration phases. Each session was split in two experimental blocks. 
The first block consisted of two training sessions and one calibration phase. The training sessions (15 trials each) 
were designed to familiarize the participant with the avoidance task and the temporal estimation task, whereas 
the calibration phase was used to estimate a psychometric curve for each participant based on RDKs.

The avoidance task consisted in detecting the orientation (left or right) of a target dot cloud while ignoring 
non-coherent dots, and avoiding this target cloud by pressing the key corresponding to one of the two directional 
arrows (right or left arrow) (see Fig. 1). Participants who failed to achieve 75% accuracy repeated the training 
phase.

This training was followed by a calibration phase, in which participants’ performance at different levels of 
coherence was estimated using a double-staircase method, by fitting a psychometric curve to their data. The aim 
of this phase was to determine three levels of difficulty for the avoidance task (easy, medium and high).

Finally, the second training session involved performing the avoidance task followed by a temporal estimation 
task. The latter task involved participants estimating the interval between their response (left or right directional 
arrow) and a neutral sound that occurred shortly after this action. This interval estimation task was used to 

Figure 1.  Illustration of a typical trial during the experimental phase. A fixation cross indicated the start of the 
trial during 800 ms. Then, a RDK appeared for a short period (800 ms). Participants were asked to provide their 
response when the response screen appeared. A sound was played for 100 ms to 1500 ms after the participant’s 
response. Then, the participant was asked to estimate the delay between their response and the apparition of the 
sound, their decision confidence, and their agreement with the forced choice. The trial ended after feedback on 
the performance was given (correct: green tick; error: red cross).
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characterize a phenomenon known as “Temporal binding” (TB), which refers to the perceived compression of the 
temporal interval between a voluntary action and its external  consequence22. This compression is often seen as an 
implicit marker of the sense of agency: a shorter perceived interval would indicate a higher sense of agency over 
the subsequent outcome (for a review, see). We computed TB as the difference between the perceived time and 
the actual delay between the button press and the sound, as routinely done in studies using the TB  measure26–28. 
Note that, unlike the original  study13, here we use only an implicit measure of SoA in order to mitigate drawbacks 
associated with explicit measures—such as posthoc rationalization effects or social desirability biases—, which 
could potentially impact the subsequent acceptability measure (for example, participants might report that the 
system is more acceptable when they previously reported that they felt more in control).

Once the first block (training and calibration) had been completed, participants carried out the testing phase.

Testing phase. The testing phase consisted of the avoidance task followed by the temporal estimation task 
(Fig. 1). A total of 432 trials were carried out, divided into 12 blocks of 36 trials. Of these, 216 trials assigned 
to each level of the experimental factors (Explicability, Automation and Difficulty—see below), and 144 trials 
assigned to each of the reliability conditions (low/medium/high). Two levels of difficulty (easy/hard), corre-
sponding to the 2 levels estimated from the calibration phase, were used during the avoidance task.

Automation factor. Two types of trials were presented, in which the level of automation (free-choice vs. forced-
choice) of the response was manipulated. In free-choice trials, participants chose the target arrow (left or right) 
according to the orientation of the cloud. In forced-choice trials, the computer preselected an arrow for the 
participant. Free-choice and forced-choice trials were randomly interleaved within each block. At the start of 
each trial, a brief sentence signaled the nature of the forthcoming condition (free trials: “You choose”; forced 
trials: “The system chooses”) to avoid anticipatory free responses from the participant  (see14,29,30 for a similar 
procedure). Choice and system confidence were always aligned, with the system choosing the direction in which 
it was most confident.

Explicability factor. Different decision support systems were implemented with different levels of reliability 
depending on the difficulty of the current trial. The reliability of the system was defined here by its performance, 
i.e., its rate of correct responses to the task (low/medium/high). In half of the trials, the system provided its confi-
dence about its decision, while in the other half no confidence was provided. Trials with confidence were labelled 
“guided trials” whereas trials without confidence were labelled “unguided trials” (see Fig. 2). The confidence 
returned by system could range from 1 (the system was not confident in its decision) to 100 (the system was 
absolutely certain of its decision). Importantly, the confidence provided by the systems was calibrated accord-
ing to the difficulty of the current trial and the reliability of the system. The assistance provided by the system 
was directly related to its reliability. Since participants produced an average of 100% correct responses on easy 
trials and 55% on difficult trials, the low-reliability system was therefore on average worse than participants, the 
medium-reliability system was on average as good as participants, and the high-reliability system was on average 
better than participants (see Suppl. Table 1).

The order of presentation of the reliability conditions was pseudo-randomly shuffled. To avoid system-related 
recency effects affecting interactions with other systems, all participants started with the ’medium’ reliability 
system.

Time estimation task (“temporal binding”, TB). The avoidance task was followed by a time estimation task, in 
which participants had to estimate the perceived time interval (1–1500 ms) between their response to the ori-
entation of the cloud and a subsequent sound, among three possible responses (250 ms, 750 ms, and 1250 ms).

Figure 2.  Illustration of the different types of response conditions. The free choice condition corresponds to 
trials in which the subject can choose the direction by herself. The forced choice condition corresponds to trials 
in which the subject must follow the choice of the system (indicated by a red square). One of the two systems 
(system A) guides the subject by returning its relative confidence (between 0 and 100) in each of the two 
possible answers. The second system returns nothing (Unguided).
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Decision confidence. Following the time estimation task, the participant was asked to indicate confidence 
in their performance on the avoidance task using a Likert scale ranging from 1 (low confidence: the partici-
pant thinks they did not avoid the cloud) to 8 (high confidence: the participant thinks they avoided the cloud). 
Depending on the type of trial, the participant was asked to judge either their own performance (free trial) or the 
performance of the system (forced trial). Following the confidence rating, a feedback (green tick or red cross for 
correct or incorrect responses) was given to the participant on their performance on the avoidance task (Fig. 2). 
This feedback was included so that the subject would be informed of their performance and that of the system, 
and could thus assess the reliability of the system’s recommendations. It is important to note that TB was system-
atically measured before the feedback was delivered, and therefore could not be affected by the feedback itself.

Agreement with the forced choice. During the forced trials only, the participant was asked to indicate their 
agreement with the choice imposed by the system, using a Likert scale ranging from 1 (low agreement: the 
participant thinks the system is absolutely wrong) to 8 (high agreement: the participant thinks the system is 
absolutely right).

Acceptability measure. Finally, at the end of each block, participants rated the system’s "acceptability" on two 
dimensions—usefulness and satisfaction—using a scale ranging from "not at all" to "completely". A total of 18 
acceptability measures were collected per subject (one for each type of system encountered) and averaged to 
obtain a total acceptability score per subject (Sup. Table 3).

Data analysis. Data were analyzed using the R  software31 and the ezANOVA  package32. For the Temporal 
Binding measure, the raw data were first filtered according to the interval reported by the participant for each 
interval category shown (250 ms, 750 ms and 1250 ms). Two exclusion criteria were used, based on a previous 
experiment with a similar  paradigm13. First, in each participant, an average interval was calculated for each 
category and intervals that were two standard deviations above or below this average interval were considered 
outliers. We checked that no participant had performances containing more than 7.5% outliers (no participant 
was excluded on the basis of this criterion). To further test the reliability of the reported intervals, a second exclu-
sion criterion was defined on the basis of the correlation between perceived and actual intervals for each interval 
category. Six participants were excluded due to low non-significant coefficients (R’s < 0.2).

Performance to the avoidance task (% of correct responses and response times) and agreement score with 
the forced choice were analyzed using two 2 × 2 × 3 repeated-measures ANOVAs with explicability (guided vs. 
unguided), task difficulty (easy vs. high) and system reliability (low vs. medium vs. high) as within-participants 
factors, whereas Temporal Binding, confidence scores and Response Times (see Supplementary Results) were 
analyzed using two 2 × 2 × 2 × 3 repeated-measures ANOVAs with automation (free vs. forced-choice), explica-
bility (guided vs. unguided), task difficulty (easy vs. hard) and system reliability (low vs. medium vs. high) as 
within-participants factors. Note that percentages of correct responses were only analyzed in the free-choice 
trials, where participants made an intentional choice. Main and interaction effects from all ANOVAs were further 
analyzed using Bonferroni-corrected post hoc pairwise comparisons. The normality assumption was met for the 
residuals of all dependent variables, with the exception of the confidence score (W = 0.9, p < 0.05). The data for 
this variable were therefore min–max normalized before analysis.

Results
Performance on the avoidance task—% correct responses. The ANOVA revealed significant main 
effects of the explicability (mean correct rates: guided = 82.21 ± 17.44; unguided = 78.79 ± 19.68; F(1,33) = 13.32; 
p < 0.001, ηp

2 = 0.288), the reliability (mean correct rates: low-reliability = 78.34 ± 19.18; medium-reliabil-
ity = 79.94 ± 18.42; high-reliability = 83.21 ± 18.14; F(1,33) = 12.43; p < 0.001, ηp

2 = 0.274) and the difficulty factors 
(mean correct rates: easy trials = 94.30 ± 5.20; hard trials = 66.7 ± 6.23; F(2,72) = 263,53; p < 0.001, ηp

2 = 0.889). A 
significant explicability-by-reliability interaction was also found (F(2,66) = 6.22; p = 0.003 ; ηp

2 = 0.159). Post hoc 
comparisons showed that the difference between guided and unguided trials is only significant for the high-
reliability system (p < 0.001). A significant difficulty-by-reliability interaction was also found (F(2,66) = 5.02; 
p = 0.009; ηp

2 = 0.132, Fig. 3). Post hoc comparisons reveal that the difference between the systems is significant 
for the hard trials only (all p < 0.001). No other significant main or interaction effects were found (all p’s ≥ 0.05).

In summary, and as expected, the high-reliability system and the explainable system were the systems that 
most influenced participants to choose the correct direction (relative to the dot cloud). Participants also made 
more errors on hard trials when interacting with the low-reliability system.

Temporal binding. We found a marginal effect of the automation factor (forced: −  151.36 ± 3.88 vs. 
free: − 137.12 ± 3.78; F(1,33) = 4.02; p = 0.053; ηp

2 = 0.109) and a significant main effect of the reliability factor 
(F(1,33) = 9.02; p < 0.001; ηp

2 = 0.215) on the TB measure. Bonferroni-corrected post hoc comparisons revealed 
that the low-reliability system was associated with a stronger binding effect, i.e. with shorter action-outcome 
intervals indicating a higher SoA (low: − 158.98 ± 4.86 vs. medium: − 146.31 ± 4.67 vs. high: − 127.43 ± 4.55; 
all p’s < 0.003 except for low vs. medium: p = 0.3). A significant explicability-by-reliability interaction was also 
found (F(2,66) = 3.56; p = 0.034; ηp

2 = 0.097). Interestingly, system reliability had an effect on the guided trials 
only, with low-reliability system being associated with stronger binding effect (guided trials, low − 183.62 ± 7.37 
vs. high: 120.95 ± 6.06; p < 0.001; Fig.  4). A significant difficulty-by-reliability interaction was also found 
(F(2,66) = 3.26; p = 0.045; ηp

2 = 0.090). Bonferroni-corrected post hoc comparisons showed that the difference 
was only significant between the low and high-reliability system (p < 0.01) for the easy and hard trials (Easy tri-
als, low: − 161.10 ± 6.89 < high: − 123.71 ± 6.44; Hard trials, low: − 156.56 ± 6.86 < high: − 131.15 ± 6.44). Another 
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significant explicability-by-automation interaction was also found (F(2,66) = 14.59; p < 0.001; ηp
2 = 0.307). 

Bonferroni-corrected post hoc comparisons revealed that the difference between the free and forced trials was 
only significant for the unguided trials (Unguided trials, free: − 120.87; ± 5.29; forced: − 155.66 ± 5.29; p < 0.001; 
Fig. 4). No other significant main or interaction effects were found (all p’s ≥ 0.05).

In summary, participants’ SoA was greater (i.e., perceived action-outcome intervals were shorter) when 
interacting with the low-reliability guided system (Fig. 4, left panel, red curves).

Decision confidence. The repeated-measures ANOVA revealed significant main effects of the explicabil-
ity (guided: 5.70 ± 0.07 vs. unguided: 5.57 ± 0.0.08; F(1,33) = 7.58; p = 0.01; ηp

2 = 0.187), the automation (free: 
5.87 ± 0.08 vs. forced: 5.41 ± 0.07; F(2,66) = 47.19; p < 0.001; ηp

2 = 0.588), the difficulty (easy: 6.25 ± 0.07 vs. hard: 
5.03 ± 0.08; F(2,66) = 84.47; p < 0.001; ηp

2 = 0.719) and the system reliability factors (low: 5.40 ± 0.08; medium: 
5.63 ± 0.09; high: 5.89 ± 0.08; p < 0.001). The automation-by-reliability interaction was significant (F(2,66) = 32.82; 
p < 0.001; ηp2 = 0.499). Post hoc comparisons revealed that decision confidence was modulated by system reli-
ability (low: 4.98 ± 0.04; medium: 5.43 ± 0.04; high: 5.80 ± 0.04) in forced trials only (all p’s < 0.0001). In free 

Figure 3.  (a) Mean Correct Response Rate (in %) associated with the two levels of Difficulty (Easy vs. Hard) 
and System Reliability (Low vs. Medium vs. High) factors (left panel). (b) Mean Correct Response Rate (in %) 
associated with the two levels of Explicability (Guided vs. Unguided) and the system reliability (Low vs. Medium 
vs. High) factors (right panel). Error bars show ± 1 within-subject standard error of the mean (S.E.M).

Figure 4.  Average temporal binding associated with the automation (free vs. forced), explicability (guided vs. 
unguided), system reliability (low vs. medium vs. high) and difficulty factors (easy vs. high). Solid lines: easy 
trials; dashed lines: hard trials. Error bars show ± 1 within-subject standard error of the mean (S.E.M).
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trials, the only discernible difference we found was between the medium and high-reliability systems (medium: 
5.80 ± 0.04 vs. high: 5.97 ± 0.04, p = 0.04; all other comparisons, p > 0.05).

A significant difficulty-by-reliability interaction (F(2,66) = 17.85; p < 0.001; ηp2 = 0.351) was also found. Post 
hoc comparisons revealed that decision confidence was modulated by system reliability (low: 5.90 ± 0.04; medium: 
6.23 ± 0.04; high: 6.61 ± 0.03) in easy trials (all p < 0.0001) and to a lesser extent in hard trials (low: 4.88 ± 0.04 
vs high: 5.16 ± 0.04, p = 0.019; all other comparisons, p > 0.05). The explicability-by-automation-by-reliability 
triple interaction was also significant (F(2,66) = 3.58; p = 0.034; ηp2 = 0.098). Post-hoc comparisons revealed that 
decision confidence was modulated by the level of automation (free > forced) and by system reliability (free vs 
forced, low: p < 0.001; medium: p < 0.05; high: p > 0.05), independently of the explicability factor. The difficulty-by-
automation-by-reliability triple interaction (F(2,66) = 11.67; p < 0.001; ηp2 = 0.261) was also significant. Post-hoc 
comparisons showed that the difference between the two levels of automation (free > forced) was reduced when 
system reliability increased, independently of task difficulty (free vs forced, low: p < 0.001; medium: p < 0.001; 
high: p > 0.05). The explicability-by-automation-by-reliability-by-difficulty quadruple interaction was significant 
(F(2,66) = 3.73; p = 0.029; ηp2 = 0.102; Fig. 5).

Decomposition of the 4-way interaction using post hoc tests revealed that participants were more confident 
in their decision on free trials when interacting with the low-reliability system—i.e. when they had to make a free 
choice in a condition where the system made more errors (p < 0.001). This difference disappeared as reliability 
increased (all other comparisons, p > 0.05).

Together, these results show that all four factors tested influenced decision confidence. As expected, partici-
pants were more confident in their decision when interacting with the high-reliability system. In these high-
reliability conditions, the influence of automation levels (free > forced) was also the smallest, and the influence 
of task difficulty (easy > difficult trials) was, in contrast, the largest.

Agreement with forced trials. The repeated-measures ANOVA revealed significant main effects of task 
difficulty (easy: 6.09 ± 2.32 vs. hard: 5.15 ± 2.12; F(2,66) = 84.47; p < 0.001 ; ηp

2 = 0.719) and system reliability (low: 
4.94 ± 2.43 vs. medium: 5.65 ± 2.26 vs. high: 6.28 ± 1.89; p < 0.001). The explicability-by-reliability interaction was 
significant (F(2,66) = 4.93; p = 0.01; ηp2 = 0.130). Post hoc comparisons revealed that explicability influenced the 
agreement score (guided > unguided), specifically when participants interacted with the high-reliability system 
(p = 0.05). The difficulty-by-reliability interaction was also significant (F(2,66) = 32.72; p < 0.001; ηp2 = 0.498). 
Post hoc comparisons showed that difficulty influenced the agreement score (easy > hard), specifically when 
participants interacted with medium- and high-reliability systems (easy vs hard: low reliability: p = 0.1; medium- 
and high-reliability: p < 0.001). The explicability-by-difficulty-by-reliability triple interaction was also significant 
(F(2,66) = 5.73; p = 0.006; ηp2 = 0.207). Post-hoc comparisons revealed that agreement scores were influenced 
by system reliability (low < medium < high), specifically when the system communicated its confidence (guided 
trials) in easy (all p’s < 0.001) and hard trials (p < 0.01). When the system did not communicate its confidence 
(unguided trials), the influence of system reliability was observed in easy trials (all p < 0.001) and between low- 
and high-reliability systems in hard trials (low vs high: p = 0.001 all other comparisons, p > 0.05) (see Sup Fig. 2). 
No other significant main or interaction effects were found (all p’s > 0.05).

In summary, all three factors influenced agreement with system choice. As expected, participants agreed more 
with the high-reliability system in the easy and guided trials. However, when the system did not communicate 

Figure 5.  Average decision confidence scores associated with the automation (free vs. forced), explicability 
(guided vs. unguided), system reliability (low vs. medium vs. high) and difficulty factors (easy vs. high). Solid 
lines: easy trials; dashed lines: hard trials. Error bars show ± 1 within-subject standard error of the mean 
(S.E.M).
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confidence (unguided trials), the influence of the reliability factor on agreement was primarily observed in the 
easy trials.

Acceptability scales. For the Satisfaction score, the repeated-measures ANOVA revealed main effects of 
the explicability (guided: 59.62 ± 2.01 vs. unguided: 55.33 ± 1.89, F(1,33) = 6.75; p = 0.014; ηp

2 = 0.170) and system 
reliability factors (low: 38.70 ± 2.50 vs. medium: 38.69 ± 2.23 vs. high: 74.10 ± 2.08; F(1,33) = 175.51; p < 0.001; 
ηp

2 = 0.842). In addition, the explicability-by-reliability interaction was significant (F(2,66) = 4.41; p = 0.016; 
ηp2 = 0.118; Fig. 6a). Post-hoc analyses revealed that explicability (guided > unguided) influenced satisfaction 
only when participants interacted with the low-reliability system (p < 0.001). For the Usefulness score, the 
repeated-measures ANOVA revealed main effects of explicability (guided: 58.84 ± 1.87; unguided: 54.01 ± 1.94; 
F(1,33) = 9.39; p = 0.004; ηp2 = 0.221) and system reliability (low: 45.12 ± 1.87; medium: 55.20 ± 2.23; high: 
66.95 ± 2.10; F(1,33) = 57.70; p < 0.001; ηp2 = 0.636). (Fig. 6b).

In summary, and as expected, participants found the guided and more reliable system more acceptable—both 
on the usefulness and satisfaction dimensions.

Discussion
It is now accepted that providing assistance to human operators can improve their performance without altering 
their sense of control (SoA)10,13,27. Thus, when the assistance system is effectively calibrated, both in terms of 
objective performance and metacognitive evaluation, the operator’s SoA naturally benefits from the cues com-
municated by the  system13. One reason for this could be that a well-calibrated system allows for a better allocation 
of resources in the action or task. In this study, we sought to test this hypothesis further by determining whether, 
and to what extent, the SoA of human operators interacting with an assistance system is modulated when the 
reliability of the assistance varies. To do so, we selectively changed the level of performance (or reliability) of the 
assistance system and measured the influence of this change on the SoA and acceptability of human participants.

Reliability and sense of control. We first hypothesized that system reliability would modulate partici-
pants’ SoA, and specifically the amount of control used to perform the task  (see13 for the relationship between 
SoA and control used). In particular, we predicted that the lower the reliability of the system, the higher the SoA 
would be, as low reliability requires the operator to commit more cognitive resources to the action to maintain 
control. We first observed that participants were able to discriminate between the different types of systems 
they interacted with. Thus, participants were overall more confident in their own decision (Fig. 5) and more 
often disagreed with the system choice when interacting with low-reliability systems. As expected, participants’ 
SoA was modulated by system reliability. Specifically, participants’ SoA was higher when they interacted with 
the low-reliability system. Our results are consistent with previous studies investigating "attentional allocation” 
strategies during human–machine interaction with imperfect  assistance33–35. These studies showed that when 
participants interact with a less reliable system, they commit more cognitive control to the task. Variations in 
our implicit measure of control (temporal binding) appear to reflect these variations in the amount of control 
allocated to the current task as a function of the reliability of the assistance system.

Figure 6.  (a) Mean Satisfaction Score associated with the two levels of explicability (Guided vs. No Guided) 
and system reliability (Low vs. Medium vs. High) factors (left panel). (b) Mean Usefulness Score associated with 
the two levels of explicability (Guided vs. No Guided) and the system reliability (Low vs. Medium vs. High) 
factors (right panel). Error bars show ± 1 within-subject standard error of the mean (S.E.M).
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Explicability, automation and sense of control. Our second hypothesis was that communicating the 
system’s confidence in the best decision to be made (explicability) would enable agents to better regulate the allo-
cation of their control resources in the current task. We observed an interaction between the explicability and 
reliability factors: participants’ SoA, as measured by temporal binding, was primarily impacted by the system’s 
confidence in the guided condition. In other words, participants’ SoA was highest when the system’s reliability 
was low, but only when the system returned information about confidence in its decision; conversely, SoA was 
lowest when no explanation was provided. Taken together, these results suggest that the metacognitive informa-
tion provided by the system would help select the optimal policy for cognitive control engagement.

Cognitive  control36,37 engagement is known to depend on detection and awareness of variations in task 
demands. It is likely that the metacognitive information provided by the system helps participants become aware 
of these variations in task demands and contributes to a more flexible engagement of cognitive control. Interest-
ingly, in the presence of metacognitive information, the level of automation did not affect the level of SoA, such 
that participants experienced similar control in the free and forced conditions. An opposite pattern of results was 
observed in the unguided condition. Specifically, we found that SoA was highest when participants were forced 
to choose the system. In other words, in the absence of metacognitive information about the system’s confidence 
in its own performance, cognitive control regulation becomes more difficult, and the participant’s SoA depends 
primarily on the assistance provided by the automated system.

Together, these results suggest that participants’ SoA can be influenced by different sources of information 
depending on their reliability, but also their  availability3,38. When the system guides the decision (via metacogni-
tive information), its reliability plays a major role in decision making and in the formation of the SoA (Fig. 4). 
This positive influence of explicability on participants’ SoA suggests that the explicability of the system helps to 
proactively optimize the resources to be committed to making the right  decision39. In contrast, when the system 
does not guide (no presence of metacognitive information), the reliability of the system does not influence the 
participant’s SoA, which therefore relies on other types of information, such as the level of automation of the 
task (Fig. 4)11, 13.

These results are consistent with recent studies that showed that making a system more "explainable", i.e., 
making it less opaque (via a bonus or confidence in its decision), benefits to the SoA of participants interacting 
with  it13. Our results further suggest that the confidence communicated by the assistance system can be used by 
the participant as a metacognitive signal to adjust the amount of resources to invest in the current task (meta-
cognitive  control40).

Explicability and acceptability. We hypothesized that a decrease in SoA, caused by a decrease in sys-
tem reliability, would be associated with a decrease in system  acceptability11,13. Our measures of acceptability, 
represented by the usefulness and satisfaction scores, were indeed positively influenced by system explicability. 
Critically, both guided and unguided systems had the same levels of performance, yet the guided system was 
generally perceived more favourably. As already suggested in the  literature11,13, improving the explicability of 
systems, by making them more intelligible to humans, improves their usefulness, and the communication of 
metacognitive information could contribute to making the automated system more cooperative. Interestingly, 
our measures of acceptability were also positively influenced by system reliability: participants felt greater overall 
acceptability for the high reliability system (Fig. 5). As noted above, this result suggests that the measures of con-
trol and acceptability used in this study do not index the same thing. While the temporal binding measure would 
be sensitive to the demands of the task at hand, and would therefore reflect a proxy for the amount of resources 
the subjects believe they should invest in the task, acceptability would be directly related to the experience of 
control felt by operators when interacting with the  system41.

Conclusions and perspectives
Our results show that participants’ SoA can be influenced by different sources of information. Metacognitive 
information, when provided by the system during the decision (i.e., in guided conditions), appear to play an 
important role in decision making and SoA formation, by allowing the participant to engage the appropriate 
control resources in the task at hand. When the system does not deliver metacognitive information (i.e., unguided 
conditions), participants rely on other types of information, such as the level and nature of task automation. Our 
results presuppose a strong link between the resource engaged in the action and the temporal binding measure 
(used as a proxy for the participant’s control experience). Interestingly, recent  studies42,43 have linked cognitive 
resources to response times. Therefore, we examined response times, and a significant effect of system reliability 
was observed (see Supplementary Analysis). However, the results obtained must be taken with caution, as the 
protocol used was not specifically designed to analyze response times—i.e., we did not ask participants to respond 
as quickly as possible. To further test whether interaction with a more or less opaque (or reliable) decision sup-
port system leads to different management of attentional resources, future research could probe more directly 
the control resources engaged by the participant during the task, either using behavioral measures (such as the 
"control used" scale used  in13, 41) or using objective metrics such as eye-tracking. Time spent on a particular area 
of a screen is indeed traditionally considered an indication of difficulty in extracting relevant information from 
that  area44,45. Eye-tracking could thus help determine the participant’s focus of attention during the task, as well 
as the duration of this focus, and identify the moment when the participant becomes aware of the information 
returned by the system. Eye-tracking, as an indirect measure of attentional resource management, would usefully 
complement the behavioral measures employed in this paradigm.

Another potential limitation of the study is the apparent contradiction between measures of confidence 
and SoA: participants report greater confidence in their decisions in unguided free-choice trials compared 
with forced-choice trials, while showing the lowest SoA in these conditions. We believe, however, that this 
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contradiction is only apparent and stems from the fact that confidence and SoA do not measure the same 
thing: while SoA measures, or expresses, causal responsibility for the outcome of a decision, confidence instead 
estimates the subjective probability of being correct in one’s  decision46. Our tentative explanation is that, under 
conditions of (unguided) free choice, participants are more likely to monitor their internal performance-related 
signals rather than focus on external recommendations, and therefore tend to express greater confidence in 
their choice as a result.

Making a system more explainable (or intelligible to the human operator) in its choices may reduce the 
physical and cognitive distance between the system and the operator, a distance that can adversely affect both 
performance and user experience in human–computer  interactions47. Our results support the idea that the 
subjective experience of control in human–machine interaction could be used as a guideline to make systems 
more agentic and  acceptable11,13.

Data availability
The datasets generated and/or analysed as part of this study are available in the “Reliability and agency data” 
repository, https:// osf. io/ syk79.
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