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Selecting cardiac magnetic 
resonance images suitable 
for annotation of pulmonary 
arteries using an active‑learning 
based deep learning model
Werner van der Veen 1,2, Jan‑Walter Benjamins 1, Ming Wai Yeung 1,3 & Pim van der Harst 1,3*

An increasing and aging patient population poses a growing burden on healthcare professionals. 
Automation of medical imaging diagnostics holds promise for enhancing patient care and reducing 
manpower required to accommodate an increasing patient‑population. Deep learning, a subset of 
machine learning, has the potential to facilitate automated diagnostics, but commonly requires large‑
scaled labeled datasets. In medical domains, data is often abundant but labeling is a laborious and 
costly task. Active learning provides a method to optimize the selection of unlabeled samples that are 
most suitable for improvement of the model and incorporate them into the model training process. 
This approach proves beneficial when only a small number of labeled samples are available. Various 
selection methods currently exist, but most of them employ fixed querying schedules. There is limited 
research on how the timing of a query can impact performance in relation to the number of queried 
samples. This paper proposes a novel approach called dynamic querying, which aims to optimize the 
timing of queries to enhance model development while utilizing as few labeled images as possible. 
The performance of the proposed model is compared to a model trained utilizing a fully‑supervised 
training method, and its effectiveness is assessed based on dataset size requirements and loss rates. 
Dynamic querying demonstrates a considerably faster learning curve in relation to the number of 
labeled samples used, achieving an accuracy of 70% using only 24 samples, compared to 82% for a 
fully‑supervised model trained on the complete training dataset of 1017 images.

Cardiovascular disease (CVD) is the leading cause of human mortality  worldwide1. The burden of CVD on 
healthcare professionals is further exacerbated by population aging and an increasing number of  patients2,3. 
Considering it is estimated that up to 90% of CVD cases are preventable, there is a growing need for effective 
early diagnosis of  CVD4.

In recent years, machine learning has revolutionized computer vision and image processing. Within the 
medical domain, various solutions have been proposed to automate image diagnosis, disease detection, charac-
terization of pathological features in images, and clinical decision support systems for  triage5. Medical data is 
abundantly available in hospitals and is often shared in large datasets for research purposes. However, the limited 
availability of labeled data remains a key challenge in utilizing these large-scaled datasets to train deep neural 
 networks6. Labeling medical data is a labor-intensive process that requires the involvement of trained healthcare 
professionals, who may have limited time to address to  research6,7. Consequently, labeling sufficient amounts of 
medical data has become a bottleneck in the effective development and deployment of deep learning systems 
for medical imaging  analysis6.

Active learning is a semi-supervised method that aims to reduce the required numbers of labeled samples 
required in machine learning. In active learning, the model learns by querying unlabeled samples from a large 
dataset and requesting the user to label them during training. By selecting the most informative samples for 
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consecutive training, it is theorized that the model can achieve adequate performance while relying on consider-
ably fewer labeled data  samples8.

Current state-of-the-art active learning techniques commonly utilize fixed scheduling of training and query-
ing steps. However, the rate and timing at which the model’s learning plateaus may vary for each set of labeled 
training-data. Consequently, determining the optimal timing for a fixed scheduler becomes a critical hyperpa-
rameter, which may be chosen arbitrarily or necessitate additional experiments for optimal selection. Conduct-
ing a training round when the model’s learning has already plateaued results in inefficiency. Conversely, if the 
fixed time between queries is too short, the process may not have undergone a sufficient amount of iterations to 
effectively extract underlying patterns from the available training data before being interrupted to select a new 
data sample for the next training round.

In this study we propose dynamic querying, a strategy to optimize the scheduling. We demonstrate this 
strategy in an implementation of active learning using a dataset of short-axis cardiac magnetic resonance (CMR) 
scans. The primary aim of this research is to evaluate the efficiency of applying active learning to medical images 
and to assess if dynamic querying reduces learning time. The performance of the proposed model is compared 
to a model trained utilizing a fully-supervised training method. Effectiveness of the active learning approach 
is assessed based on dataset size requirements and loss rates. The task at hand is to classify whether presented 
images are scan slices that cross the widest point of the left pulmonary artery orthogonally.

Methods
Study population. The UK Biobank is a prospective cohort study conducted in the United Kingdom, in 
which over half a million participants between the ages of 40 and 69 in a community-based  population9 were 
recruited. The study received ethical approval from the North West Multi-Centre Research Ethics Committee 
(REC reference: 16/NW/0274). All participants of the UK Biobank provided informed consent. All the study 
methods comply with the relevant guidelines and regulations. This research utilized the UK Biobank resource 
under the application number 74395. CMR scans from 1117 individuals from the UK Biobank were included 
in the current study. The scans were stored in DICOM media format, comprising both pixel data and metadata, 
such as the orientation and position of the participant within the scanner.

Data labeling. The dataset D consists of two-dimensional short-axis cardiac scans (see Fig. 1, right). Each 
image is labeled with either the class label included (I) or excluded (E). Manual labeling was performed by a 
human annotator, who inspected the full three-dimensional scan volume corresponding to each scan slice. The 
annotator received supervision from two trained medical imaging professionals with whom all labeling deci-
sions were discussed extensively.

An image was labeled as included for segmentation of the pulmonary artery when it intersected the left pul-
monary artery orthogonally through its widest point. This required the scan to be acquired with the appropriate 
orientation and positioned correctly within the participant. To assess the acquisition position, the annotator 
observed the short-axis scan (Fig. 1, right) in relation to the corresponding long-axis scan (Fig. 1, center and left). 
The position of the short-axis scan, perpendicular to the long-axis scan was indicated by a yellow line projected 
onto the long-axis scan (Fig. 1, left). Examples of scans labeled as included are presented in Fig. 2a. Images were 
classified as excluded when these criteria were not met or when the human labeler could not clearly classify due 
to factors such as poor image quality. Examples of scans labeled as excluded are displayed in Fig. 2b.

Figure 1.  Example of a short-axis scan (right, yellow border) and its corresponding long-axis scan (left, purple 
border). On the left, the yellow line in the long-axis scan slice renders the projection of the short-axis scan, 
which is acquired perpendicularly to the long-axis scan. In the center, the orientation and location of each plane 
are presented schematically, also in relation to the orientation of the heart. The yellow line in the long-axis scan 
(left) indicates the location at which the short-axis scan (right) was obtained. Since the perpendicular, long-axis 
view is needed to determine the exact scan location, both scans are required to assess whether the short-axis 
scan is usable for annotation, making this selection process arduous and error prone. The task for the model was 
to classify the scans using only the information present in the short-axis scan slice.
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Splitting. The two classes I and E are disjoint, meaning that no image scans exist that are elements of both 
classes (E ∩ I = ∅). Additionally, no other classes are present in the dataset (D = E ∪ I).

To evaluate the model’s performance after training, a subset of data was withheld and was not exposed to the 
model during training. The validation dataset DV ⊂ D was created by randomly selecting an equal number of 
scans from both classes (Eq. 2) to ensure a balanced representation. Half of the smaller class was selected, with 
a maximum of 50 scans per class. This approach ensured that the validation set was not excessively large and 
allowed for an adequate number of pseudo-unlabeled samples to be queried.

The training set DT consisted of all remaining image scans after excluding the validation dataset: DT = D \ DV.
A labeled dataset DL was constructed by initially populating it with a preprocessed P(·) batch of image scans 

L randomly sampled from the training data (Eq. 3). In the active learning method employed in this paper, the 
size n of L was set to 1, allowing the network to select the most informative samples right after initialization. In 
contrast, for fully supervised learning all data points were labeled and used to train the model, n = |DT|.

If n = |DT|, then the system pre-labeled all data points, effectively enabling fully supervised training. On the 
other hand, if 1 ≤ n < |DT|, active learning was employed. In this case, some data points remained in DT but were 
not included in DL, and they could be queried during the model’s learning process.

Software. Data analyses, creation of visualizations and plots, model training and evaluation were performed 
in Python version 3.74. Both fully supervised and active learning neural networks were trained using Pytorch 
deep learning platform version 1.4.010. All pixel data and metadata extractions from DICOM media files were 
carried out using Python package PyDicom version 1.0. Plots were generated using Python package matplotlib 
version 3.1.1. Further details regarding the use of Python packages and their respective versions are provided 
throughout the paper when relevant.

Image preprocessing. A preprocessing pipeline P(·) was applied to transform the raw images into feature 
representations that accelerate the model training process.

Since the raw pulmonary artery scan images were large, and the predictive region of interest was presumed 
to be located in the approximate heart region, cropping was performed. The cropping area was empirically 
determined to be between 2/16 and 10/16 on the horizontal axis and between 5/16 and 12/16 on the vertical axis. 
Cropping not only reduced the data throughput for the model but also eliminated potentially irrelevant infor-
mation for the task at hand.

Subsequently, the images were resized to 160 × 200 pixels using bilinear interpolation. Finally, the images 
were transformed into greyscale, resulting in one-channel encoding, and normalized to values between -1 and 1.

(1)|Dv ∩ E| = |Dv ∩ I|

(2)= max

(

50,
min (|E|, |I|)

2

)

(3)DL = P({L ⊆ DT |card(L) = n })

Figure 2.  Examples of scans from the two classes. On the left (a), four examples of the Included class are 
presented. On the right (b), four examples of the Excluded class are displayed. Although clear blurs and 
deformations are present in some of the excluded images, some excluded images—e.g. (b) left-bottom—show 
strong resemblances with included images. Therefore, a human observer cannot classify an image for inclusion 
without a long-axis scan including the yellow projection line of the short-axis image (Fig. 1, left).
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Exploratory analysis. To gain insight into the difficulty of the classification task, we calculated 128 prin-
cipal components from the cropped imaging data, using the method described by Tipping and  Bishop11. Sub-
sequently, we applied two-dimensional t-distributed stochastic neighbor embedding (t-SNE) to create a visual 
representation of the class  distribution12. For both principal component analysis and for t-SNE visualization, we 
utilized scikit-learn Python package version 0.21.3.

Augmentation. To mitigate the risk of overfitting, data augmentation was employed to increase the size 
of the training data and reduce the likelihood of overfitting. For image augmentation, we utilized Torchvision 
python library version 0.5.0.

In this study, we performed affine transformations that preserved potentially predictive parallel spatial pat-
terns in the image data. The augmentation process involved randomly rotating the image clockwise or counter-
clockwise by at most 5°, scaling it up or down with a random factor of up to 5%, and horizontally shearing it by 
a random number of pixels within the range of [0,5]. These transformations effectively increased the number of 
training samples by generating slightly different images while retaining relevant features. Additionally, we applied 
two color value transformations by jittering the brightness and the contrast of the image by a factor up to 10%.

Metadata processing. DICOM media files contain metadata—often referred to as ‘the DICOM header’—
providing information about the scan, including scan dimensions, color depth, and acquisition hardware details. 
From each scan’s metadata, we extracted and stored information about the participant’s orientation and position 
relative to the scan plane during the scan. We hypothesized that this information would provide meaningful 
insights into the location of the short-axis scan in relation to its accompanying long-axis scan (Fig.  1). The 
extracted metadata values were fed to the model alongside the corresponding image pixel data. These values 
comprised the Cartesian coordinates (x, y, z), the proper Euler angles (ϕ, θ, ψ), two orientation vectors and a 
scalar value to indicate the relative position of the image slice in the full scan. Additionally, from the scout scan’s 
metadata—a initial scan performed by the operating technician for localization purposes—the participant’s 
position and orientation were used to yield combined information of the scan placement. All metadate values 
were normalized between 0 and 1 using the standard logistic function described in Eq. (4).

Neural network model. Architecture. The model utilized in this study was a deep neural network con-
sisting of successive, interconnected layers. The pixel data of the images was fed through a trainable ResNet18 
 model13, pre-trained on the ImageNet dataset. Transfer learning was applied between natural and medical im-
ages, assuming similarity in low-level features such as edges and shapes. The pre-trained ResNet18 model was 
further trained on the image data in this study.

The metadata was concatenated to the ResNet18 output, and the resulting vector was fed through two dense 
layers of 128 and 56 nodes, respectively. A softmax  function14 transformed the logits into a class probability 
vector, which was then compared with the true label (one-hot vector) to calculate the minibatch loss. The full 
architecture of the neural network model is illustrated in Supplementary Fig. S1.

Loss. The softmax  equation14 transformed the network’s outputs into class probability vectors, ensuring prob-
abilities summed to 1. The cross-entropy loss was then calculated between these probability vectors and the “true 
class” vectors, represented as one-hot vectors corresponding to the image scan labels. The binary cross-entropy 
 loss15, ranging from 0 to 1, indicates the dissimilarity between the two vectors.

Optimizer. The stochastic gradient descent with Nesterov momentum was employed as the optimizer function 
for the training the  model16,17. This function updates the parameters in the negative direction of a gradient esti-
mate and incorporates an additional momentum value of 0.95 to stabilize the gradient direction by accumulating 
current and previous gradients. This is particularly useful in handling high curvature of the loss function.

To prevent overfitting, regularization methods were employed. Weight decay—also known as L2 parameter 
norm penalty, ridge regression, or Tikhonov  regularization18—was a vital regularization method in training this 
model, adding an L2 penalty equal to the square of the magnitude of coefficients, reducing the model’s effective 
capacity. In this study, a penalty value of 1 ×  10−2 was used.

Learning rate scheduler. The learning rate regulates the learning speed of the network parameters and requires 
careful scheduling.

In this study, the learning rate was initialized at 1 ×  10−2 and decreased by a factor of 0.9 whenever the loss 
on the training minibatches appeared to plateau for at least 20 epochs. This helps a more precise convergence of 
the model in a relatively low-error subspace within the full solution space.

Evaluation of classification performance. Model performance was measured using the accuracy metric, rep-
resenting the percentage of correctly classified validation images. Accuracy estimates are reported with 95% 
confidence intervals (CI) based on model predictions in the validation holdout dataset.

(4)S(x) =
ex

ex + 1
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Active learning. Querying. In an active learning framework, images are labeled during the training pro-
cess via queries. The querying process involves asking the oracle, such as a user in general, or an automated pro-
cess in this study, to label appropriate images from the set of unlabeled images. Initial images are randomly se-
lected, since the absence of labels in the unlabeled dataset seems to preclude more elaborate querying strategies.

Auto-labeling. To emulate an active learning scenario, the system utilized pseudo-unlabeled data, whose labels 
remained concealed until an image scan was selected during querying. This approach simulated the process of 
human annotation by request of the system, enabling the learning process to proceed without actual human 
involvement in labeling the samples during the experiment.

Querying strategy. We adopted a state-of-the-art querying strategy in the field of active learning, specifically 
the entropy-based querying  strategy19, which falls under the umbrella of uncertainty  sampling20.

Entropy-based sampling leverages the concept of entropy to quantify uncertainty in the model’s predictions. 
For each unlabeled sample, the preprocessing pipeline and augmentation are applied, and the resulting sample is 
fed into the neural network to obtain a class probability vector, denoted as y. The entropy of this vector, denoted 
as H (Eq. 5), measures the distribution of the C different classes predicted by the model. If all classes are predicted 
with equal probability, the entropy value is maximal, i.e., H = 1. Conversely, if the class probability vector is a 
one-hot vector, indicating high certainty in the prediction, the entropy value is minimal, i.e., H = 0. The samples 
that have a high-class entropy value H are the most informative to the model at that point during training.

In this system, during each query, we calculated the entropy of a random selection of E = 500 unlabeled sam-
ples. From this selection, we queried the L = 1 sample(s) with the highest entropy. The parameters E and L were 
configurable hyperparameters, allowing for flexibility in the querying strategy. For instance, setting E = L would 
effectively disable the entropy test, while setting E = |DT| would lead to querying the sample(s) with the absolute 
highest entropy, at the cost of increased computational power when dealing with larger unlabeled datasets.

Querying scheduler. In active learning, determining the appropriate interval for querying new samples are que-
ried is crucial to achieve the desired model performance. Querying too frequently can counteract the benefits 
of active learning, as the goal is to achieve high performance utilizing a minimal number of labeled samples. On 
the other hand, querying too sparsely can lead to overfitting and poor generalization. To address this challenge, 
we propose a query scheduler called dynamic querying, aimed at striking a balance between these extremities.

The primary objective of the query scheduler was to select new data points for labeling whenever the model’s 
learning from the available labeled samples became insufficient. This process was governed by two preconditions, 
and a new sample was queried when either of the following conditions was met:

1. If the simple moving average of the training loss of 5 most recent epochs dipped below a predefined fixed 
threshold of 1 ×  10−4, or

2. If at least 20 epochs had passed since the previous query, and the training loss was plateauing. We defined 
the loss as “plateaued” if the mean loss of the 25% most recent epochs since the last query was higher than 
half of the mean loss of the preceding 75% of the epochs.

Condition 1 is implemented to prevent drastic overfitting and avoid memorizing the training data. Condi-
tion 2, on the other hand, prompted the system to select new data points when the training loss did not decrease 
rapidly anymore, leading the model to explore beyond a local optimum its solution space was likely in. This 
approach allowed the model to explore new regions in the data distribution and improve its overall performance.

To evaluate the effectiveness of dynamic querying, we conducted a comparative analysis of the model’s perfor-
mance, measured by its accuracy, in relation to the number of images used in each training round. We compared 
these metrics between a model trained utilizing our dynamic scheduling approach, and models trained using a 
fixed querying schedule with epoch intervals set at 15, 25, 30, and 50.

Hyperparameter sweep. The model training process involved several hyperparameters, including learn-
ing rate, gamma (learning rate decay factor), weight decay, batch size, and Nesterov momentum term. The same 
network hyperparameters were used in both the fully supervised and active learning scenario. Managing a large 
list of hyperparameters can be complex and time consuming, as it requires training and comparing multiple 
models with varying settings. To address this, we employed a hyperparameter sweep, automating the search for 
optimal hyperparameter combinations and reducing arbitrary choices in model design.

The hyperparameter sweeps were conducted as follows:

1. A linear search was performed for each hyperparameter, exploring a range of values, logarithmically scaled 
from the default settings. The best-performing value for each hyperparameter was saved, and this process 
was repeated three times.

2. For weight decay and initial learning rate, a grid search was performed, evaluating all combinations of the 
two ranges of logarithmically scaled values. The best performing combination was selected, resulting in 
1 ×  10−2 for both hyperparameters.

(5)H
(

y
)

= −

c
∑

c=1

yi log2 yi
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Results
Population. The dataset comprised a total of 1117 images, of which 50 images labeled as Included and 
50 images labeled as Excluded were randomly selected for the validation dataset. The remaining 1017 images 
formed the training dataset, with 347 images labeled as Excluded and 670 labeled as Included.

Exploratory analysis. To gain insights into the dataset’s characteristics and assess its separability, we per-
formed principal component analysis and subsequent t-SNE visualization on the preprocessed data. As Fig. 3 
shows, the data comprised two weakly distinguished clusters, indicating that a moderate classification perfor-
mance could be achievable on this dataset.

Model performance. The fully-supervised method achieved an accuracy of 82% (CI 74.5–89.5%) on the 
complete training dataset of 1017 images, which is considered the empirical upper bound for this task given the 
current dataset. In contrast, the active learning achieved an accuracy of 70% (CI 63.0–77.5%) using only 24 sam-
ples after 994 epochs (CI 601–1387). While the active learning scenario naturally resulted in a lower accuracy 
due to the use of fewer labeled samples, it demonstrated adequate performance while requiring with significantly 
reduced labeling requirements (as presented in Supplementary Fig. S2).

The results of the fully-supervised and active learning training runs are presented in Fig. 4 and Supplementary 
Figs. S2 and S3. Supplementary Fig. S2 illustrates the trade-off between the maximum validation accuracy and 
the number of queried samples when employing active learning.

In comparison to the dynamic querying approach, we conducted four runs with fixed querying schedules, 
each querying after Q epochs, where Q ∈ [15, 25, 30, 50]. To ensure a fair comparison, all runs were limited to 
query and select 30 samples. The run with Q = 15 achieved a maximum accuracy of 66% (CI 56.0–75.1%) after 
908 epochs (CI 672–1144). The run with Q = 25 achieved a maximum accuracy of 72% (CI 65.9–77.1%) after 
872 epochs (CI 530–1213). The run with Q = 30 achieved a maximum accuracy of 73% (CI 61.1.Y–84.6%) after 
1038 epochs (CI 813–1263). The run with Q = 50 achieved a maximum accuracy of 68% (CI 59.4.Y–76.7%) after 
1073 epochs (CI 938–1208).

To further analyze the misclassifications of the trained model, Table 1 lists four statistical measures. Notably, 
the numbers of false positives and false negatives were approximately equal, although such balance might not 
be preferred in a medical setting.

Discussion
The application of deep active learning on medical datasets is a promising direction of research in deep learn-
ing, but it remains relatively unexplored. This study focused on the investigation of query scheduling, an aspect 
of active learning that has received less attention, as compared to query selection strategies. Dynamic querying 
warrants further investigation, including exploring its potential combination with other existing query selection 
strategies, such as query-by  committee21 or expected model  change22. Historically, querying strategies have domi-
nated active learning research in classical machine learning, where timing of sample selection was less crucial. 
This may have contributed to the relative lack of attention given to query scheduling and dynamic querying.

A fixed querying schedule is a hyperparameter and our experiments confirmed that an optimum likely exists. 
Hence, investigating different fixed schedules extensively is a necessity when applying fixed scheduling to achieve 

Figure 3.  The PCA + t-SNE dimensionality reduction for the two pulmonary artery data classes, with a 
Kullback–Leibler divergence of 0.73.
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appropriate results. While the dynamic querying approach did not surpass the performance of the best fixed que-
rying approach, it demonstrated comparable results and outperformed the majority of the fixed querying runs. 
The same holds for the number of epochs required to train a model using the dynamic scheduling. Additionally, 
dynamic querying exhibited greater stability in its results compared to most of the fixed querying schedules. 
Despite not achieving the absolute best performance, dynamic querying offers a significant advantage by ena-
bling active learning without the need to extensively investigate and fine-tune querying schedules, while still 
delivering near-optimal performance. Translated to future studies, dynamic querying possesses a self-optimizing 
characteristic that can greatly accelerate the initiation of active learning projects.

However, it is important to note that our study focused solely on the application of dynamic querying to a 
specific tailored dataset for a specific purpose. Therefore, no definite conclusions can be drawn from our experi-
ments, regarding the performance of dynamic querying on other imaging modalities, data types, or different 
problem domains. To fully understand the generalizability of dynamic querying, it is essential to evaluate its 
effectiveness across various data types and imaging modalities, thereby providing deeper insights into its potential 
impact on diverse research topics.

An important observation during our experiments was that the accuracy dropped after the initial query 
round in the active learning strategy. This phenomenon was consistent across different approaches and in line 
with previous findings on entropy-based  querying23, indicating the need for improvement in the initial sample 
selection of the active learning algorithm. Additionally, we noticed that the initial validation accuracy varied 
among the different active learning strategies employed. These findings underscore the importance of refining 
the sample selection process to enhance the performance and stability of the active learning algorithm.

Enlarging the initialization minibatch could potentially provide a better and more predictable initial selec-
tion of the unlabeled dataset. However, this would require more human labeling, which would move the sys-
tem towards ordinary supervised learning. Alternatively, other methods, such as representativeness-based 
 approaches24 or adaptive methods balancing between uncertainty-based and representativeness-based  selection25 
have been previously proposed, which could be explored to sample the first image(s). These approaches might 

Figure 4.  Training and validation losses (mean per minibatch). Trainings losses are indicated by blue dotted 
lines. Validation losses are indicated by orange solid lines. Left: losses for the active learning training run. The 
training loss decreases sharply until a sample is queried—indicated by vertical grey bars—after which it spikes 
back up. This oscillation levels off while the loss slowly increases. The validation loss follows an inverse pattern. 
Right: losses for the fully-supervised training run. The training loss decreases sharply and then levels off. The 
validation loss slightly decreases and then plateaus.

Table 1.  Additional metrics for the fully supervised model, obtained as mean values from 50 included and 50 
excluded validation scans.

Metric Value CI

Sensitivity 0.93 0.88–0.98

Specificity 0.92 0.87–0.97

Precision 0.90 0.84–0.96

Negative predictive value 0.95 0.91–0.99
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bootstrap the model with a general case before querying more uncertain samples and, importantly, offer an 
opportunity for follow-up studies to investigate the effectiveness of dynamic querying in combination with a 
more balanced selection strategy.

Larger unlabeled datasets hypothetically achieve better active learning results when using the entropy method, 
as queried samples are more likely to be near the decision boundary. In this study, we initially trained the active 
learning system on a dataset of—up to—1017 scans to achieve an initial accuracy of approximately 70% (CI 
61.0–79.0%), with plans to continue training on the complete UK-biobank imaging dataset, which is an order 
of magnitude larger.

While the entropy-based querying strategy proved effective in many cases, the potential effects of outliers 
and noisy data were not explored in detail. It is possible that high-entropy data may include outliers or corrupted 
samples that can confound the model’s training process. It is a known concern in uncertainty sampling that 
selection strategies may be prone to incorrect estimations regarding the true decision boundaries, partially due 
to  outliers23. Implementing a quality control preprocessing task to detect and exclude outliers could enhance 
the overall performance.

Regarding model selection, we opted for the ResNet18 architecture because of the seemingly difficult clas-
sification task, in which the three-dimensional context of the image slice had to be inferred from the slice itself. 
This decision was based on the ResNet18’s well-established performance in natural image classification. It has 
been suggested in prior research that employing pretrained ImageNet architectures in medical domains may be 
 suboptimal26, while others assert the  opposite27. Our study demonstrates the considerable potential of employing 
active learning with transfer learning on the ResNet18 architecture for the analysis of medical imaging scans, 
utilizing a small number of labeled images.

Strengths and limitations
The key strength of this work lies in the introduction of a dynamic query scheduler, optimizing active learning 
processes by efficiently timing queries for additional labeled data. This approach minimizes the queried train-
ing data and time while maintaining model accuracy. However, there are some limitations to consider. Firstly, 
the dataset used in this study was labeled by a single annotator, potentially introducing observer bias that could 
both models’ reported performances. To mitigate this risk, the annotator was supervised by two trained medical 
imaging experts. Involving multiple annotators to label the dataset independently could further reduce observer 
bias and enhance model performance.

Secondly, the complexity of the classification problem itself may pose a limitation. Even for trained profes-
sionals, classifying the short-axis scans, without considering their relation to the corresponding long-axis images 
can be challenging. For this reason, the model might have learned to classify based solely on the criterion of 
orthogonality of the scan slice with respect to the pulmonary artery, without considering whether it was sliced 
through the widest point. We addressed this limitation by including extra metadata parameters. However, to 
further improve classification accuracy, incorporating adjacent short-axis scan slices, corresponding long-axis 
scans, or voxels encompassing the pulmonary artery region might be necessary. While these additions could 
enhance the model’s performance, they would also increase the input dimensions of the ResNet18, potentially 
complicating the model training and necessitating a larger-scaled training dataset.

Thirdly, the relatively small dataset of 1117 images may have limited the model’s optimal performance. How-
ever, this is a common constraint in the medical domain, and our study aimed to demonstrate an efficient training 
approach under such circumstances, rather than achieving the best possible performance.

Conclusion
In conclusion, our study involved the training of two deep neural networks for the selection of short-axis CMR 
images suitable for pulmonary artery annotation. One model was trained using fully supervised learning on 
the entire dataset, while the second model was trained on a minimum of 24 images, employing active learning. 
We introduced a novel query timing strategy to optimize model performance with minimal labeled samples. 
Although the fully supervised method achieved higher accuracy compared to active learning, the latter approach 
demonstrated promising results by reaching peak performances with significantly fewer labeled samples, and 
without the necessity of prior tuning of a query scheduling hyperparameter. This suggests that active learning 
with dynamic query scheduling holds great potential for enhancing practicality and applicability of deep neural 
in cardiovascular imaging research, particularly in scenarios with limited availability labeled imaging data.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request. Source data from UK biobank may be requested from the UK biobank.
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