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Combined metabolomic 
and lipidomic analysis uncovers 
metabolic profile and biomarkers 
for papillary thyroid carcinoma
Zipeng Wang 1,2,3,9, Yiqin Yang 4,5,9, Yurong Xing 6,9, Dandan Si 7, Suhua Wang 4,5, Jiashuo Lin 8, 
Cai Li 4,5*, Ji Zhang 4,5* & Detao Yin 1,2,3*

Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy with a rapidly increasing 
incidence. The pathogenesis of PTC is unclear, but metabolic and lipidomic reprogramming may 
play a role in tumor growth. We applied ultra-performance liquid chromatography-tandem mass 
spectrometry to perform widely targeted metabolomics and lipidomics on plasma samples from 
94 patients with PTC and 100 healthy controls. We identified 113 differential metabolites and 
236 differential lipids, mainly involved in branched-chain amino acid metabolism, glutamate and 
glutamine metabolism, tricarboxylic acid cycle, and lipid metabolism. We also screened three 
potential metabolite biomarkers: sebacic acid, L-glutamine, and indole-3-carboxaldehyde. These 
biomarkers showed excellent diagnostic performance for PTC in both discovery and validation 
cohorts, with areas under the receiver operating characteristic curves of 0.994 and 0.925, respectively. 
Our findings reveal distinct metabolic and lipidomic features of PTC and provide novel targets for 
diagnosis and treatment.

Recently, the incidence of papillary thyroid carcinoma (PTC), the most common endocrine malignancy, has been 
rapidly  increasing1. Early diagnosis and treatment of PTC are efficient strategies for improving the prognosis of 
patients with  PTC2. Although molecular markers are valuable in diagnosing PTC, they lack specificity or have a 
limited positive predictive  value3. Therefore, exploration of the pathogenesis and diagnostic biomarkers of PTC 
is urgently needed.

Circulating metabolic biomarkers support the understanding of tumor biology, and early diagnosis with 
minimum invasion. Tumor cells are highly metabolically active and undergo many metabolic reprogramming to 
sustain faster  proliferation4. Metabolic reprogramming is an important feature of  tumors5. Even when sufficient 
oxygen is present, tumor tissue needs to consume large amounts of glucose through glycolysis, this is called the 
Warburg effect. Glucose-related metabolites are substantially altered in  PTC6 and are associated with its stemness 
and  aggressiveness7. Amino acids are a resource for protein synthesis and are involved in the biosynthesis of 
other macromolecules. Metabolic reprogramming of amino acids promotes tumor proliferation and  metastasis8. 
Disturbances in the metabolism of some amino acids in PTC have also been observed, but the metabolic pattern 
of amino acids in PTC remains  unclear2. The relative concentration of branched-chain amino acids in saliva was 
remarkably decreased in  PTC2. Lipids and their metabolites are used in cell membrane formation, signaling, and 
energy storage in normal cells, and associated with carcinogenic  pathways9. Lipid metabolism is reprogrammed in 
tumors, and the perturbation of blood lipids has been identified as a risk factor for  tumorigenesis10,11. Therefore, 
we speculated that metabolic reprogramming is an important feature of PTC and provides diagnostic biomarkers 
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for PTC. Although the metabolomics and lipidomics for PTC have been  studied3, the metabolic reprogramming 
characteristics of PTC have not been fully elucidated and are rarely used for PTC diagnosis.

In this study, the widely targeted metabolomics and lipidomics methods were performed to explore the 
metabolic reprogramming and potential metabolite biomarkers of PTC and provide potential targets for its 
comprehensive treatment.

Materials and methods
Participants and study design
The study was approved by the Ethics Committee of Scientific Research and Clinical Trial of the First Affiliated 
Hospital of Zhengzhou University. The ethics review approval ID was “2021-KY-1011-002”. All methods were 
performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from all 
participants, and fasting whole preoperative blood samples were collected. A total of 106 preoperative blood 
samples from patients with PTC were collected the day before surgery from the Department of Thyroid Surgery, 
the First Affiliated Hospital of Zhengzhou University, between September 2021 and May 2022. The inclusion 
criteria were as follows: (1) patients who underwent thyroid surgery for the first time, (2) patients pathologically 
diagnosed with PTC, and (3) patients willing to sign an informed consent. Patients with other malignancies, 
thyroid dysfunction (hyperthyroidism or hypothyroidism), or two or more thyroidectomies were excluded from 
this study. After exclusion, 94 patients with PTC were included. In addition, 100 healthy controls (HC) were 
recruited from a population receiving routine physical examinations at the First Affiliated Hospital of Zhengzhou 
University. The inclusion criteria for HC included: (1) age- and sex-matched to the PTC group, (2) no other 
diseases, including liver or renal failure, and multiple organ failure combined; and (3) subjects willing to sign an 
informed consent. The enrollment flowchart of the participants is shown in Fig. S1.

Reagents and sample preparation
The reagents and sample preparation were provided in the supporting information.

Targeted metabolomic and lipidomic analysis
Widely targeted metabolomics and lipidomics were performed using a QTrap 6500 triple quadrupole linear 
ion-trap mass spectrometer. Multiple reaction monitoring was performed in pneumatic-assisted electrospray 
ionization mode while monitoring positive and negative ions. Data collection was performed using Analyst 1.7.1 
software (AB Sciex, USA)12.

Data analysis
The raw data files were pre-processed using MultiQuant 3.0.2 (AB Sciex, USA) software for retention time 
(RT) correction, peak identification, and peak integration. An appropriate internal standard (IS) for each com-
pound was selected for peak area calibration according to the principles of similar chemical structures and RT. 
SIMCA14.1 software was used for principal component analysis (PCA), and the orthogonal partial least squares 
discriminant analysis (OPLS-DA) method was used to construct the model. Two hundred permutation tests 
were performed to assess whether the model overfitted. The variable importance in the projection (VIP) in the 
OPLS-DA model was used to identify and differentiate two groups of compounds with the highest contribution. 
Differential compounds were defined as p < 0.05, fold change (FC) ≥ 1.2 or ≤ 0.83, and VIP > 1.

Heatmaps were drawn based on R 4.1.3. The pheatmap package was used for heatmaps. Multivariate logistic 
regression was constructed using stepwise regression based on the differential compounds, and receiver operat-
ing characteristic (ROC) curves were established using R 4.1.3. The pROC, rms, and readr packages were used 
for the multivariate logistic regression and construction of the ROC curve. In the discovery cohort, differential 
compounds were screened, and the model was built and validated in the validation cohort. The differential 
compounds were imported into MetaboAnalyst (http:// www. metab oanal yst. ca/) and compared with those in the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database for enrichment and pathway analyses.

Results
Patient characteristics and study design
The baseline characteristics of patients with PTC and HC were collected in Table 1. No statistical difference 
was detected in the demographic characteristics and laboratory test results between the PTC and HC groups 
(Table 1). To build a diagnostic model, both PTCs and HCs were randomly divided into discovery and validation 
cohorts in a 7:3 ratio. In the discovery cohort, 65 PTCs and 70 HCs were enrolled, and differential metabolites 
were screened and applied for diagnosis model construction. In a validation cohort of 29 PTCs and 30 HCs, we 
validated the screened differential metabolites and established a model to test the discriminative performance 
of the model. The American Joint Committee on Cancer (AJCC) TNM staging system is the most widely used 
and accepted cancer staging system internationally and is the standard method for staging malignant tumors in 
clinical practice. The T refers to the primary tumor, N refers to regional lymph node involvement, and M refers 
to distant metastasis. The TNM three indicators are combined to determine the stage of cancer. The TNM stage 
of the patients was classified according to the eighth edition of the AJCC on cancer tumor staging system. The 
T and N stages of PTC were not substantially different between the discovery and validation cohorts (Table 1).

Patients with PTC show plasma metabolome alterations
In an unsupervised multivariate PCA, a separation trend was observed in plasma metabolic phenotypes between 
PTC and HC (Fig. S2A and D) in the discovery cohort. In the OPLS-DA, clear differences were obtained for 
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PTC versus HC, with cumulative  R2X = 0.41,  R2Y = 0.87, and  Q2 = 0.771 on the C18 column and  R2X = 0.384, 
 R2Y = 0.898, and  Q2 = 0.79 on the HILIC column (Fig. S2B and E). The permutation test results showed negative 
 Q2Y intercept, and the points of  Q2 were lower than those of  R2, indicating that the model was stable without 
overfitting (Fig. S2C and F). Similar patterns between HC and PTC were observed in the plasma samples of the 
validation cohort (Fig. S3).

The VIP value obtained in the OPLS-DA model was used to identify the metabolites with higher contribution 
to the differentiation between PTC and HC groups. Differential metabolites were defined as a p-value < 0.05, 
FC ≥ 1.2 or ≤ 0.83, and VIP > 1 between PTC and HC. The differential metabolites screened by the C18 and 
HILIC columns were combined, and a total of 112 differential metabolites were identified based on the above 
filter criteria, with 59 elevated and 53 decreased metabolites in the plasma of patients with PTC (Table S1). 
Heatmap analysis was applied to perform hierarchical clustering of differential metabolites between the PTC 
and HC groups (Fig. 1A). The results showed that patients with PTC had markedly different metabolic patterns 
than those of healthy subjects.

MetaboAnalyst was used to assess the metabolic enrichment and pathway analysis of differential metabolites. 
The disordered metabolic pathways are shown in Figs. 1B and C and Table S2. Compared with those of healthy 
controls, the altered metabolic pathways mainly included biosynthesis of unsaturated fatty acids, as well as valine, 
leucine, isoleucine, arginine, glycine, serine, threonine, alanine, aspartate, glutamate, phenylalanine, tyrosine, 
tryptophan, glutamine, and glutamate. Moreover, patients with PTC had higher concentrations of metabolites 
related to branched-chain amino acids (BCAAs) biosynthesis, including L-threonine, L-valine, L-leucine, and 
L-isoleucine (Fig. 2A). In addition, several metabolites in the tricarboxylic acid cycle (TCA cycle) and glutamate 
metabolism were accumulated in the plasma of patients with PTC, such as L-glutamine, L-glutamate, pyruvate, 
and fumaric acid (Fig. 2B). Furthermore, increased plasma levels of other amino acids related to phenylalanine, 
alanine, aspartate, arginine, and proline metabolism have been observed in PTC. These data indicate that the 
biosynthetic and/or metabolic processes of amino acids and fatty acids (FA) are extensively altered in patients 
with PTC, which may contribute to disease pathogenesis and provide diagnostic biomarkers.

PTC extensively altered lipid metabolism
Plasma lipidomic phenotypes in PTC and HC were investigated using the targeted lipidomic method, which 
detected over 700 lipid species belonging to 12 lipid classes. PCA showed no substantial difference in lipidomic 
characteristics between PTC and HC (Fig. S4A). However, the lipidomic profiles of PTC and HC were clearly 
distinguished in OPLS-DA, with cumulative  R2X at 0.503,  R2Y at 0.795, and  Q2 at 0.492 (Fig. S4B). The permuta-
tion test of the OPLS-DA model indicated that it was stable without overfitting (Fig. S4C) in the discovery cohort. 
In the validation cohort, similar patterns between HC and PTC were observed in the plasma samples (Fig. S5). 

Table 1.  Clinical characteristics and laboratory data of the study population. Baseline characteristics of 
enrolled patients with PTC and healthy controls represented as mean ± standard deviation (SD) or percentage 
(%). BMI body mass index, Hb hemoglobin, PLT platelet, Crea creatinine, ALT alanine aminotransferase, AST 
aspartate aminotransferase, ALP alkaline phosphatase. No statistically significant difference was detected in the 
T-stage a (p = 0.069) and the N-stage b (p = 0.64) of PTC between the discovery and the validation groups.

Discovery cohort (n = 135) Validation cohort (n = 59)

PTC (n = 65) HC (n = 70) p PTC (n = 29) HC (n = 30) p

Age (years) 41 ± 10 42 ± 10 0.9347 40 ± 10 45 ± 11 0.1333

Male, n (%) 12 (18.5) 10 (14.3) 0.6419 4 (13.8) 8 (26.7) 0.3334

BMI (kg/m2) 24 ± 3 24 ± 4 0.345 24 ± 3 24 ± 3 0.9347

Hb (g/L) 130 ± 16 132 ± 15 0.4406 129 ± 10 135 ± 16 0.1433

PLT  (109/L) 251 ± 66 248 ± 60 0.8404 236 ± 56 225 ± 54 0.4661

Crea (μmol/L) 64 ± 15 62 ± 12 0.4025 62 ± 13 68 ± 10 0.0558

ALT (U/L) 20 ± 15 20 ± 18 0.9846 24 ± 21 18 ± 12 0.2268

AST (U/L) 19 ± 7 20 ± 9 0.2926 22 ± 12 20 ± 6 0.4697

ALP (U/L) 71 ± 20 74 ± 24 0.416 72 ± 17 74 ± 22 0.7366

T stage of PTC a

T 1 57 (87.6%) 21 (72.4%)

T 2 8 (12.3%) 8 (27.6%)

T 3 0 0

T 4 0 0

N  stageb

N 0 37 (56.9%) 15 (51.7%)

N 1 28 (43.1%) 14 (48.3%)

M stage

M 0 65 (100.0%) 29 (100.0%)

M 1 0 0
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Differential lipids were defined as p < 0.05, FC ≥ 1.2 or ≤ 0.83, and VIP > 1 between PTC and HC. A total of 236 
differential lipids were identified between both groups, among which 207 were elevated and 29 were decreased 
in the plasma of patients with PTC (Table S3). Cluster heatmap analysis also demonstrated that the PTC and 
HC groups had substantially different lipid patterns (Fig. S4D).

Figure 3A shows the relative concentrations of lipids in PTC and HC samples. Figure 3B shows that the 
percentage of differential lipids, 75.21%, 6.84%, 4.27%, and 4.27% of the differential lipids in PTC belong to the 
lipid classes of triacylglyceride (TAG), FA, acylcarnitine, and ceramide (CER), respectively. In particular, the total 
contents of TAG, sphingomyelin (SM), phosphatidyl ethanolamine (PE), phosphatidic acid (PA), lysophospha-
tidic ethanolamine (LPE), diacylglycerol (DAG), CER, and cholesteryl ester (CE) were significantly upregulated 

Figure 1.  Metabolomic profiling in patients with PTC compared to that of HC. C18 and hydrophilic interaction 
liquid chromatography (HILIC) column differential metabolite screening between PTC and HC, enrichment 
analysis, and pathway analysis. Cluster heat map analysis of differential metabolites (A). Orange blocks represent 
higher relative concentrations of metabolites, and the darker the color, the higher the relative concentration. The 
blue color block represents the lower relative concentration of the metabolite, and the darker the color, the lower 
the relative concentration. Enrichment analysis of different metabolites between PTC and HC (B), the abscissa 
represents the Enrichment Ratio corresponding to each pathway, and the ordinate is the pathway name. Pathway 
analysis (C) of PTC, the color and size of each circle is based on pathway impact values (the larger the circle the 
higher the impact score) and p-values (yellow: higher p-values and red: lower p-values), respectively (E). PTC 
papillary thyroid carcinoma, HC healthy controls.
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in the plasma of patients with PTC, whereas the concentrations of FA and acylcarnitine were decreased, suggest-
ing increased metabolism and reduced FA synthesis and β-oxidation. In addition, we applied the bubble chart 
to display the  log2FC and  log10p of different types of the differential lipids, which can better reflect the changing 
trend of lipids in PTC (Fig. 3C). The  log2FC values are presented in this figure. The larger the point, the smaller 
the p-value and the more significant the difference. Similar to the scatter plot above, TAG, SM, PE, PA, LPE, DAG, 
CER, and CE increased, whereas phosphatidylcholine (PC), FA, and acylcarnitine decreased in the PTC group.

Based on our findings, changes in metabolic pathways and metabolic characteristics of PTC are summarized 
in Fig. 4. Collectively, multiple metabolic pathways, such as BCAAs, L-glutamate, L-glutamine, TCA cycle, and 
lipid metabolism, were substantially altered in patients with PTC. The interaction of these metabolic pathways 
unveils metabolic reprogramming and the potential pathogenesis of PTC.

Establishment of the diagnostic model in discovery and validation cohorts
To build a diagnostic model for PTC, metabolite-based biomarkers were screened using a stepwise regression 
method, according to previous  studies13,14. Differential metabolites were put into the stepwise logistic regression, 
and a model with a minimal Akaike information criterion value was established to identify potential biomarkers 
that could be used to distinguish PTC from HC. Finally, a panel of three metabolites, including sebacic acid, 
L-glutamine, and indole-3-carboxaldehyde, was selected to build the diagnostic model. ROC curves were used 
to assess the performance of a diagnostic test based on multiple classification rules, with 1-specificity on the x 
axis and sensitivity on the y axis. In summary, the area under the ROC curve (AUC) of individual compounds 
ranged from 0.781 to 0.946 in the discovery cohort, indicating that all three compounds have predictive potential 
for PTC. The AUC of the combined diagnosis of the three compounds was 0.994, with a sensitivity and specificity 
of 93.8% and 97.1%, respectively (Figs. 5A and C). The biomarkers also showed excellent diagnostic efficiency in 
the validation cohort, with an AUC of 0.925, sensitivity of 93.1%, and specificity of 83.3% (Fig. 5B and C). This 
diagnostic model showed good discrimination between PTC and HC.

Figure 2.  Distinct metabolic pathway disturbance in the plasma of patients with PTC. The altered metabolic 
pathways and relative concentrations of differential metabolites are shown by the box and whisker plots. The 
box plots are visualized as mean values, 25th and 75th percentiles. Whiskers denote the data outside the 25th 
to 75th percentile range but are not considered to be outliers. The outliers are visualized by the separate dots 
beyond the whiskers. p < 0.05 was considered significant. *p < 0.05 and **p < 0.01. BCAA (branched-chain amino 
acid) biosynthesis (A), glutamate and glutamine metabolism, TCA cycle (tricarboxylic acid cycle) (B), arginine 
biosynthesis, alanine and aspartate metabolism (C), arginine and proline metabolism (D), phenylalanine 
metabolism, cysteine and methionine metabolism (E), glycine, serine and threonine metabolism (F) were 
elevated in PTC.
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Figure 3.  Perturbation of plasma lipids in the plasma of patients with PTC. Histogram of the relative 
concentration of plasma lipids in PTC and HC, and each point represents a sample (A). All results are 
represented as mean ± SEM, with *p < 0.05 and **p < 0.01 indicating significant differences between both groups. 
The sector graph (B) reflects the distribution of the differential lipid class. In the bubble chart (C), the larger the 
point, the lower the p-value. -log10p was mapped to points of different sizes. The ordinate represents the name of 
each differential lipid class, and each point represents a lipid. The abscissa is the  log2FC value. Triacylglyceride 
(TAG), sphingomyelin (SM), phosphatidyl ethanolamine (PE), phosphatidic acid (PA), lysophosphatidic 
ethanolamine (LPE), diacylglycerol (DAG), ceramide (CER), and cholesteryl ester (CE) were increased, whereas 
phosphatidylcholine (PC), fatty acid (FA), and acylcarnitine were decreased in the PTC group.
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Discussion
Metabolic and lipid reprogramming plays an important role in the development of malignant  tumors15. Circulat-
ing metabolic biomarkers support the understanding of tumor biology and early diagnosis with minimal invasion. 
However, the metabolic reprogramming characteristics of PTC have not been fully elucidated. Therefore, they 
were explored in the present study using targeted metabolomics and lipidomics.

Metabolomic and lipidomic data showed that patients with PTC have markedly different metabolic patterns 
compared to those of healthy subjects. Patients with PTC had higher concentrations of metabolites related to 
BCAAs biosynthesis, including L-threonine, L-valine, L-leucine, and L-isoleucine (Fig. 2). Metabolic repro-
gramming of BCAAs is related to the development of tumors. An increase in plasma BCAAs levels has also 
been observed in pancreatic cancer and hepatocellular  carcinoma16. BCAAs, including L-valine, L-leucine, and 
L-isoleucine, can be used for protein synthesis, energy metabolism, and  biosynthesis17. BCAAs are imported into 
the cell and converted into branched-chain α-keto acids (BCKAs) by branched-chain amino acid transaminases. 
Eventually, BCKAs are catabolized to acetyl-coenzyme A (acetyl-CoA), which enters the TCA cycle to supply 
energy for tumor cells. BCAAs may be beneficial to tumors by providing nitrogen for Deoxyribonucleic Acid 
(DNA)  synthesis18. Elevated levels of BCAAs in the plasma and tumor tissue are often accompanied by a decrease 

Figure 4.  The interactions between altered metabolic pathways and lipid metabolism in PTC. Multiple 
metabolic and lipid reprogramming aspects reflect the potential pathogenesis of PTC. Red and green 
lettering of the compounds indicate elevated or lowered levels, respectively. α-KG α-ketoglutaric acid, FAO 
fatty acid oxidation, CPT1 carnitine palmitoyltransferase 1, LACS long-chain acyl-CoA synthase, acetyl-CoA 
acetyl coenzyme A, acyl-CoA acyl coenzyme A, LPA lysophosphatidic acids, PI phosphatidylinositol, PG 
phosphatidylglycerol, CL cardiolipin, PS phosphatidylserine.
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in the breakdown of  BCAAs18, and tumor growth may be promoted when BCAAs catabolism is  inhibited19. The 
accumulation of BCAAs in tissues results in chronic activation of the mammalian target of rapamycin complex 
1 (mTORC1), which is associated with cell growth and  tumorigenesis20. A possible mechanism is that leucine 
binds to its sensor, Sestrin2, to activate  mTORC120. The activation of the mTORC1 is associated with cell growth 
and tumorigenesis in many human and animal  models17. mTORC1 triggers a series of signaling pathways that 
regulate autophagy and lipid, nucleotide, and protein synthesis by phosphorylating its downstream effectors, 
including eukaryotic translation initiation factor 4E-binding protein 1, p70S6 kinase, and  SREBP21. Therefore, 
elevated BCAAs levels may serve as potential targets for PTC therapy.

Pathway analysis showed that glutamate and glutamine metabolism and the TCA cycle were altered in PTC 
(Fig. 1). Although α-ketoglutaric acid (α-KG) and citrate were not detected, the relative concentrations of pyru-
vate, L-glutamate, and fumaric acid were increased (Fig. 2), indicating that TCA cycle may be upregulated in PTC. 
Glutamine catabolism is initiated by glutaminase (GLS) to generate  Glutamate22. Glutamate is metabolized in the 
mitochondria to α-KG, which participates in the TCA cycle and provides energy for cell growth. Glutamine is 
a critical substrate for cytoplasmic nucleotide  biosynthesis23. Although glutamine is considered a non-essential 
amino acid, most tumor cells cannot proliferate or survive in media lacking  it24. The inhibition of GLS expres-
sion can delay tumor  growth8. Glutathione (GSH), an antioxidant, requires glutamine to provide nitrogen and 
carbon sources for its synthesis. The GSH-mediated increase of antioxidant capacity may promote malignant 
cellular  progression25. Ammonia, produced by glutamine catabolism, may reduce cellular sensitivity to tumor 
necrosis factor-α (TNF-α) through an autophagy-dependent mechanism, promoting the occurrence of  tumors26. 
Because of the critical role of glutamine, the inhibition of GLS activity is a potential target for tumor  therapy8.

Lipidomics has also been used in tumor-related studies, which have confirmed the nature of lipid changes in 
 tumors27. In our study, the relative concentrations of PA, PE, CE, and SM were increased in PTC, whereas the 
acylcarnitine and FA contents decreased (Fig. 3A), indicating that fatty acid oxidation (FAO) was downregulated 
and lipid metabolism was increased in patients with PTC. FAO is an important energy source in the mitochon-
dria. Long-chain fatty acids are converted to acyl coenzyme A (acyl-CoA) by long-chain acyl-CoA synthase. 
Acyl-CoA is transformed into acylcarnitine by carnitine palmitoyltransferase I. Acylcarnitine is transported into 

Figure 5.  The ROC curves of the discriminative model. Three biomarkers, including sebacic acid, L-glutamine, 
and indole-3-carboxaldehyde, and the combined indices in the discovery (A) and validation cohorts (B). The 
AUC values (95% confidence intervals), 1-specificity, and sensitivity of the ROC curves in the discovery cohort 
and the validation cohort (C).
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the mitochondrial matrix, and the fatty acid chain is broken. Acetyl-CoA is produced during β-oxidation and 
participates in the TCA cycle. FAO has different phenotypes in different tumors. FAO is upregulated in kirsten 
rat sarcoma viral oncogene mutant lung cancer, hepatocellular carcinoma, and triple-negative breast  cancer28. 
However, excess FAO-derived Adenosine triphosphate may inhibit the survival of leukemia cells, and FAO has 
also been downgraded in  lymphoma29. Moreover, FAO is activated in undifferentiated cells. FAO activation 
enhances the aggressiveness of ovarian cancer, making it more susceptible to  metastasis29. Additionally, FAO is 
related to the degree of tumor differentiation in pediatric neuroblastoma. FAO downregulation effectively reduces 
tumor  burden30. In our study, PTC showed a lower relative concentration of FA and acylcarnitine (Fig. 3A), 
indicating that FAO is downregulated in PTC compared to HC. As a differentiated tumor, the biological behavior 
and energy metabolism characteristics of PTC may be different from those of undifferentiated cancer, showing 
different metabolic characteristics. In summary, integrated metabolomics and lipidomics demonstrated that 
PTC had distinct energy metabolic reprogramming with induced BCAAs and glutamine accumulation as well 
as reduced FAO.

In addition, the proliferation of tumor cells requires the supply of lipids, such as PE, CE, and SM, which serve 
as substrates for energy metabolism, are involved in the construction of the cell membrane bilayer structure and 
cell signal  transduction9. CE accumulation plays an important role in the proliferation of pancreatic cancers. CE 
activates PI3K/AKT signaling pathway, which promotes tumor  aggressiveness31. Suppression of CE synthesis 
suppresses this signaling pathway. SM is the main component of lipid bilayer membranes, and high expression of 
sphingomyelin synthetase 2 (SMS2), a key enzyme in SM synthesis, is related to tumor progression. SMS2 knock-
out or SMS2 inhibitors can reduce tumor  progression32. In addition, SM is associated with tumor  angiogenesis33, 
potentially providing new targets for tumor treatment.

As reprogramming of metabolites may provide circulating biomarkers for cancer diagnosis, potential metabo-
lite biomarkers for PTC were screened in this study. Finally, a panel of three metabolites, including sebacic acid, 
L-glutamine, and indole-3-carboxaldehyde, was selected to build the diagnostic model, achieving a very good 
discriminative effect in both the discovery and validation cohorts (Fig. 5). Currently, fine needle aspiration biopsy 
(FNAB) is the most reliable preoperative diagnostic method for PTC, but still has some  limitations34. For example, 
the trauma caused by FNAB may result in histological changes that affect correct diagnosis after  thyroidectomy35. 
Moreover, incomplete sampling often produces inconclusive  results36. The introduced biomarkers for PTC such 
as BRAF, RAS, have poor specificity and positive predictive  value3. Therefore, metabolite biomarkers identified 
in this study may provide a minimally invasive complementary approach for PTC diagnosis with high sensitivity 
and specificity. Furthermore, the altered metabolic pathways or related critical proteins may serve as the potential 
therapeutic targets, and the metabolic interventions may be exploited as new treatment strategies for  PTC7,37.

Compared to most other studies, we enrolled a larger cohort and constructed a diagnostic model with good 
 discrimination34,38,39. Jiang et al. revealed the biomarkers of PTC based on  lipidomics34. However, without a 
combination of metabolomic analysis, it cannot more comprehensively explain the metabolic characteristics 
of PTC. Chen et al. analyzed the plasma metabolite characteristics of PTC, but their study had a small sample 
 size38. Although Huang et al. had a larger sample size than  ours40, the untargeted metabolomics method was 
utilized to identify the differential metabolites based on databases, with some of them being not confirmed by 
the standards. Moreover, mass spectrometry detector in the full scan mode in untargeted metabolomics is easily 
saturated, leading to the limited linear ranges, repeatability, and quantitative  accuracy41. In our study, the stand-
ard solutions of metabolites were used to develop the targeted metabolomics and lipidomics methods using the 
multiple reaction monitoring mode, which has the advantages of high sensitivity, high specificity, and excellent 
quantification  ability42. Nevertheless, our study has some limitations. Our research is a single-center study, which 
led to a lack of external verification. Therefore, a multicenter prospective study is required to validate our findings.

Conclusions
In conclusion, we performed an integrated approach of widely targeted metabolomics and lipidomics to explore 
metabolic reprogramming and potential metabolite biomarkers of PTC. Distinct metabolic reprogramming 
was observed in PTC, especially for metabolites related to energy metabolism, such as BCAAs, L-glutamate, 
L-glutamine, FA, and lipids. Furthermore, we identified a panel of three circulating metabolites that may serve 
as diagnostic biomarkers for PTC. This panel showed excellent discrimination efficiency between PTC and HC in 
both the discovery and validation cohorts. Thus, it provides new targets for the comprehensive treatment of PTC.

Data availability
All datasets analyzed during the current study are not publicly available but are available from the corresponding 
author on reasonable request.
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