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A principled representation 
of elongated structures using 
heatmaps
Florian Kordon 1,2,3*, Michael Stiglmayr 4, Andreas Maier 1,2, Celia Martín Vicario 1, 
Tobias Pertlwieser 1 & Holger Kunze 1,3

The detection of elongated structures like lines or edges is an essential component in semantic image 
analysis. Classical approaches that rely on significant image gradients quickly reach their limits 
when the structure is context-dependent, amorphous, or not directly visible. This study introduces 
a principled mathematical description of elongated structures with various origins and shapes. 
Among others, it serves as an expressive operational description of target functions that can be well 
approximated by Convolutional Neural Networks. The nominal position of a curve and its positional 
uncertainty are encoded as a heatmap by convolving the curve distribution with a filter function. We 
propose a low-error approximation to the expensive numerical integration by evaluating a distance-
dependent function, enabling a lightweight implementation with linear time complexity. We analyze 
the method’s numerical approximation error and behavior for different curve types and signal-to-noise 
levels. Application to surgical 2D and 3D data, semantic boundary detection, skeletonization, and 
other related tasks demonstrate the method’s versatility at low errors.

The detection of lines and contours is a central topic of image analysis and image understanding. Applications are 
widespread and range from computer vision, defect  detection1,2, facial boundary and expression  recognition3–6, 
geographic data  analysis7 to medical  imaging8. The images may be photographs of streets where the curbside 
should be detected or images of wheel rims where cracks are  identified9,10. Other applications consider satel-
lite imagery to monitor the extent of glacial  termini11,12 or X-ray monitoring of a catheter during a surgical 
 intervention13. While these applications differ in their nature, the underlying mathematical problem stays the 
same. A line, boundary, ridge, or contour—subsequently summarized by the term elongated structure—should 
be detected in an image.

Classical approaches typically tackle this task by using finite differences in intensity or color to approximate 
image  gradients14–17. However, these methods fail when no common step representation can be found or if the 
noise level varies too much over the image. Active Contour  Models18 alleviate this problem by minimizing the 
energy of a contour spline subject to some additional constraints. While a suitable energy term can be auto-
matically derived by evaluating the contour-surrounding  structures19,20, the fundamental problem of a good 
initialization remains, and these methods reach their limits when no shape model for the target structure can be 
found. This is especially the case for tasks in unconstrained settings like human pose estimation problems, where 
there is an infinite number of combinations of the person’s poses and clothes with the  background21,22. For such 
problems, Convolutional Neural Networks (CNN) have become state of the  art23. By sequential aggregation of 
features, abstract representation models can be optimized that generalize well across a large number of image 
impressions and shape realizations.

However, until now, no default methodology has been established for the representation of elongated struc-
tures and the subsequent formulation of an optimization target. This is particularly the case for structures that 
are not directly visible, do not have a specific shape or form, or are defined by their surrounding, often varying 
context. Current literature proposes several different strategies to address this detection task (Supplementary 
Material Table S1).
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A typical approach is to formulate the optimization task as a binary segmentation problem, where the elon-
gated structure is represented as a discretely sampled line of small  width24. The algorithm is optimized to delineate 
the line pixels and all background using a (binary) cross-entropy (BCE) or soft dice (Dice) cost function. Unfor-
tunately, segmentation inherently suffers from a substantial class imbalance if the target structure constitutes only 
a small foreground area. Also, label bias and minor offsets in the predicted segmentation strongly influence the 
optimization cost, rendering the optimization target volatile. As a result, the prediction is prone to fragmentation 
and gaps in ambiguous regions. One effective approach to mitigate this problem is a distance-weighted loss that 
relaxes the optimization target in the curve-near  region25,26. Although this reduces fragmentation, it also smooths 
out potentially important true-positive gaps in the structure. Other approaches compose multiple segmentation 
cost  functions27 or leverage regional integrals to penalize errors in contour space, effectively circumventing large 
magnitude differences present in overlap-based cost  functions28.

A second approach is the extraction of the centerline/symmetry axis, often referred to as skeletonization. 
Traditional algorithms describe the centerline as the set of midpoints of maximally inscribed disks in an  object29. 
The skeleton resulting from this definition is very sensitive to small boundary changes caused by noise or errors 
during boundary  extraction30. Advanced algorithms alleviate these problems with costly post-processing31, define 
the task as a learning problem in scale-space32, utilize multi-task CNNs to combine skeleton pixel detection and 
skeleton scale  regression33,34, or encode the center-line as points with positive inward flux in a locally confined 
vector  field35. While the latter method does not presume explicit boundary information, flux areas of multiple 
objects in a scene must not overlap, which limits the application to arbitrary elongated structures.

Approaches for facial boundary detection mostly build upon the idea of heatmap-based landmark localiza-
tion where the landmarks’ positional likelihood is encoded via spatial activation maps. These maps are typically 
computed by sampling a bivariate Gaussian function whose mean is at the ground truth  coordinate36,37. By 
approximating a polyline that connects multiple structure-describing landmarks, this approach can be extended 
for elongated  structures22,23,38. The polyline is mapped to a heatmap by either merging individual heatmap 
representations of the polyline  points3,39 or by resolving pixel-wise distances to the structure using a distance 
 transform5,6,40,41. However, an inherent issue with these approaches is the piecewise linear effect when connect-
ing distant landmarks, causing inaccuracy at high-curvature regions which inversely scales with the number of 
 landmarks4. Despite this effect, such representation is desirable as it provides high spatial generalization during 
inference and promotes a stable gradient signal for every spatial position, reducing the amount of data needed. 
Furthermore, the choice of the heatmap-generating function is theoretically arbitrary, making it easy to adapt 
the type of representation to the specific task.

Similarities are found in recent applications of graph convolutional neural networks (GCNNs) to line, contour, 
and semantics  analysis42,43. The relations and constraints between salient positions of an elongated structure can 
be represented by the adjacency matrix of a graph. This allows us to incorporate global semantics and overcome 
topological inconsistencies which might appear upon image domain shifts or information loss by artifacts and 
occlusion. To this end, the typical process is to first locate relevant landmarks using image features and then 
perform semantic linkage-based graph analysis with GCNNs to obtain plausible landmark  positions42,44,45.

In this work, we propose a mathematical description of elongated structures that offers a fundamental and 
holistic view of curves in space and provides a general encoding for a wide range of practical applications. This 
description shall serve, among others, as a target for optimization-based algorithms in which a neural network 
learns a representation of the elongated structures and approximates their distribution in space (Fig. 1). For these 
purposes, we adapt the concept of heatmap representation of single points to an arbitrary continuous curve in 
space with associated positional uncertainty. The distribution of curve points is convolved with a filter function, 
allowing prior domain knowledge of the expected signal and noise types to be included. To avoid numerical 
integration, we introduce a low-error approximation that simplifies the integral calculation to an evaluation 
of a distance-dependent function. To understand the representation’s fundamental properties, we analyze the 
numerical approximation error, compare the method to several related spatial representation types, study the 
influence of different signal/heatmap configurations, and evaluate the susceptibility to noise (Sect. “Analysis 
of representation properties”, Supplementary Material Sect. S2). The findings of this analysis are validated for 
various application examples in 2D and 3D (Fig. 1), coming with challenging and diverse types of elongated 
structures (Supplementary Material Table S2). For this purpose, the network is given a data sample as input and 
is tasked to approximate the structure’s position by matching the heatmap obtained using the proposed heatmap 
representation. This matching is supervised using a divergence measure, e.g., mean squared error, between the 
network prediction and the generated target.

We highlight our contributions to pattern analysis research in the following areas:

• We introduce a general mathematical description for 2D and 3D curves of various origins, shapes, and infor-
mation levels. A primary application is the use of this description as an optimization target in CNN-based 
representation learning.

• We provide a numerical solution that is easily configurable and allows tailoring to the observed or expected 
curve type, the uncertainty of the curve’s position, and the application scenario. Unlike most conventional 
representation methods that rely on dense curve representations, this solution supports highly sparse curve 
signals with few sampled data points, completely avoiding the piecewise linear effect if desired.

• We study the numerical approximation error, showing negligible error magnitudes if no extreme curve 
curvatures exist. Furthermore, we draw clear lines of the proposed method to related spatial representations 
in the context of gradient-based optimization algorithms.
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• We analyze the method’s properties for different curve types and representations. We show that Gaussian-
distributed heatmaps are generally applicable for arbitrary signals, and derive implications for practical 
applications.

• We demonstrate the representation’s applicability as a target for CNN-based optimization for a broad array 
of tasks: anatomical feature detection (Sect. “Anatomical structure detection on knee radiographs”), 3D 
implant detection (Sect.  “Detection of surgical implants in 3D CBCT volumes”), object contour detection 
(Supplementary Material Sect. S3), skeletonization (Supplementary Material Sect. S4), road lane detection 
(Supplementary Material Sect. S5), and road network segmentation (Supplementary Material Sect. S6).

Heatmaps for elongated structures
We start our considerations by looking at operational descriptions of target functions that a CNN-based learning 
system can adequately approximate. Fundamentally, the type and expressiveness of a representation ultimately 
define how well the target function, e.g., the distribution of a curve in space, can be approximated. They further 
dictate the number of data samples needed to train the learning system until it reaches a sufficient approxima-
tion  fidelity52. On the other hand, the choice of representation, e.g., a spatial probability map or parametric 
encoding, influences which cost functions can be used. With these aspects in mind, we subsequently introduce 
a general and versatile mathematical description for elongated structures of different origins and shapes. We 
derive their representation as spatial heatmaps and propose a simple and fast implementation that allows for 
efficient network training.

From convolution to distance function. The representation of an elongated structure as a heatmap 
can be motivated from several perspectives. On the one hand, heatmaps model the positional uncertainty of 
the curve. Thus, the position of a curve c̃(t) = c(t)+ z(t) with parameter variable t ∈ [t0, tn] is the sum of the 
nominal position of the curve c(t) superposed by a noise term z(t) with probability density function pdf  . By 
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Figure 1.  Conceptual overview and application examples. (a) Main use case of the heatmap representation 
as an operational description of the target function in a learning system. (b) application of the heatmap 
representation to anatomical feature detection, boundary  detection46,47,  skeletonization33,48,49, line  detection50, 
 segmentation51, and surgical tool detection in 3D (Sect. “Application to 2D and 3D representation problems”, 
Supplementary Material Sects. S3–S6).
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evaluating the parameter variable t  for the entire interval of definition from t0 to tn , it traces a noisy image of 
the curve in space. Moreover, a heatmap can be used as an optimization target for CNN training, where the 
correspondence with some ground truth is evaluated with a specific type of cost function. For the binary seg-
mentation of an image into relevant curve points and background, BCE or Dice cost functions are used. If we 
can assume a normal distribution to model the curve point position with high likelihood, a least-squares-based 
cost is a natural choice.

Besides representing a curve explicitly as the image of a parameter-dependent function, it can also be 
described implicitly as a level set, which is defined by the (non-linear) equation

The function f (x) is a measure for the distance of a point x to the curve. In this generic setting, it would suffice 
to use a function f (x) which evaluates to 0 at curve points. However, for simplicity of notation, we introduce f  
as a distance measure here, which will be required in later sections. Using this distance function, the distribution 
D of a curve in the space Rn is

with δ(s), s ∈ R being the Dirac function. We can now convolve this distribution with a filter function w(x) and 
obtain the heatmap

However, solving H(x) requires the evaluation of the line integral along a potentially curved line through the 
filter kernel. Depending on the implementation, no closed-form solution is available, so that numerical inte-
gration is necessary. For the special cases of rotationally symmetric functions and straight lines, this could be 
implemented using look-up tables. However, since we are interested in a general description that also includes 
curved lines, we introduce a simplification for the description of H(x) , which is considerably faster than numeri-
cal integration: In the following, we assume that w is radially symmetric, i.e., w(x) = w(y) for all ‖x‖2=‖y‖2 . If we 
assume that C is an infinite straight line, the evaluation of the integral simplifies to a function h : R → R which 
only depends on the distance to the line C:

In the following, we will use (4) also in the general case as an approximation for the integral in (3).

Numerical approximation and implementation. In this section, we describe an efficient implementa-
tion for this approximation of convolution by a distance-dependent function.

We assume that a finite set of data points can describe the original structure sufficiently well. These points are 
then used to derive a functional curve approximation by performing a (smooth) parametric B-spline interpola-
tion. As only the spatial positions within a limited distance to the curve are numerically relevant for evaluating 
the distance function, we restrict calculations to a compact hull along the curve. Therefore, we sample the inter-
polating function and form a 2D polyline by connecting consecutive sample points (Fig. 2). For each resulting 
linear segment, a minimum enclosing rectangle (bounding box) is formed, and a distance value is calculated for 
each contained spatial position. After resolving multiple distance estimates obtained from overlapping hulls, the 
heatmap is calculated directly by evaluating the distance values with a distance-dependent function.

Curve parameterization. We assume that a curve C ⊂ R
n is described by a finite set of data points 

Di ∈ C, i = 0, 1, . . . ,K (cf. (1)). For non-trivial curves with K > 1 , a smooth parametric B-spline is fitted to the 
original curve signal. The fitting criterion is based on the formulation by  Dierckx53, where the trade-off between 
closeness and smoothness of fit is controlled with a smoothing factor S . There, the curve approximation s(Di) is 
optimized such that the sum of residual squares between the approximation and prescribed close interpolation 
y(Di) is equal to or smaller than S so that 

∑K
i=0(y(Di)− s(Di))

2 ≤ S . Following  Reisch54, S is automatically 
derived from the number of data points with S = |Di| −

√
2|Di|.This allows the approximating spline to be less 

sensitive to label or sampling noise. For curves with large local variance in curvature, S can be set to 0, returning 
an interpolating curve that picks up high frequencies more accurately. Every data point Di is assigned a param-
eter value ti ∈ [0, 1] . Evaluating ti over the interval of definition allows to smoothly trace the curve in  space55. 
Since we do not make any assumptions on the curve type and its potential physical constraints but still want to 
keep the closeness of fit when tracing high-curvature regions (especially when the data points are not linearly 
distributed), we re-parameterize ti according to the arc-length parameterization  method55,56. To this end, the arc-
length parameters are approximated by dividing the domain of the interpolating curve using the chord-length 
ratios between Di and Di−1

56–59.

(1)C =
{

x ∈ R
n : f (x) = 0

}

.

(2)D (x) = δ
(

f (x)
)

,

(3)

H(x) = D (x) ∗ w(x)

=
∫

R2
δ(f (y))w(x − y) dy

=
∫

C
w(x − y) dy.

(4)H(x) = h(f (x)).
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Lh is the length of the polyline connecting the data points and corresponds to the sum of all chord lengths, i.e. 
L =

∑K
i=1 �Di −Di−1� . Floater et al.58 have shown that this approximation Lh ≈ L of the actual curve length L is 

of second-order accuracy. The coordinates xi and yi of the target B-spline control points Pi ∈ R
n, i = 0, 1, ...,K 

can then be determined from the interpolation condition of the parametric spline

where Bk,d(ti) are B-spline basis functions of degree d , and ck are the respective coefficients. This curve equation 
can be efficiently solved using Dierckx’s  algorithm53. For K > 2 control points, a cubic spline interpolation with 
d = 3 is used, for K = 2 the spline is of order d = 2 , and for a line segment with K = 1 it simplifies to a linear 
interpolation, i.e. d = 1 . Once the interpolating function is found, m points are sampled from the spline using 
a uniform sampling of ti at constant arc-length  interval55. The connection of these curve points then yields a 
polyline of m− 1 segments. Consequently, the number of segments is an adjustable parameter that regulates the 
quality of the approximation.

Local distance estimation. In the context of the proposed simplification, the distance evaluation for a single 
spatial position does not correlate with that of other points in Rn . This enables a piecewise and localized evalua-
tion of the heatmap for each polyline segment.

Following this idea, consider a narrow curve signal on a large background. This background, which can be 
noise or could provide any other information, has only a marginal contribution to the spatial configuration of 
this curve. When evaluating f (x) and h(f (x)) , we are only interested in a small local hull around the curve for 
which we assume compact support. As we work with a polyline that consists of piecewise linear segments, we 
can translate the idea of a local hull by constructing the smallest enclosing box for each segment. In other words, 
given the start and end point of a single polyline segment, two parallel segments are set as margins at a distance 
of +w/2 and −w/2 defined by support w . Then, a minimum bounding box enclosing these two parallel lines is 
defined. When working with image datasets, bounding boxes are ideally axis-parallel to allow for efficient parallel 

(5)t0 = 0, ti =
1

Lh

i
∑

k=1

�Dk −Dk−1�, tn = 1

(6)Di = C(ti) =
K
∑

k=0

ck Bk,d(ti)Pk ,

Heatmap generation
model

Sparsification

Elongated structure

Sparse point representation

Heatmap representation

1)

2)

3)

Data point
Sampling point

Bounding box
Endpoint box

(i) (ii) (iii)

a b

Figure 2.  (a) General workflow of representing an elongated structure as a spatial heatmap. (b) heatmap 
generation model where (i)–(iii) mark 10, 50, and 500 curve sampling points, respectively. (b1) Calculation of 
2D polylines which connect several sampling points from a parametric interpolation of the original curve signal. 
(b2) approximation of a compact hull that encloses the relevant spatial regions where point-to-curve distances 
are calculated. (b3) Heatmap representation of the curve using a Gaussian-distributed distance-dependent 
function.
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computation. Since at both the start and end point of the polyline, the resulting hull does not fully extend into 
the direction of the curve, two additional boxes of width w are centered on these points.

This approach allows the distance function f (x) to be evaluated only for those points x , which are within one 
or more bounding boxes and therefore significantly contribute to the heatmap. Within each bounding box, the 
point-to-line distance is calculated for every contained spatial location x . For a line segment with start point l1 
and end point l2 , this distance equates to f (x) =

∥

∥

∥
x −

(

l1 + s · b
�b�

)∥

∥

∥
 with a = x − l1 , b = l2 − l1 , and 

s = max
{

0, min
(

a·b
�b� , �b�

)}

 . Since bounding boxes will overlap for non-zero curvatures κ > 0 or if the curve 
is self-intersecting, we will likely obtain multiple distance estimates fx =

(

f1(x), f2(x), . . . , fn(x)
)

∈ R
2 for some 

subset of the hull points. This number of individual estimates, i.e., ‖fx‖ , also strongly depends on the number of 
sample points used to construct the polyline and increases for higher sampling frequencies as the ratio between 
the support w and the distance between sample points gets larger.

In order to map fx to a single distance scalar that can be evaluated with h(·) , two options for a reduction 
function h∗(fx) are proposed.

Minimum distance. The most simple reduction follows a winner-take-all approach where only the estimator 
with the smallest point-to-line distance is used for evaluating the distance-dependent function h(·).

This calculation can be easily parallelized, allowing the heatmap generation algorithm to be executed at linear 
time complexity f ∈ O (N) , depending on the total number of spatial positions evaluated in the bounding boxes 
N (c.f., Supplementary Material Fig. S8).

Inverse distance weighting. An inverse distance weighting (IDW) following  Shepard60 allows the contribution 
of all distance estimates. IDW assigns an influence weight to each estimate that directly depends on the point-
to-line distance.

The power parameter p controls each estimator’s relative strength and is set to p = 1 (linear) or p = 2 
(quadratic).

Selection of the distance-dependent function. In principle, any 1D function can be chosen as h(·) . However, 
since the resulting heatmaps are supposed to approximate the spatial position of a curve with some superim-
posed noise, the pdf  of a parametric probability function is a natural choice. In the following, we consider vari-
ous zero-mean pdf  variants that are either frequently observed signal/noise shapes (Gaussian, Laplace, cosine) 
or are versatile in their encoding characteristics w.r.t. learning-based algorithms (triangular, rectangular) (c.f. 
visual representation in Supplementary Material Fig. S9). We also consider a custom signal shape in the form of 
a simulated hollow-core catheter profile. All distributions are defined with the assumption of compact support 
±3σ.

Gaussian:

1D Laplace/2D Super-Gaussian:

Triangular:

Rectangular:

Raised Cosine:

(7)h∗(fx) = h
(

min{fi(x) : i ∈ {1, . . . , n}}
)

(8)h∗(fx) =
��x , h(fi(x))�

��x�1
, where �x,i =

1

fi(x)p

hgau,� ( f (x)) = � exp
��

� f (x)�2

2� 2
, � =

1

�2��
norm constant

�
�
� (9)

(10)hslp,σ (f (x)) = η exp

(

−|f (x)|
σ

)

, η = 1

2σ

(11)htri,σ (f (x)) = η max

(

3σ − |f (x)|
3σ

, 0

)

, η = 1

3σ

(12)hrec,σ (f (x)) = η

{

1 |f (x)| ≤ 3σ
0 otherwise

, η = 1

6σ
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Simulated catheter profile:

ro and ri mark the radius of an outer and inner circle corresponding to a catheter’s outer and inner wall. By chang-
ing the scaling parameter s to shrink or expand the inner circle, different wall thicknesses of the tube can be 
simulated. In general, when interpreting the heatmap as such a pdf  (which excludes the catheter signal), it is 
defined to be non-negative and to have a unit integral over its domain. Since we want to use the heatmap in 
gradient-based learning algorithms in which normalization of the target image is common, we propose to incor-
porate this normalization in the heatmap calculation such that maxx∈Rn h(x) = 1 . We argue that this allows for 
a more stable gradient across different heatmap parameterizations and reduces the risk of vanishing gradients 
due to small loss magnitudes. As a result, the normalization constant in (9)–(13) is set to η = 1 , whereas in (14) 
it is set to η =

√

r2o − r2i .

Extension to 3D. The localized calculation of relevant distance estimates is easily extendable to 3D. After find-
ing a three-dimensional function to interpolate between a set of data points and extracting a corresponding 
polyline, the local hull is approximated by extending the two-dimensional bounding boxes to right rectangular 
prisms. A single prism is formed by calculating four equidistant line segments that are parallel to the polyline 
segment. A prism width of w allows to obtain the minimum-area enclosing cuboid of the hull that is axis-aligned 
w.r.t. a Cartesian coordinate system (Supplementary Material Fig. S10).

Analysis of representation properties
In this section, we analyze the method’s general numerical approximation error, its behavior for different shape 
and width configurations, and the relation between sampling ratio and curvature (c.f. Supplementary Mate-
rial Sect. S2 for analysis of different signal-to-noise ratios). Furthermore, we compare the method’s approximation 
error with that of several related spatial curve representation and approximation methods.

Approximation error for different curvature, heatmap widths, and reduction functions. As 
shown in Sect.  “Heatmaps for elongated structures”, the approximation yields exact values for straight lines. 
However, this is no longer true for curved lines. In the following, we analyze the error introduced by this approx-
imation with distance-dependent weights. We compare the approximation with a numerically evaluated convo-
lution of the curve with the pdf of a normally distributed signal.

For this purpose, we devised an experimental setup with a simulated plane curve. By altering the curve’s 
spatial configuration, we can analyze the approximation error for various curvatures, widths, and reduction 
functions.

Experimental setup to measure the signal representation error. A plane curve C parameterized by three data 
points {D0,D1,D2} is placed on a background of H:2000×W:2000 px following a spatial configuration of 
D0 = (1500, 500) , D1 = (500, [500+ δ 1000]) and D2 = ([1500− δ 1000], 1500) (Supplementary Mate-
rial Fig. S11). The hyper-parameter δ controls the angle between the two curve sections ( [D1,D0] and [D0,D2] ) 
and allows to successively increase the maximum curvature of the curve observed at D0 . For every configuration 
δ ∈ {0, 0.1, 0.2, ..., 1} , we compute the absolute error ε that accumulates between the definite surface integral of 
curve C and its numerical approximation at various parameterizations (c.f. Supplementary Material Fig. S11 and 
Supplementary Material Table S7):

Si ⊂ R
2 denotes an infinite set of points at an orthogonal distance f (x) = |i| to C while respecting the ori-

entation indicated by the sign of i . Consequently, S0 = C (cf. (1)). Ei ⊂ Si is a finite subset of points that act as 
evaluation points for the approximated heatmap. The evaluation points E0 , which are located directly on the 
curve, are chosen by performing a uniform sampling of the curve parameter t  . le marks the individual chord-
length between consecutive points in E0 . All other evaluation points sets Ei with i  = 0 are sampled such that they 
are located on the orthogonal line to the curve intersecting the corresponding point in E0 . By assuming a large 
enough number of evaluation points, we ignore that the distance between the evaluation points is not equally 
spaced for f (x)  = 0 in the case of non-trivial curves that do not follow a straight line.

(13)
hcos,σ (f (x)) = η

{

1
2

(

1+ cos
(

π
|f (x)|
3σ

))

|f (x)| ≤ 3σ
0 otherwise

η = 1

3σ

(14)

ro = 3σ , ri = sro, s ∈ [0, 1]

y(r) =
√

max
{

r2 − |f (x)|2, 0
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We can now obtain a normalized error ε̂ = 1
L ε by division with the total curve length L . A normalization 

across different parameterizations of the support of h(·) is not necessary since we normalize 
∫

h(f (x)) dx = 1 
for all σ upon calculating the error values.

The influence of the reduction function h∗(·). In the case of a densely sampled polyline (Fig. 3), both IDW 
schemes show a substantial noise floor. This can be explained by the presence of many overlapping bounding 
boxes, which leads to multiple distance estimates for most spatial locations within the hull. This implies an 
increase in large distance values, which causes a general underestimation of the heatmap values, especially for a 
linear IDW. Interestingly, this underestimation produces a smooth grid structure for both IDW variants, which 
particularly emerges in areas of high signal curvature and can be explained by a disproportionate accumulation 
of large distance estimates originating from oppositely located curve segments. Using the minimum distance 
circumvents this issue as only the closest estimate is considered, effectively filtering out most estimation noise. 
Sparse sampling of the curve reduces the error difference between the different reduction functions (Fig. 3), 
although at the cost of overall precision.

The influence of the curve/heatmap width and curvature. Across all reduction functions, a large curve/heatmap 
width increases the susceptibility to errors in high curvature sections. This results in error peaks of ∼ 60% 
of the accumulated signal for maximum curvatures in the range of κ ∈ [0.25, 0.50] [1/px] and widths above 
( w ≥ 200 px/σ ≥ 34 px ), which corresponds to 7% and 1.2% of the image diagonal, respectively. Such a value 
combination implies that the curve at least partly intersects with itself, which is neither considered in the three 
reduction functions nor the practical implementation (Sect. “Numerical approximation and implementation”). 
As the heatmap width increases, this overlap area expands, causing a general overestimation of the heatmap 
values due to high-valued distance estimates (Fig. 4).

Figure 3.  Analysis of approximation errors. (a) Comparison of spatial curve representations constructed 
according to Supplementary Material Table S7 with δ = 0.8 , a heatmap width given by σ = 68 px , and a mean 
interpolation point distance of lI = 128 px . (b) Error contour maps w.r.t. maximum curvature κ and different 
heatmap widths σ . The color levels encode the normalized absolute error ε̂ between the approximation and the 
theoretical integral along the curve according to (15).
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The relation of sampling rate and curvature. To relate curvature and sampling rate using the Shannon-Nyquist 
theorem, we consider their relationship in the context of a curve’s highest frequency component. When a curve 
has high curvature, it undergoes rapid changes in direction, which corresponds to higher frequency components 
in the curve. The maximum curvature ( κ ) is given as the reciprocal of the radius of curvature and represents the 
curve’s maximum bending. The maximum curvature can be related to the highest frequency component through 
fmax = κ/(2π) . Now, the sampling theorem mandates a sampling rate at least double the highest frequency 
component to avoid aliasing, leading to the inequality r > 4πκ for the sampling rate r . This relationship guides 
the selection of an appropriate sampling rate during sparse sampling of the curve, ensuring accurate capture of 
the curve’s curvature and avoidance of aliasing effects.

At the same time, recall that we explicitly model the spatial uncertainty of the curve’s position, resulting in 
non-zero widths in the heatmap representation. The sampling quality thus also strongly depends on the chosen 
heatmap width. This is shown in Fig. 4, where the approximation error increases for larger curvatures across all 
sampling rates (reciprocal of sampling point distance 1/lI ). Although there are small improvements in approxima-
tion quality from higher sampling rates, these must be weighed against the higher computational requirements. 
Moreover, since the width of the heatmap shows the highest impact on approximation fidelity, we argue that a 
self-overlapping of the curve or its noise spread is the main reason for larger errors in the approximation. Con-
sequently, high curvatures can be most effectively tackled by choosing a small-to-medium-sized heatmap width 
(if possible). In the practical setting, signals with maximum curvature of up to κ ≈ 0.1[1/px] can be modeled 
with negligible errors with little requirements w.r.t. the sampling rate.

Comparison to related curve representations. Using the same experimental setup as in Sect. “Approx-
imation error for different curvature, heatmap widths, and reduction functions”, we compare the method’s error 
to that of several related spatial curve representations. These share similarities in that they evaluate the point-
to-curve distance, use a Gaussian model to assess the positional likelihood of the curve points or are rooted in a 
probabilistic interpretation of conventional cost functions in optimization algorithms (Fig. 3).

Mean squared error on curve points. We construct a spatial representation of the curve by filtering the discre-
tized curve points with a Gaussian low-pass filter. This rationale can be interpreted as an evaluation of the mean 
squared error of the individual curve points, where the squares of the errors correspond to the exponent in the 
pdf of a Gaussian distribution and a constant normalization offset. The approximation errors obtained by this 
representation under various configurations are illustrated in Fig. 3. Since the number of convolution operations 
per spatial position increases sharply in the near-curve region with high curvature, we see high approximation 
errors with increasing signal complexity. This aliasing leads to a systematic broadening and migration of the 

Figure 4.  (a) Analysis of the relationship between maximum curvature ( κ ) and sampling rate ( 1/lI ). The size 
and color of the measurements mark the normalized error ε̂ of the curve’s heatmap representation according to 
(15). (b) Curve profiles of the optimal Gaussian pdf and the profiles for max curvature and mean/std statistics. 
(c) Accumulation of the approximate and the theoretical integral along the curve ( lI = 128 px , δ = 0.6).
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distribution peak towards the inside of the curve, which reduces the likelihood of the curve points given the 
Gaussian model (Fig. 4).

Gaussian-weighted Euclidean distance transform. Discretizing the curve points lets us derive a representation 
of the curve as a distance field by means of Euclidean distance transform (EDT)61. Each position in this field 
corresponds to the Euclidean distance to the nearest discrete curve point (Fig. 3). Following (4), these distances 
can be elegantly evaluated with a Gaussian pdf. The observed approximation errors are almost identical to the 
proposed numerical approximation, and the smoothness of the curve similarly increases with the number of 
sampling points. However, for configurations with lower spatial resolution and more compact support of the 
pdf, the curve discretization and the resulting binning of distance estimates introduce stair-step artifacts (Sup-
plementary Material Fig. S8) that could be detrimental in some scenarios. However, for extremely large noise 
spread and very dense curve sampling, this representation might be preferred due to very efficient computation 
with linear time complexity f ∈ O (N)61 w.r.t. the number of image pixels N with no dependency to the number 
of sampling points and σ . In such a scenario, no time can be saved by evaluating only the numerically relevant 
distances in the regions near the curves (as in the proposed representation) due to excessive bounding box over-
lap (Supplementary Material Fig. S8).

Gaussian-weighted BCE. We implement the rationale of distance weighting directly in a BCE loss function, 
which is typically used for optimizing binary segmentation problems. For that purpose, a discrete 2D convolu-
tion of the curve points and the impulse response of the BCE term is calculated. Each position in the impulse 
response is weighted using a Gaussian pdf (Fig. 3). The approximation error is calculated by comparing the 
resulting curve profile with the corresponding 1D impulse response. Similar to the MSE variant, we observe peak 
flattening and migration towards the inside of the curve, which is increased in high curvature areas with large 
noise spread. Interestingly, sparse sampling of the interpolation function results in larger errors in regions with 
little curvature. Due to the impulse response’s extremely narrow and high-magnitude peak, even minor offsets 
between the original curve and the approximation lead to large errors. This behavior is a direct result of the 
B-spline interpolation scheme, where the relative amount of low-curvature sections in the curve legs increases 
with a higher curvature at the turning point.

CNN-based estimation error for different signal and heatmap configurations. A primary appli-
cation of the presented representation is its use as an operational description of the target function in a CNN-
based learning system. This raises the question of how the configuration of the observed type of target signal 
that should be approximated responds to different the configuration of the heatmap. To address this question, 
we use a signal simulation model to construct pairings of varying signal and heatmap configurations and com-
pare the predictive performance of a reference CNN (Sect. “Simulated signals on chest X-ray”, Supplementary 
Material  Table  S8) using the Average Symmetric Surface Distance (ASSD) metric (Sect.  “Variant 1: ASSD”). 
Here, we take advantage of the fact that our method not only allows us to construct heatmaps that approximate 
a specific signal but also enables the simulation of an arbitrary elongated structure itself. To generate non-trivial 
and realistic input images for the neural network, the simulated structures are superimposed on the human chest 
radiographs (Sect. “Simulated signals on chest X-ray”).

The relation between a signal distribution and heatmap distance-dependent function. We observe a weak corre-
lation between the signal distribution and the distance-dependent function of the heatmap (Fig. 5). Only using a 
rectangular distribution leads to a substantially worse reconstruction of the original curve, with the ASSD metric 
reaching error values of up to 5 px . Mesokurtic choices of the distance-dependent function (Gaussian, Raised 
Cosine) generally work well for all types of signal configurations. The custom catheter signal (Sect. “Selection 
of the distance-dependent function”) is estimated with negligible error for all heatmap configurations. Similar 
to the rectangular distributed signal, the signal strength plays a minor role due to high intensities across the 
discrete support.

The influence of signal and heatmap width. A perfect match between the signal and heatmap width does not 
benefit the representation quality during network inference. On the contrary, a small heatmap width is generally 
favorable regardless of the signal configuration. This observation is of great advantage in real-life applications 
where we cannot assume a fixed signal width or where little information of the signal configuration is available. 
As shown in Fig. 5, the rectangular distribution shows the largest error with increasing heatmap widths. Due to 
its uniform intensity profile, a high width forces the network to significantly overestimate the signal intensity 
distribution, especially for leptokurtic signals (Laplace, Triangular). This representation bias is slightly reduced 
upon the optimization with BCE but does not change the general error tendency.

The limitations by signal strength. For all but a rectangular signal shape, the strength of the signal overlay and, 
consequently, the separability between background and signal based on image information plays a dominant 
role. For weaker signals with a = 0.15 , the predicted heatmaps suffer from increased fragmentation, frayed edges, 
and underestimated intensity values. Especially for wide and leptokurtic signals, such little contrast significantly 
impedes the reconstruction quality of the original signal curve. This behavior is expected since small deviations 
of the center-line during network inference can lead to much stronger mass shifts than what can be observed for 
mesokurtic or platokurtic signals, directly affecting the determined Otsu threshold and skeletonization.
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Application to 2D and 3D representation problems
In the following section, we evaluate the applicability of our approach to real-life application examples. Com-
plementing evaluation on other datasets and curve types is provided in Supplementary Material Sects. S3–S6.

Anatomical structure detection on knee radiographs. We evaluate our method for the detection of 
anatomical structures and a surgical reference line on 2D radiographs (Sect. “Datasets and training protocols”). 
We analyze heatmap representations of four elongated anatomical features that are part of the human knee joint, 
ranging from edges/boundaries, curved and straight lines partially supported by image information, and a con-
textual center-line62,63 (Supplementary Material Fig. S12): (A) Blumensaat line in the intercondylar notch of the 
distal femur (curved). (B) Mean contour of the medial and lateral femoral condyles (curved). (C) Plateau line of 
the proximal tibia (straight). (D) Anatomical axis of the femur bone (straight).

Features (A)-(C) are structures that can be directly delineated on lateral radiographs by perceivable contrast 
in the respective areas or by semantically connecting salient landmarks. The anatomical axis (D) is not directly 
derived from image information but instead relies on the global orientation of the bone given by the surrounding 
bone shaft contours. We are particularly interested in the learning algorithm’s capability to infer such contextual 
structures. The directly perceivable features were trained jointly using a single model, and the contextual axis 
feature was trained individually.
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As shown in Fig. 6, Table 1, and Supplementary Material Fig. S13, the heatmap predictions for both direct and 
contextual anatomical structures are of overall high spatial precision. The F-measure for the contextual femoral 
axis (D) is slightly lower than the corresponding scores for direct features (A)-(C) which are supported by sali-
ent anatomy. The observed outliers with low individual F-measure scores are caused by anatomical deviations, 
slight misalignment of the femoral condyles, or joint deformities such as ventral/dorsal bending of the bone. 
For this task, we can derive a relation between the optimal heatmap width σHM and the type of structure to be 
represented. While we observe better detection rates for delicate structures like the Blumensaat line and plateau 
line for smaller widths, more pronounced and larger structures like the femoral condyle and axis benefit from a 
larger width. Furthermore, a close interpolation is preferable, which is particularly evident for intricate structures 
with detailed curves like the Blumensaat line. This difference, however, is negligible for larger structures like the 
femoral condyle. Interestingly, although the tibial plateau is a straight line and its interpolation doesn’t change 
upon different smoothing conditions, its detection performance benefits from using a close interpolation for 
the other two features in the combined training. In comparison, the segmentation and skeletonization methods 
achieve high but inferior F-measure scores compared to the heatmap representation. In particular, optimization 
with a Dice loss or the combination of Dice and BCE is significantly worse, achieving comparatively low recall 
for the femur axis.

Detection of surgical implants in 3D CBCT volumes. Surgical treatment of fractures or joint deformi-
ties is often guided by 3D cone-beam computed tomography (CBCT). Within these volumes, knowing the posi-
tion and orientation of metallic implants like screws and k-wires is crucial to ensure the effectiveness and safety 
of the intervention. Using this task as an example, we investigate the use of 3D heatmaps and their applicability 
for representing elongated 3D structures (Sect. “Datasets and training protocols”). For evaluation and reporting, 
we use previously described signal extraction and ASSD metric (Sect. “Signal extraction and evaluation metric”), 
which can be easily extended for 3D curves.

Both screws and k-wires are reliably detected with high spatial precision (Fig. 7). Even in complex cases where 
a substantial number of implants are close to each other, the orientation and shape of each object instance are 
inferred with reasonable accuracy. However, in direct comparison to the 2D examples, the prediction quality is 
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slightly lower. For all test data with metal artifact reduction (MAR) (Sect. “Datasets and training protocols”) and a 
Gaussian reconstruction filter size of σrec = 1 , a median ASSD of 4.59 voxels, CI95%[3.65, 7.43] is achieved. Quali-
tative analysis of the high-error cases reveals that false-positive response at metallic plates, a heatmap intersection 
of close neighboring objects, and over-/underestimation of object length are the main reasons for failure. The 
latter can be attributed partly to ambiguous ground truth in anatomically complex and cluttered regions. Interest-
ingly, using the same filter size but no MAR method yields a comparable score of 5.36 voxels, CI95%[3.79, 6.66] . 
This suggests that the proposed 3D heatmap representation can successfully overcome a reduction in image 
quality and that meaningful heatmap extrapolation in compromised areas is possible.

Discussion and conclusion
This work introduces and investigates a general and versatile mathematical description for curves in space of 
various origins, shapes, and information levels. The primary purpose of this representation is to be used as a 
target in optimization-based algorithms that should learn an encoding of the structures and approximate their 
location in space. Given the distribution of a curve in space and an estimate of its positional uncertainty, a heat-
map is generated by convolving this distribution with a filter function. Instead of a time-consuming numerical 
integration, we approximate the convolution by evaluating a freely selectable distance-dependent function. Since 
this function depends exclusively on a single spatial position, this simplification allows a localized, piece-wise, 
and thus easily parallelizable evaluation of the heatmap-generating function. This not only reduces the wall clock 
time in practical applications but also promotes a lightweight technical implementation.

Analysis of the representation properties with synthetic and real-life application examples allows several inter-
esting conclusions: (1) The proposed heatmap representation can approximate arbitrary curves/signals as long as 
no extreme curvatures (e.g., close to a directional change of 180◦ ) are observed. (2) Calculating the heatmap with 
a mesokurtic function and small or medium overall width is preferred for most signal/curve types. Especially 
for filigree structures, it is advantageous to assume a low position uncertainty of the curve in space. (3) Even in 
the case of degraded image quality caused, for example, by shadowing, occlusion, or low SNR, the estimation 
of the heatmap by a CNN is robust and sufficiently accurate. Depending on the severity of the degradation, 
missing image information can be fully or partially extrapolated. (4) Both structures that are displayed directly 
in the image as well as structures derived from context can be approximated well. (5) The application to a 3D 
detection task shows encouraging results, although at a higher overall error when compared to heatmaps in 2D.

Comparing the heatmap representation to previous techniques allows us to derive advantages, drawbacks, 
and implications for practical applications. While similarly expressive and flexible as (binary) segmentation 
techniques, heatmaps inherently allow to incorporate prior knowledge of the expected signal distribution and its 
positional noise. In practice, this can be valuable for signals that expose some inherent structure of their orthogo-
nal profile, e.g., a hollow-core metal rod observed via transmissive imaging. Moreover, we can more precisely 
represent structures with known physical parameters without having to perform explicit physical modeling, 
e.g., using the degree of stiffness/flexibility to determine plausible deviations of the nominal curve position. In 
contrast to related approaches, the proposed representation model also allows for instance-level parameteriza-
tion of multiple individual structures within the same output channel. Furthermore, data augmentation can be 
applied to the numerical sparse point representation, eliminating interpolation noise observed in spatial trans-
formations of the optimization target, e.g., a segmentation mask. An inherent downside of the approach is that 
the visual appearance of a signal with varying width (e.g., naturally non-uniform signals, perspective changes 
due to out-of-plane components, etc.) cannot be accurately modeled. While the learning algorithm can, to some 
degree, generalize for these cases, purely spatial methods like segmentation are much more suited for such tasks. 

Table 1.  F-measure (ODS) comparison of different methods to detect anatomical structures on knee joint 
radiographs. Corresponding analysis with the ASSD metric is provided in Supplementary Material Table S9. 
Comparison methods are (1) BCE+Dice27, (2) BCE +  Dice26, (3) DeepFlux-P35 (ctx = 16). Best value for each 
anatomical structure is in bold.

Method
Blumensaat 
line

Femoral 
condyle Tibia plateau Femur axis

BCE 0.946 0.956 0.916 0.908

Dice 0.945 0.930 0.936 0.820

BCE+Dice1 0.882 0.904 0.936 0.789

W4BCE2 0.949 0.954 0.937 0.919

DeepFlux-P3 0.898 0.958 0.935 0.903

Gaussian heatmap

σHM = 1 (smooth) 0.924 0.953 0.924 N/A

σHM = 2 (smooth) 0.944 0.955 0.919 N/A

σHM = 3 (smooth) 0.924 0.963 0.924 N/A

σHM = 1 (close) 0.954 0.947 0.946 0.891

σHM = 2 (close) 0.955 0.952 0.942 0.919

σHM = 3 (close) 0.945 0.963 0.926 0.917
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Furthermore, for a dense accumulation of elongated structures with potential overlap, the method becomes much 
less efficient than a single-shot global representation like most segmentation methods.

In addition to these drawbacks, we want to note that no analysis has been performed to date on a suitable 
method that yields a parametric reconstruction of the original signal from the heatmap representation. Although 
a thinning approach yields satisfactory results in the pixel/voxel space, obtaining a functional description is not 
trivial, especially if the heatmap is fragmented or self-intersecting. This problem further intensifies if several heat-
maps are close to each other and are approximated in the same output channel of a neural network. Consequently, 
separating structures into separate output channels would be desirable, even if no matching of object instances 
between multiple input images/volumes is possible. Also, using a neural network to directly predict the knots and 
parameter values of B-spline curve  approximations64 is an attractive direction for future extensions of this work.

Methods and materials
Signal extraction and evaluation metric. Two post-processing protocols are used for signal recovery 
and empirical evaluation, depending on the curve type and the respective dataset: (1) Center-line extraction 
by medial axis transformation and subsequent comparison of the ASSD between ground truth and prediction 
curves. (2) Non-maximum suppression of the heatmap, morphological thinning, and subsequent calculation of 
the F-measure between ground truth and prediction curves.

Variant 1: ASSD. A signal estimate Cpred is recovered as a set of points that satisfy the equality in (1) using the 
subsequent post-processing scheme: 1) Thresholding of the estimate with Otsu’s  method65 to obtain a binary 
image. (2) Medial axis transformation to obtain a curve representation of unitary width. To this end, we use a 
thinning of the binary estimate with the skeletonization method by Zhang et al.66.

To estimate the quality of fit of such estimate, we use the ASSD  metric67. A distance measure d is defined as the 
minimum Euclidean distance of a point x on a curve C to all points x′ on a second curve C′ , which is computed 
by d(x,C′) = minx′∈C′ �x − x′�2 . The ASSD between the two curves C and C′ is then calculated by evaluating 
this distance for every point x ∈ C and x′ ∈ C′ and averaging the resulting distance values

In theory, this evaluation policy has the advantage of being invariant to the width and distribution of the simu-
lated signal and estimated heatmap. However, it has to be noted that the employed thinning can cause branching 
artifacts in case of noisy and self-intersecting heatmap estimates. Using a larger signal or heatmap width also 
implicates a higher upper limit of the possible length of such subsidiary branches. However, a qualitative review 
of the high-error cases revealed that this effect is negligible as most errors are caused by signal fragmentation 
in ambiguous regions.

Variant 2: F-measure. To conform to common evaluation protocols in boundary detection and skeletonization, 
we interpret the heatmap as a noisy curve probability map. First, a standard non-maximum suppression (NMS) 
is used to suppress curve point estimates for which a relatively stronger estimate is observed in orthogonal 
direction within some radius rspr68. Second, the probabilities are converted to binary curve labels using some 
probability threshold. Third, iterative morphological thinning is employed until an edge of unitary width is 
obtained. The curve estimate is then compared to the ground truth curve by calculating the minimum-cost cor-
respondence (i.e., Euclidean distance), evaluating it against a maximum distance tolerance dmax , and computing 
the F-measure F = 2 PR/(P + R) , where P and R mark the Precision and Recall,  respectively46. Final reporting is 
done using the best curve selection threshold across all images in the dataset, i.e., at optimal dataset scale (ODS) 
or at optimal image scale (OIS)69. Individual configurations of rspr and dmax are provided in Sect. “Datasets and 
training protocols”.

ASSD = 1

|C| + |C′|

(

∑

x∈C
d(x,C′)+

∑

x′∈C′
d(x′,C)

)

Input Ground Truth Prediction

a

Input Ground Truth Prediction

b

Figure 7.  Analysis of detection performance of surgical screws and k-wires on 3D CBCT volumes. (a) Low-
error predictions. (b) Erroneous samples.
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Neural network architecture. For the 2D experiments, we use a single Hourglass Module which is a 
standard model for heatmap-based landmark  detection70. The model is configured with a feature root of 128 
used across all abstraction levels, ReLU activation functions in the bottleneck blocks, and instance normalization 
layers to obtain a smoothed optimization landscape in the presence of different contrast  levels71. The bottleneck 
blocks are constructed in the standard 3-layer structure with half the number of convolution kernels in the actual 
bottleneck mapping. To facilitate true identity mapping without applied non-linearity, we use a pre-activation 
layout according to He et al.72. The 3D architecture is specified in Sect. “Surgical implants in CBCT volumes”.

The network parameters are initialized with the He initialization  strategy73. The cost function operates on the 
output of the last layer and performs a heatmap-matching between network prediction and generated ground 
truth data. The default choice for the cost term is MSE, which is replaced by BCE in the segmentation experi-
ments in Sect. “CNN-based estimation error for different signal and heatmap configurations”. Implementation 
was done in PyTorch v1.6.074 (Python v3.8.5, CUDA v11.0, cuDNN v7.6.5). All experiments were performed on 
an x64 machine with an NVIDIA Titan RTX GPU and 64 GB memory. Details on data augmentation, data input 
standardization, and the remaining task-specific hyper-parameters are provided in the dataset descriptions in 
Sect. “Datasets and training protocols”.

Datasets and training protocols. Simulated signals on chest X-ray. We analyze the proposed represen-
tation’s characteristics for different signal and heatmap configurations using simulated signals superimposed 
on chest X-ray images. First, a simple heuristic generation model is devised for the simulation of realistic curve 
signals. Therefore, a finite number of data points Di with |Di| ∼ U [3, 10) is spatially distributed on a zero-valued 
envelope of size H:256×W:256 px . The location of the seed point D0 is randomly initialized such that it lies 
within a slightly more narrow sub-region to avoid too short and truncated curves: D0;x , D0;y

i.i.d.∼ U [10, 246) . 
Based on this seed point, the x, y coordinates of the subsequent points are calculated as Di+1;x = Di;x + s cosφ 
and Di+1;y = Di;y + s sin φ with s ∼ U [20, 60) and φ ∼ U [−90, 90) . If a newly sampled point exits the sub-
region, a new seed point is generated, effectively sampling a new data point distribution. The parameters of the 
simulation model were chosen heuristically such that realistic global linear and angular moments are preserved 
over the point distribution. This promotes a minimum amount of stiffness and directional flow of the param-
eterized curve, which can be assumed for most real-life elongated structures such as surgical catheters or trivial 
skeletons. Upon the optimization of neural network parameters, the signal data points are simulated on the fly 
to maximize the number of curve characteristics and aid subsequent generalization. This online simulation is 
subject to a fixed global random seed to ensure comparability between different configurations. The data points 
that are used for validation are predefined and not changed between epochs or configurations.

Using the signal simulation model, we calculate a heatmap representation Hsim(x) of the signal to be super-
imposed on a realistic background image Ximg (configuration provided in Supplementary Material Table S8). 
Upon fusion of signal and image, the heatmap is multiplied by a strength factor a , and an i.i.d. sampled additive 
Gaussian noise Z is added. We obtain the final simulated image as Xsim = Ximg + (a · Hsim(x)(1+ Z)) with 
Z ∼ N(0, σ 2

Z) . The background images stem from publicly available chest X-ray  data75 originating from the 
COVID-19 image data collection76 and ChestX-ray877 datasets. The 1125 images were partitioned into two cohorts 
for training and validation following a 900/225 ( 80%/20% ) split. For comparison and reporting, we evaluated 
the metrics using the best model parameters for each signal/heatmap configuration directly on the validation 
dataset using the ASSD metric (Sect. “Variant 1: ASSD”).

Optimization is done with an Hourglass model for 40 epochs, a batch size of 2, a learning rate of 0.00025, and 
L2 regularization with a factor of 0.00005 using the RMSProp update policy. The number of interpolation points 
for polyline sampling is set to 200. An online augmentation sequence is applied to the training images, which 
involves minor shearing/axes shift i.i.d. sampled from [−5, 5] px , rotation in the range of [−5, 5]◦ , image scaling 
by a factor of [0.9, 1.1]% , and a center crop which truncates [0.0, 0.1]% of the height or width for each image side 
independently. Before training and inference, each image is brought to a spatial resolution of H:256×W:256 px 
by center-cropping the larger dimension w.r.t. the target aspect ratio followed by a cubic down-sampling.

Anatomical structures on knee radiographs. Network optimization and evaluation are performed on 223 clini-
cal X-ray images retrospectively collected from anonymized databases. The images stem from different patients, 
are centered on the knee joint, and were acquired as strictly lateral projections with both distal femoral con-
dyles superimposed with closely aligned contours. A medically trained engineer annotated the ground truth 
line segments corresponding to each anatomical structure with the labelme annotation  tool78. A representative 
subset of 38 ground truth annotations was reviewed and verified by three expert trauma surgeons. The resulting 
dataset was split into two cohorts of 174/49 ( 80%/20% ) for training and validation with disjoint patients. For 
the method comparison, we evaluate the metrics using the best model state on the validation dataset without 
separate analysis on a hold-out test dataset. We separate optimization between direct and contextual structures 
(Supplementary Material Fig. S12) using two separate Hourglass networks (Sect. “Neural network architecture”). 
The training was done for 250 epochs with a batch size of 2, a learning rate of 0.00025, and L2 regularization 
with a factor of 0.00005 using the RMSProp update policy. As each anatomical structure is always present in the 
image and has a unique appearance, we do not combine the structures into a single heatmap but rather use three 
distinct output channels for the direct structures. To aid generalization, the augmentation pipeline described in 
Sect. “Simulated signals on chest X-ray” is extended by horizontal flipping. A standardized training and evalu-
ation resolution of H:256×W:256 px is obtained by resizing (retaining the aspect ratio) and a final center-
crop. To evaluate potential effects of strong local curvature, e.g., for the Blumensaat line, we compare curve 
approximation variants with ( S > 0 ; smooth) and without ( S = 0 ; close) smoothing condition (Sect. “Numerical 
approximation and implementation”). Method evaluation is done with the ODS F-measure (Sect. “Variant 2: 
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F-measure”). The distance tolerance for matches between edge predictions and ground truth is set to a standard 
value of dmax = 0.0075 w.r.t. the image  diagonal69. The suppression radius during NMS is set to rspr = 1.

Surgical implants in CBCT volumes. The dataset consists of 141 3D CBCT volumes recorded across a variety of 
different body regions: acetabulum, calcaneus, cervical/thoracal/lumbar spine, humerus, distal tibia, proximal 
tibia, and wrist. Each volume was acquired with a spatial resolution of L:512×H:512×W:512 voxels of size 
0.31mm and was down-sampled to L:128×H:128×W:128 voxels to fulfill the constraints of available hard-
ware. Each volume contains between 1 and 16 metallic screws or k-wires inserted into the bone for fragment 
fixation, ligament reconstruction, or plate osteosynthesis. The corresponding 3D ground truth volumes were 
generated according to the 3D extension explained in Sect.  “Numerical approximation and implementation” 
and are based on two control points obtained by manual annotation of both the head and tip of each screw/wire. 
The data is split into training and validation cohorts of 101 and 40 volumes, respectively. Training and valida-
tion is done for six different reconstructions of each volume, differing in the size of the Gaussian reconstruction 
filter ( σrec ∈ [1, 2, 4] ) and in the application of a metal artifact reduction (MAR) technique (frequency-split 
MAR (FSMAR)79 and no MAR). Optimization is performed for 50 epochs using a 3D U-Net  architecture80 with 
residual connections within each encoding and decoding block. The feature root is set to 16 and is doubled at 
each of the five encoder levels. We use a batch size of 1 and a learning rate of 0.005. Since each patient’s implant 
configuration differs, a single output heatmap volume is optimized. The ASSD metric (Sect. “Variant 1: ASSD”) 
is used to evaluate the quality of the reconstructed centerline of the screw/wire.

Ethics approval. The proprietary clinical data was obtained retrospectively from anonymized databases and 
was not generated intentionally for the study. For this study type, formal consent is not required. All other data 
used within this study originates from publicly available datasets.

Data availability
The main data supporting the results in this study are available within the paper and its Supplementary Informa-
tion. Primary and secondary datasets are disclosed as follows. (Primary datasets)—the simulated polylines used 
for analysis on synthetic data are available from the corresponding author, F.K., upon reasonable request. The 3D 
CBCT volumes and 2D anatomical structures data are not publicly available due to them containing information 
that could compromise intellectual property of Siemens Healthcare GmbH. (Secondary datasets) – all secondary 
datasets are publicly available. At the time of publication, the they can be downloaded from official repositories as 
follows: The Berkeley Segmentation Dataset 500 (BSDS500) and evaluation suite is available at https:// www2. eecs. 
berke ley. edu/ Resea rch/ Proje cts/ CS/ vision/ bsds/. A pre-processed version of NYU Depth Dataset V2 (NYUD) 
following the data protocol in Gupta et al.81 and Xie &  Tu69 is available at http:// mftp. mmche ng. net/ liuyun/ rcf/ 
data/ NYUD. tar. gz. Skeletonization data for WH-SYMMAX is available at http:// data. kaizh ao. net/ proje cts/ skele 
ton/ wh- symmax. zip, for SK-LARGE at http:// data. kaizh ao. net/ proje cts/ skele ton/ sk1491. tar. gz, and for SK506 at 
http:// data. kaizh ao. net/ proje cts/ skele ton/ sk506. tar. gz. The chest X-ray data can be obtained from https:// github. 
com/ muham medta lo/ COVID- 19. The DeepGlobe Road Extraction Challenge dataset is available at https:// compe 
titio ns. codal ab. org/ compe titio ns/ 18467. The TuSimple Lane Detection Challenge is available at https:// github. 
com/ TuSim ple/ tusim ple- bench mark/ issues/3.

Code availability
The programming code used in this study is not publicly available due to it compromising intellectual property 
of Siemens Healthcare GmbH. The dataset-agnostic code for generation of 2D and 3D heatmaps of this study 
are available from the corresponding author upon reasonable request.
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