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A denoising method based 
on cyclegan with attention 
mechanisms for improving 
the hidden distress features 
of pavement
Lei Liu , Ligang Cao *, Congde Lu , Xingtao Yang , Tongbiao Wei , Xiaocui Li , Hengxin Jiang  & 
Lin Yang 

Ground Penetrating Radar (GPR) is one of the most used devices for road structural damages 
detection. However, due to the different roadbed conditions and various disturbances in the nearby 
environment during detection, there are great difficulties in interpreting detection images, which also 
hinders automatic detection based on deep learning. In this work, we design a GPR image denoising 
method based on Cyclegan. We select the most suitable generator and add different attention 
mechanisms. After denoising the natural GPR road detection image, using the Yolo (You Only Look 
Once) to test the accuracy of the original image and the denoised image after adding different 
attention mechanisms. The detection accuracy is improved by 30%. The results of the detection 
network and the evaluation of the denoised images by GPR image interpreters indicate that the 
method has the following advantages: lower requirements for training data sets, a wide range of data 
sources, low cost, good denoising effect, and automatic detection of GPR images. It is of great help to 
the automatic detection of GPR images.

The pavement structure is an essential part of the road. Maintaining the stability of the structure helps improve 
safety and vehicle comfort and reduce fuel consumption. However, pavement structures usually have many 
defects1, including poor interlayers, voids, and looseness. As an important tool for detecting subsurface tar-
gets, ground penetrating radar (GPR) has been widely used in engineering due to its convenience, personnel 
safety, and anti-interference2, 3. GPR transmits high-frequency electromagnetic waves to the ground and receives 
reflected waves to bring back objects with different dielectric constants information to achieve the visualization 
and detection of buried objects. It is a relatively fast technique that provides images of the interior of the overall 
structure4, 5. With the rapid development of deep learning, heavy and complex manual detection has been gradu-
ally replaced by automatic recognition6–11. However, there is a large amount of clutter and noise in the image that 
is unrelated to the primary signal, affecting the judgment.

Due to the influence of clutter, the effectiveness of various detection networks is limited, and the detection 
accuracy is usually not high. Currently, most of the main denoising methods are based on ground penetrating 
radar data: (1) traditional signal transformation methods, such as denoising algorithms based on spatial filtering 
and transform domain, and (2) statistical feature analysis methods, for example, denoising algorithms based 
on subspace decomposition. The classic algorithms in spatial filtering algorithms include mean filtering and 
median filtering12, 13. After filtering, the image becomes smoother than the original image, which can indeed 
remove some noise to a certain extent. However, it can also cause signal boundaries to be blurred, resulting in 
no reduction in detection difficulty; The method of transform domain filtering can more completely separate 
noise and signals, such as improving continuous wavelet transform and wavelet packet transform from wavelet 
transform14. However, due to the fixed basis of wavelet transform, the denoising results cannot actively adapt 
to the style of the denoised image, resulting in uncontrollable deviations; The denoising algorithms based on 
subspace decomposition include Component Analysis (PCA)15 and Independent Component Analysis (ICA)16, 
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which decompose the data into clutter subspace and target subspace. The division of the two spaces is limited 
by human experience and there are no fixed standards, so errors are prone to occur.

We use an image-based method, Generative Adversarial Networks (GAN)17, to solve problem in denoising. 
The essence of using Cyclegan to denoise is to transfer the FDTD image style (FDTD image style refer to images 
without noise) to the measured image to obtain the FDTD style measured image, or the GPR image without 
noise. Due to the network structure, we do not need paired images and supervised learning. So, much work-
force is not required for labeling, and the training process is more straightforward. Cyclegan removes the need 
for paired training samples by introducing a cycle consistency loss in unsupervised methods18, 19 that force two 
mappings to be consistent with each other. Typically, image-to-image translation methods require detecting 
regions of interest in an input image and learning how to translate the detected regions to the target domain. In 
unsupervised training, which does not require paired data, it is necessary to learn how to select target regions in 
an image20. In denoising applications, locating the region of interest is more important. Otherwise, the denoising 
will be incomplete, or the effective signal will be removed as noise. Adding an attention mechanism can solve 
this problem to a certain extent21–23. Attention mechanism can effectively improve the effect of noise reduction. 
Chen et al.34 used extra supervision to train attention networks to improve the quality of overall image conver-
sion. Jie Feng et al.22 proposed a symmetric convolutional GAN based on collaborative learning and attention 
mechanisms to generate high-quality samples for HSI with complex spatial spectral distributions. Xuran Pan 
et al.23 proposed a Generative Adduction network (GAN-SCA) with spatial and channel attention mechanism for 
robust segmentation of buildings in remote sensing images and the results are superior to several state-of-the-art 
methods. The above work reflects from different aspects that the effect of deep learning networks is improved 
after the addition of attention mechanisms.

The detection accuracy of this method is relatively high. Our method has the following characteristics:(1) 
In the training process of this paper, the measured data sets in production are directly used for training. (2) It is 
considered that the combination of adding channel attention mechanisms and spatial attention mechanisms at 
the same time is the most suitable for GPR road structural damages image denoising. (3) We chose the Resnet 
generator that is more suitable for denoising of road structural damages by GPR.

Method
The advantage of the proposed network in this paper is that it directly uses the GPR road measured data. It does 
not need to pre-produce many paired forward simulation data or make a physical model obtain data for training. 
We add an attention mechanism to the network according to the data features to enhance the denoising effect, 
improve the imaging quality, and finally improve the detection accuracy for GPR road structural damages. This 
is a new data processing scheme in GPR road structural damages detection.

Train generator.  The part we need for training is the denoising generator (purple box in Fig. 1), which is 
used to convert a noisy road GPR image to a noise-free GPR image. The entire training network includes one 

(a)

(b)

X Y X’ Y’

G

F

G

Y’X’

G

F

F

DX DYCycle-consistency loss

Cycle-consistency loss

Improved
denoising
generator

Cycle-
consistency

loss

Denoised
image with
noise added

Denoised
image

Improved
adding noise
generator

GAN loss
Denoising

discriminator
Noise

discriminator

Original image

Figure 1.   The process of training the denoising generator.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13910  | https://doi.org/10.1038/s41598-023-41212-3

www.nature.com/scientificreports/

denoising generator GD, and this generator contains a mapping from a noisy image X to a noise-free (FDTD) 
image Y; one adding noise generator GA, and this generator contains a mapping from a noise-free (FDTD) image 
Y to a noisy image X; two discriminators DX and DY, used to identify whether the image contains noise, the goals 
of the two discriminators are different, and the resulting LossGAN ensures that the generator and the discrimina-
tor evolve, thereby ensuring that the generator can produce more realistic pictures. The sum of the loss functions 
produced by the two discriminators is as follows:

y ∼ pdata and x ∼ pdata is data distribution. GD and GA are the denoising generator and adding noise genera-
tor. DX and DY are two discriminators. X is a noisy image. Y is a noise-free (FDTD) image. pdata is raw data 
distribution.

The Fig. 1a shows the network structure, with solid lines representing the path for this training session 
and dashed lines representing the path for the next training session. Figure 1b shows the overall process. Two 
generators are trained through the confrontation of two losses, but if we only train with these two losses, the 
network will not maintain the original image shape and will generate some images similar to the target style; 
that is, some images will be regenerated Instead of removing noise based on the original image. Therefore, the 
two different generators should agree but go in precisely opposite directions. A loss needs to be added to ensure 
that the image before denoising and the image with noise added after denoising is consistent in the same cycle, 
so a cycle-consistency loss is added between the two generators to ensure that the output image of the genera-
tor and the input image styles different, but the same content. The network can use this to obtain the mapping 
relationship between the two types of images and establish a mapping between the two types of images. The 
cycle loss function is as follows:

Mapping function F: Y → X. Mapping function G: X → Y. The L1 distance loss is used to close the recon-
structed image to the original input in the L1 sense. The Loss of CycleGAN consists of the above two parts:

Generator structure.  The Fig. 2 shows the structure of upsampling and downsampling. First, the output 
is mirror-padded, convolved, and normalized. Mirror padding can get better convolution results than padding 
with a fixed value, and then downsampling, downsampling obtains deeper features by continuously compressing 
shallow features. After the residual block, the compressed features are upscaled to the size of the original image 
by upsampling.
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Figure 2.   Generator structure (× means there are several identical blocks).
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Discriminator structure.  Compared with the discriminator of the original GAN, PatchGAN (The struc-
ture is shown in Fig. 3) can take into account the influence of different parts and can better represent the situ-
ation of the whole picture. Moreover, because its receptive field corresponds to a small area in the input, this 
training enables the model to pay more attention to image details, so PatchGAN is often used in scenarios such 
as high resolution.

Attention mechanism.  Since the GPR image is a single-channel grayscale image, lacking color informa-
tion compared with the conventional natural image, the information that the image can contain is reduced, and 
the difference between the target signal and the noise is not apparent. Therefore, the attention module is exe-
cuted before and after the target signal connection operation, which effectively increases the weight of informa-
tion learned by the network and improves the denoising effect. This paper uses two attention modules: Channel 
Attention and Spatial Attention24–26. At a high level, the attention module calculates the importance or relevance 
of each input element by comparing it with other elements in the input sequence. It assigns a weight or attention 
score to each element, indicating its importance in the context of the current task. These attention scores are 
then used to compute a weighted sum of the input elements, which serves as the output of the attention module. 
Channel attention is to weight the channel, and spatial attention is to weight the spatial. Both channel attention 
and spatial attention can be used independently or in combination. They aim to enhance the understanding 
and expressive capacity of neural networks, enabling them to adapt better to different tasks and contexts. Four 
combinations of experiments were conducted in this paper. The attention mechanism is structured as Fig. 4.

Experiment
In the GPR data, the structural damages we need to detect are poor interlayers, voids, looseness, etc., all collec-
tively referred to as structural damages in this paper. We need to remove the noise and clutter that are useless to 
us except for the structural damages detected in the image. The experimental process is shown in Fig. 5.

The ground-penetrating radar images and FDTD images of the highway are trained by the denoising network 
proposed in this paper to obtain the generator G, and the data containing the structural damages that needs to 
be denoised is input into G to obtain the denoised data N, and the denoised data N is obtained. The data N is 
manually marked with the structural damages and input into the evaluation network test to obtain accuracy and 
rating radar road structural damages detection.

Experimental data.  The data used were measured ground penetrating radar images of a certain high-
way in China and FDTD images produced using GPRMAX27 software (arbitrary and reusable). The measured 
images were collected using a ground penetrating radar instrument of the MALA GX750 model on board, with 
a speed of 55 km/h and a center frequency of 750 MHz. The coupling method was air coupling. The processed 
road measured data images and FDTD simulated images are both cropped to the same size and then input. A 
total of 100 cropped road measured data images form a noise-containing training set, and a total of 100 FDTD 
simulated images form a noise-free (FDTD) training set. The original data is directly output by the instrument 
(The resolution is 1110 × 186). The cropping data is square cropped according to the larger value of the disease 
length and width in the original image. FDTD images are directly output by GPRMAX software (The resolution 
is 640 × 640). The sample image is shown in Fig. 6.
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Detection network.  The detection network uses Yolov3, which is a fully convolutional network (FCN). Its 
authors propose a new feature extraction network, Darknet-53. The Darknet-53 network is shown on the fol-
lowing Fig. 7:

Results and discussion
Other denoising methods.  Principal components analysis (PCA) can handle the sparse noise problem 
well, but it is an unsupervised method and cannot use label information to increase the recognition rate. It is 
difficult to determine the number of principal components that need to be maintained in PCA. This becomes 
difficult when the transformation of the eigenvalues is gentle. This problem exists for the measured GPR data28. 
We indirectly select the retained image’s eigenvalues by degree of changing the information. The results are 
shown in Fig. 8.
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Figure 5.   Experimental flow chart.
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Figure 6.   Samples (a) Origin data (b) Cropped data sample (c) No noise (FDTD) sample.
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Singular value decomposition (SVD) is to decompose the matrix into singular vectors and singular values. 
Each base contains different discriminative information and reconstruction information, which can be used 
to extract principal components and remove noise by extracting different components29, 30. k is the number of 
singular values. We have experimented with the singular value taken from 1 to 20. The singular value in the 
front contains more energy, and the latter contains very little energy. The following shows the three values that 
the denoising effect and the primary structural damages signal remain relatively balanced. The results are shown 
in Fig. 9.

The basic idea of wavelet threshold denoising proposed by Donoho31 is to select an appropriate threshold to 
remove the noise with lower wavelet coefficients and retain the relatively large wavelet coefficients signal. Wavelet 
denoising is a synthesis of feature extraction and low pass filtering. A noisy model can be represented as follows:

In the above formula, f (k) is the useful signal, S(k) is the noise-containing signal, e(k) is the noise, and ε is 
the standard deviation of the noise figure. We choose the threshold with better effect according to the actual 
situation32, 33). The results are shown in Fig. 10.

Unet generator.  From the actual effect in Fig. 11, the Unet generator in the first row of pictures does not 
completely save the signal in the lower part of the image, and the noise suppression in the middle of the image 
is not as good as Resnet; The second line signal strength is not as good as the Resnet generator. Based on the 
above experimental results, the main signals of the Unet generator are not completely preserved, which may 
easily cause the primary signals to be mistakenly removed when removing noise, which reduces the accuracy 
of structural damages detection. Therefore, it is recommended to use the Resnet generator for road structural 
damage denoising.

PSNR (Peak Signal‑to‑Noise Ratio).  PSNR is a commonly used indicator for evaluating image quality, 
which can effectively explain image distortion and is also suitable for evaluating the performance of denoising 
algorithms. PSNR can evaluate the effectiveness of denoising algorithms by comparing the degree of distortion 
between the denoised image and the original image. The unit of PSNR is dB. The larger the PSNR value, the less 

(4)S(k) = f (k)+ ε × e(k), k = 0, 1, ......, n− 1

(a) (b) (c) (d)

Figure 8.   PCA Denoise result (a) Original image (b) DCI = 30% (c) DCI = 40% (d) DCI = 50% (DCI = Degree of 
changing the information).

(a) (b) (c) (d)

Figure 9.   SVD denoise result (a) Original image (b) k = 3 (c) k = 4 (d) k = 5 (k is the number of singular values).

  (a)                   (b)                   (c)                 (d)

Figure 10.   Wavelet threshold denoise result (a) Original image (b) Threshold is Bayes Shrink (c) Threshold is 
VisuShrink (ε = εest ) (d) Threshold is VisuShrink (ε = εest/2).
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the distortion. MSE has its limitations in describing how similar two images are. Its mathematical formula is as 
follows:

MSE is the mean square error calculated between the original image and the processed image. X and Y are the 
target images. H and W are the length and width of X and Y. 2n − 1 is the maximum numerical value representing 
the color of image points. If each sampling point is represented by 8 bits, n is 8.

After calculating the PSNR (Table 1), it can be known that adding the attention mechanism can improve the 
ratio between the maximum signal and the background noise. That is, the background noise can be removed 
more cleanly, and the signal we need is more prominent. It can be seen from the above table that the PSNR 
value is the largest when both attention mechanisms are added. This method should be selected if the pursuit 
of cleaner noise removal.
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Figure 11.   Results of different generators (a) Original image (b) Results of resnet generator (c) Results of unet 
generator.

Table 1.   PSNR of original images and different processed results.

Method PSNR/dB

No attention denoise 19.7035

Channel attention denoise 20.6644

Spatial attention denoise 20.0062

Channel attention and spatial attention denoise 21.0392

PCA 21.1426

SVD 21.3158

Wavelet Threshold 20.3212
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SSIM.  Structural Similarity (SSIM) is a measure of the similarity between two images. Among the two images 
used by SSIM, one is the uncompressed undistorted image x, and the other is the distorted image y. SSIM can 
be obtained as follows:

µx is the mean of x, µy is the mean of y, σ2x is the variance of x, σ2y is the variance of y, and σxy is the covariance 
of x and y. c1 and c2 are constants used to maintain stability. L is the dynamic range of pixel values. k1 = 0.01
,k2 = 0.03 . When the two images are identical, the value of SSIM is equal to 1. Humans are not sensitive to the 
absolute brightness or color of pixels, but very sensitive to the position of edges and textures. SSIM mimics human 
perception by focusing primarily on edge and texture similarity. The results are shown in Table 2.

It can be seen from the table that the SSIM is closest to the original image without the addition of the atten-
tion mechanism, and the SSIM is reduced to varying degrees after the attention mechanism is added. Among the 
several types of added attention mechanisms, the closest to the original image is the one that only added the chan-
nel attention mechanism. The reason is that there are many horizontal linear features. Adding a linear attention 
mechanism is beneficial to maintaining the structural integrity of the graph. The addition of the spatial attention 
mechanism causes the horizontal linear features to be blurred, resulting in a decrease in the SSIM of the latter 
two methods. From the denoising point of view, since we remove a lot of structures related to irrelevant signals 
in the picture, the lower the SSIM, the more signals we remove, and the whole denoising effect is more thorough. 
We hope that the denoising effect is clean, so choose the method in which both attention mechanisms are added.

Image analysis.  The Fig. 12a is the original image. As can be seen from Fig. 12b, the denoising effect is 
already apparent when the attention mechanism is not added, and most of the background noise in the figure is 
removed, but there is still small clutter outside the target signal. In the second row, because the background clut-
ter is too chaotic, and some noises appear obvious abrupt, it is already somewhat out of tune with the surround-
ing pictures. It can be seen from Fig. 12c that after adding the Channel Attention mechanism, the stray clutter 
is significantly reduced, and there is no other stray clutter in the picture except near the main signal. Compared 
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Table 2.   SSIM of original images and different processed results.

Method SSIM

No attention denoise 0.55927

Channel attention denoise 0.51473

Spatial attention denoise 0.5009

Channel attention and spatial attention denoise 0.50083

PCA 0.6553

SVD 0.69667

Wavelet threshold 0.5997

(a)        (b)          (c)          (d)          (e)          (f)          (g)          (h)

Figure 12.   Denoising results of different attention mechanisms (a) Original image (b) Denoising results 
without attention mechanism (c) Denoising results using channel attention (d) Denoising results using spatial 
attention (e) Denoising results using channel attention and spatial attention (f) Denoising results of PCA (g) 
Denoising results of SVD (h) Denoising results of wavelet threshold.
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to the denoise without attention mechanisms, it can also be seen that the clutter near the main waveform is also 
reduced and shrunk to the vicinity of the main waveform. The waveform on the upper right of the second row 
of graphs is also more apparent, the waveform is not too strong like (b), and the original shape and intensity of 
the waveform are better maintained. It can be seen from Fig. 12d that the image after adding the Spatial Atten-
tion mechanism is relatively compared to Fig. 12b without any attention mechanism added, except that there is 
basically no other scattered clutter except near the main signal. Compared with adding the Channel Attention 
mechanism, the waveform is complete and precise, but there are some signals whose strength is not as good as 
adding the Channel Attention mechanism. The denoising results (Fig. 12e) using Channel Attention and Spatial 
Attention are cleaner compared to Fig. 12c,d. As can be seen from the first row of images, the signal integrity is 
better than in Fig. 12c,d. The overall signal strength of the picture is also higher than Fig. 12c, and the surround-
ing clutter is further shrunk. It can be seen from the second and third row of the picture that the signal in the 
picture is completely preserved, while the background is cleaner, and the clutter shrinks more thoroughly. The 
experimental results show that the results of adding Channel Attention and Spatial Attention are the best. Visu-
ally speaking, the three columns Fig. 12f,g,h are definitely not as effective as the previous columns.

Use the annotation of the original image for detection.  After manually labeling the structural dam-
ages with labeling software, a corresponding JSON file is generated for each image for detection. There are 120 
images, including 100 training sets and 20 testing sets, and each image has at least one detection target.

First, we use the annotation of the original image to detect the denoised image. Since the boundary after 
denoising is more obvious, the indistinguishable boundary information before denoising is highlighted, so the 
size of the denoised image is different from that of the original image, and the accuracy of using annotation of 
the original image will be much lower than re-labeling. However, using the original image annotation to detect 
the accuracy still has a role. It can reflect the structural similarity between the image and the original image to 
a certain extent. The accuracy results are shown in Table 3.

It can be seen from the table that using the annotation of the original image, the accuracy of the image 
denoised without using the attention mechanism is the highest among all denoising results, indicating that 
this type of image is the most similar to the original image, followed by the channel attention mechanism. The 
accuracies are not much different between adding the spatial attention mechanism and adding both. Regarding 
the accuracy distribution, considering that the image contains a large number of horizontal correlations, the 
vertical correlation is much less than that of the horizontal, which is probably why the similarity of the spatial 
attention mechanism is not as high as that of the channel attention mechanism.

But in essence, the target boundary after denoising has changed. For the denoised image, the label of the 
original image actually has a large error, so AP with proposed method is lower than original image.

Use the relabeling annotation for detection.  According to the detection results of the original image 
label, PSNR, and SSIM, we re-labeled the data in the case of adding two attention mechanisms and re-detected 
using the detection method described above. The re-labeled labels and detection results are as follows (Annota-
tions are shown in Fig. 13, the accuracy results are shown in Table 4):

Table 3.   The accuracy of using the original image annotation to detect.

Method AP

Original image 0.579

No attention denoise 0.577

Channel attention denoise 0.642

Spatial attention denoise 0.657

Channel attention and spatial attention denoise 0.617

PCA 0.392

SVD 0.495

Wavelet threshold 0.509

(a)                 (b)

Figure 13.   Annotation (a) Original image annotation (b) Re-labeling annotation.
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The actual effect of the detection network before and after denoising is as follows (Fig. 14):
According to the above chart, the image detection accuracy after denoising is significantly improved compared 

to the original image detection accuracy. The increase is as high as nearly 30% (From 61.7 to 91.4%). From this, it 
can be seen that the denoising method proposed in this paper has a very obvious effect on improving the accuracy 
of machine learning detection of structural damages and has considerable practical value.

The limitation of the work.  Network structure can be more streamlined. Because the image itself has only 
single-channel grayscale data, which is smaller than the amount of natural image data (Colorful images with 
complex line contours), the detection network can choose a network with a lower number of layers and a simple 
structure that can speed up the training speed. It will not lead to the lack of deep-level information in training, 
resulting in a decrease in accuracy.

We can also try whether there are more suitable network modules for ground penetrating radar images, 
including but not limited to attention mechanisms.

Conclusion
We have successfully improved the denoising effect of the network used in this article by changing the network 
structure, adding attention mechanisms, and changing generators. By comparing with traditional methods, 
the usability of deep learning methods was demonstrated, providing an optional solution for future ground 
penetrating radar image denoising.

Our method has those advantages: the data sources are more expansive, the acquisition cost is lower, and the 
processing is closer to reality. The data is conducive to improving the effect, and the experimental results show 
that selecting the accurate data set in the actual production process is conducive to improving the accuracy, 
reducing the simulation data production process, and improving work efficiency. Although the related work of 
other researchers has added attention mechanisms in Cyclegan, they have not discussed the impact of various 
attention mechanisms. This paper adds channel attention mechanisms and Spatial attention mechanisms in 
three different combinations, discusses the influence of different combinations on the results. Comparing the 
results of different generators, according to visual interpretation, the images generated by the Resnet generator 
are significantly better than those generated by the Unet generator. The detection results confirmed this, and the 
method improved AP by nearly 30%. At the same time, the trained model runs fast, and in the future, we will 
apply it to mobile devices to help on-site construction personnel make quick judgments. The following research 
direction is to adapt this set of methods to other GPR images.

Table 4.   The accuracy of using the re-labeling annotation to detect.

Method Original image No attention denoise Channel attention denoise Spatial attention denoise
Channel attention and 
spatial attention denoise

AP 0.617 0.891 0.906 0.758 0.914

(a)               (b)

Figure 14.   Detection results (a) Before denoising (b) After denoising.
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Data availability
The datasets generated and/or analysed during the current study are not publicly available due owned by other 
companies but are available from the corresponding author on reasonable request.
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