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Mendelian randomization analysis 
revealed potential metabolic causal 
factors for breast cancer
Mengshi Zhou 1, Mason Henricks 1, Valerie Loch 1, Gloria Zhang 2, Yong Lu 3 & Xiaoyin Li 1*

Observational studies showed that metabolic phenotypes were associated with the risk of 
developing breast cancer (BC). However, those results are inconsistent regarding the magnitude 
of the association, particularly by subtypes of breast cancer. Furthermore, the mechanisms of the 
association remain unclear. We performed two-sample Mendelian randomization (MR) analyses to 
evaluate the causal effect of metabolic risk factors on breast cancer in the European population. 
Assessed individually using MR, body mass index (BMI) (odds ratio [OR] 0.94, 95% Confidence interval 
[CI] 0.90–0.98, P = 0.007), high-density lipoprotein cholesterol (HDL-C) (OR 1.10, 95% CI 1.07–1.13, 
P = 6.10 × 10–11) and triglycerides (TG) (OR 0.92, 95% CI 0.90–0.96, P = 1.58 × 10–6) were causally related 
to breast cancer risk. In multivariable MR, only HDL-C (OR 1.08; 95% CI 1.02–1.14; P = 0.02) retained a 
robust effect, suggesting that the genetic association between BMI, HDL-C and TG with breast cancer 
risk in univariable analysis was explained via HDL-C. These findings suggest a possible causal role of 
HDL-C in breast cancer etiology.

Breast cancer (BC) is the most prevalent invasive cancer and the second leading cause of cancer death in women. 
The National Cancer Institute and the Centers for Disease Control and Prevention claim that breast cancer risk 
was 129.7 per 100,000 women in the US in 2019 (95% Confidence interval [CI] 129.2–130.2). The mortality rate 
was 19.4 per every 100,000 women (95% CI 19.2–19.6). The burden of breast cancer motivates scientists and 
researchers to comprehend better the etiology of breast cancer and provide more effective prevention strategies.

While the exact cause of breast cancer is not fully understood, factors such as age, genetics, and lifestyle 
choices have been linked to its development. There is convincing evidence that metabolic characteristics are 
linked to a higher risk of developing breast cancer1–4. For example, a common feature of many malignancies, 
including breast cancer, is the reprogramming of lipid metabolism5,6. The mortality rate among women diagnosed 
with breast cancer has been associated with type 2 diabetes (T2D)7. Breast cancer frequently occurs with a set 
of metabolic risk factors including diabetes, central obesity, and poor lipid profiles. Those observational studies 
indicated that those risk variables are all likely to be regulated by genetic and environmental risk factors4,5,8,9.

However, observational analyses cannot provide evidence of causality because observational studies are 
subject to confounding, so it remains uncertain whether those associations are causal (Fig. 1a). Whether there 
is a causal link between metabolic risk factors and breast cancer is yet to be unestablished by the body of epi-
demiological and clinical trial data8. It is challenging to completely protect observational studies from bias due 
to reverse causation or confounding variables. Obesity has been identified as a risk factor for postmenopausal 
women’s breast cancer10. However, for premenopausal women, a greater body mass index (BMI) may operate 
as a protective factor in reducing the incidence of breast cancer11. Although T2D raises the breast cancer risk, 
other researchers hypothesized it may actually be a marker for the adiposity-breast cancer relationship rather 
than the true cause of this cancer12. Observational epidemiological studies have found a range of associations 
between high-density lipoprotein cholesterol (HDL-C) and breast cancer, including positive13, negative14,15, and 
no relationships16. Mendelian randomization (MR) analysis makes it possible to evaluate the causal relationship 
between a particular exposure and disease risk while minimizing any biases that may be present in traditional 
observational studies. It is being utilized more frequently because it can overcome an important drawback of 
evidence from observational studies: unmeasured confounding (Fig. 1b). Using a genetic factor as an instru-
mental variable (IV) for the exposure, MR analysis is a method for establishing the causal relationship between 
an exposure and an outcome17,18. This method relies on the use of genetic variants as instrumental variables, 
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typically single nucleotide polymorphisms (SNPs). It requires that (1) the genetic variants are associated with 
the exposure, (2) the genetic variants are independent of a measured or unmeasured confounder, and (3) the 
genetic variants can only influence the outcome through the exposure (Fig. 1b). Given that genetic variations 
are fixed at conception and are therefore unrelated to any self-adopted or environmental influences, bias present 
in observational study designs, such as confounding, is anticipated to be significantly reduced in MR studies19.

Several MR analysis techniques have been developed to determine the causal relationship between risk vari-
ables and complex diseases. The inverse variance weighted (IVW) method (with a fixed-effect meta-analysis 
model) is most effective when all IVs are legitimate, but it can produce biased inference when horizontal plei-
otropy is presented20. Mendelian Randomization-Egger (MR-Egger) is one of the most used techniques that 
is resistant to horizontal pleiotropy but suffers from loss of power21. On the other hand, the weighted median 
technique can produce reliable casual estimates if the invalid IVs account for up to 50% of the weight of the 
studies20,22. Mendelian Randomization Pleiotropy Residual Sum and Outlier (MR-PRESSO) method is able to 
find outliers for preventing potential horizontal pleiotropy and correct the causal estimates23. The constrained 
maximum likelihood and model averaging (cML-MA) approach is resistant to invalid IVs as well as uncorrelated 
or correlated pleiotropy24.

Genetic markers have been used in MR research to examine the relationship between metabolic risk fac-
tors and breast cancer risk8,25–30. However, those studies have limitations. First, the causal effect was initially 
estimated using the IVW approach. The IVW requires all the genetic variants to be valid IVs, the estimation 
may be biased if horizontal pleiotropy is present, which is a violation of assumption 3. When IVW is used, most 
studies conduct sensitivity analyses such as MR-Egger or weighted median to detect or account for potential 
biases due to horizontal pleiotropy, the consistency between the estimates from the IVW analyses and sensitivity 
analyses should be assessed. Studies have shown that complex diseases frequently exhibit horizontal pleiotropy, 
which can lead to severe bias in MR settings23. Second, the causal relationships between metabolic risk factors 
and breast cancer were investigated separately. Evidence indicated that these exposures were closely related, 
which makes it more difficult to determine whether one exposure mediates another exposure, or whether both 
exposures have a simultaneous causal effect on the outcome31 (Fig. 1c). Third, most of the studies focused on 
breast cancer risk, but only a few studies were conducted on breast cancer subtypes, such as estrogen receptor 
(ER)-positive and ER-negative28–30.

In this study, we sought to identify which metabolic risk factors account for a causal relationship with breast 
cancer risk from a human genetics’ perspective. First, we conducted two-sample mendelian randomization analy-
ses to assess the relationship between each of the six metabolic risk factors and breast cancer risk separately. In 
order to accurately evaluate the causal relationship, we applied a cutting-edge approach, called the constrained 
maximum likelihood and model averaging (cML-MA) method. The cML-MA method produces a robust estimate 
by eliminating invalid IVs (i.e. pleiotropic variants)24. Second, we used the multivariable MR, which estimates 
the causal effects of multiple exposures on breast cancer risk simultaneously. Multivariable MR helps to elucidate 
which of the metabolic traits is of fundamental relevance to breast cancer (Fig. 1c). Thirdly, we analyzed the two 
breast cancer subtypes ER-positive (ER +) and ER-negative (ER −). Lastly, we preformed sex-specific Mendelian 
randomization analysis with betas from genome-wide association study (GWAS) of the metabolic risk factors 
conducted among women of European ancestry or predominantly European ancestry. Our results provide a 
better understanding of the metabolic mechanisms driving breast cancer.

Results
Univariable Mendelian randomization analysis.  On individual assessment through MR analysis, 
body mass index was found to be a protective factor against breast cancer. A 1-standard-deviation–higher BMI 
had an odds ratio (OR) of 0.94 (95% CI 0.90–0.98, P = 0.007) for breast cancer (Fig. 2 and Table S1). To evalu-
ate the robustness of the associations, we conducted four additional MR analyses which served as sensitivity 
analyses. This negative association was consistent with the MR-PRESSO, IVW, MR-Egger, and Weighted Median 
methods. All analyses yielded similar results, except MR-Egger with an estimate of 0.65. That may be due to 
the presence of horizontal pleiotropy. Using cML-MA, 16 SNPs were identified as potential pleiotropy outliers 
(Figure S1a, Figure S4a, and Table S9). The data was also displayed visually by a funnel plot. In the context of 
MR, asymmetry in the funnel plot will occur if there is directional pleiotropy; that is, whether causal estimates 

Figure 1.   Different types of associations between exposures and outcome. (a) Association between exposure 
and outcome, may be due to confounder (b) Causation illustrated by Mendelian randomization with single 
exposure where the genetic variants (SNPs) are independent of confounding factors (c) Causation illustrated by 
Mendelian randomization with multiple correlated exposure.
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from weaker variants tend to be skewed in one direction21. The funnel plot is symmetric after excluding the 16 
pleiotropy outliers (Figure S4a), which indicates that the horizontal pleiotropy effect has been removed using 
cML-MA. There was no evidence of week instrument bias (all F-Statistic > 10) (Table S3), with little evidence of 
heterogeneity by both the Q test (Q = 819.0, P < 0.05) and the I2 statistic (I2 > 75%) (Table S10). We observed that 
the overall causal effects for breast cancer were not driven by any individual SNP from the leave-one-out analysis 
(Figure S7a).

For HDL-C, a one standard deviation increment in HDL-C, gave an odds ratio for breast cancer of 1.10 (95% 
CI 1.07–1.13, P = 6.1 × 10–11) (Fig. 2 and Table S1). 19 outliers have been detected and excluded in the cML-MA 
analysis, which indicates evidence of horizontal pleiotropy (Figure S1d, Figure S4d, and Table S9). After removing 
the pleiotropy outliers, the funnel plot was symmetrical (Figure S4d). The association between HDL-C and breast 
cancer was also consistent with the MR-PRESSO, IVW, and MR-Egger methods. All SNPs have an F-Statistic > 10, 
which suggests no evidence of week instrument bias (Table S6). Lastly, the leave-one-out analysis did not identify 
any influential SNPs that could affect the overall causal effects on breast cancer (Figure S7c).

TG was found to be a protective factor against breast cancer. A one standard deviation increment in TG, gave 
an odds ratio for BC of 0.92 (95% CI 0.90–0.96, P = 1.58 × 10–6) (Fig. 2 and Table S1). The association between TG 
and BC was consistent with all other MR methods. We did not observe any individual SNP affecting the overall 
estimate of the rest of the studies significantly from the leave-one-out analysis (Figure S7c). A formal assessment 
revealed a minimal risk of bias from week instrument variables with all F statistic > 10 (Table S8).

Figure 2.   Univariable Mendelian randomization models assessing the causal effects of six metabolic risk 
factors on breast cancer risk. SNP, single nucleotide polymorphisms; P-value, corresponding P-value; OR, odds 
ratio; CI, confidence interval; BMI, Body Mass Index; cML-MA, the constrained maximum likelihood and 
model averaging; MR-PRESSO, Mendelian Randomization Pleiotropy Residual Sum and Outlier; IVW, Inverse 
Variance Weighted; MR-Egger, Mendelian Randomization-Egger; T2D, Type 2 Diabetes; HDL-C, High-Density 
Lipoprotein Cholesterol; LDL-C, Low-Density Lipoprotein Cholesterol; TG, triglycerides.
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Multivariable Mendelian randomization analysis.  When BMI, HDL-C and TG were assessed together 
in multivariable MR, only the causal relationship between HDL-C and BC risk remained robust (Fig. 3a). The 
adjusted OR for HDL-C with BC risk was 1.08 (95% CI 1.02–1.14; P = 0.018). The causal estimate of both BMI 
and TG was diminished. The adjusted OR for BMI is 0.98 (95% CI 0.91–1.05; P = 0.532), and for TG is 0.96 (95% 
CI 0.90–1.01; P = 0.134). Both P-values were not significant, suggesting the causal estimates were not distin-
guishable from the null. The multivariable MR results indicated that there was robust evidence for a potential 
causal role of HDL-C in the development of BC after adjusting for BMI and TG.

MR analysis with outcome stratified by ER status.  Next, we performed the MR analysis after strati-
fying the breast cancer by ER + and ER- status. The six metabolic-related traits’ effect size estimates on the BC 
subtypes were comparable to those on the overall risk for breast cancer (Table S1, Figure S2 and S3). BMI was 
discovered to be both substantially associated with ER + (OR 0.946, 95% CI 0.898–0.996, P = 0.034) and with ER- 
(OR 0.901, 95% CI 0.834–0.974, P = 0.009). Height is found only to be significantly related to ER + (OR 1.074, 
95% CI 1.04–1.109, P = 1.31 × 10–5). There is compelling evidence that HDL-C is positively correlated with both 

Figure 3.   Univariable and Multivariable Mendelian Randomization Analysis of BMI, HDL-C and TG on Breast 
Cancer Risk and Subtypes. (a) Breast Cancer (b) Estrogen receptor (ER) positive (c) Estrogen receptor (ER) 
negative. SNP, single nucleotide polymorphisms; P-value, corresponding P-value; OR, odds ratio; CI, confidence 
interval; BMI, Body Mass Index; HDL-C, High-Density Lipoprotein Cholesterol; TG, triglycerides.
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ER + (OR 1.099, 95% CI 1.063–1.136, P = 2.23 × 10–8) and ER- (OR 1.123, 95% CI 1.067–1.180, P = 6.70 × 10–6). 
TG is also found to be negatively correlated with both ER + (OR 0.914, 95% CI 0.880–0.949, P = 2.25 × 10–6) and 
ER − (OR 0.917, 95% CI 0.866–0.971, P = 0.003).

We observed consistent results in the causal estimates when we utilized ER + or ER- as the outcome in mul-
tivariable MR (Fig. 3b and c). Interestingly, When BMI, HDL-C and TG were assessed together in multivariable 
MR for ER + , only the causal relationship between TG and BC risk remained robust (the adjusted OR 0.92, 
95% CI 0.86–0.98, P = 0.013) (Fig. 3b). For ER-, The association between HDL-C and ER- remained robust. The 
adjusted OR for HDL-C with ER- was 1.16 (95% CI 1.06–1.28; P = 0.001) (Fig. 3b).

Sex‑specific Mendelian randomization analysis.  Lastly, sex-specific mendelian randomization were 
constructed and evaluated for the six metabolic risk factors using SNPs from GWASs conducted among women 
of European ancestry or predominantly European ancestry. We conducted a series of MR analysis using signifi-
cantly associated SNPs in female specific GWASs from European population. We observed consistent results. BMI 
was discovered to be significantly associated with breast cancer risk (OR 0.80, 95% CI 0.70–0.89, P = 1.17 × 10–4) 
(Fig. 4a and Table S2). For the inverse normal transformation (INV) of HDL-C, a one standard deviation incre-
ment in INT HDL-C, gave an odds ratio for breast cancer of 0.95 (95% CI 0.92–0.98, P = 5.0 × 10–4) (Fig. 4a and 
Table S2). Association evidence was detected for inverse normal transformation of log transformed TG and BC 
risk (OR 1.07, 95% CI 1.03–1.10, P = 2.43 × 10–4) (Fig. 4 and Table S2). The causal estimate was consistent with 
the other MR methods (Table S2). Since the lipids GWASs was conducted using the rank inverse normal trans-
formation of the phenotypes, it is expected that the sex specific MR results show opposite effects from the non 
sex-specific MR.

When BMI, HDL-C and TG were assessed together in multivariable MR, the causal estimate of all three traits 
was diminished (Fig. 4b and c). When exploring subgroup-specific effects, sample size is often limited compared 
to analyses in the overall sample. The estimated association effect size could be less accurate in sex-specific 
analyses because of a smaller sample size.

Discussion
In this study, a two-sample MR study was used to examine the causal relationship of six metabolic risk factors 
with breast cancer risk. Using univariable MR analysis, we found BMI, HDL-C and TG causally linked to the 
breast cancer risk. When BMI, HDL-C and TG were taken into account in multivariable MR, the relationship 
between BMI and TG on breast cancer risk was attenuated. Only HDL-C retained a robust effect with breast 
cancer risk, indicating that HDL-C was responsible for the genetic association between BMI and TG with breast 
cancer risk in the univariable study. Our study offers empirical proof from human genetics that HDL-C is essen-
tial for metabolic risk factors to have a causal effect on breast cancer risk. These results add to our understanding 
of the relationships between BMI, HDL-C, TG and breast cancer and highlight the relevance of preventing high 
HDL-C in obese patients to reduce breast cancer risk.

Studies suggested that extra weight reduces breast cancer risk in premenopausal women32. However, breast 
cancer is rare in women before menopause33. That unlikely benefit is offset by the health risks of being overweight 
or obese including heart disease, diabetes, and an increased lifetime risk for several other cancers (https://​www.​
cdc.​gov/​healt​hywei​ght/​effec​ts/​index.​html). Although BMI doesn’t directly measure body fat, it does indicate if 
there is excess body fat. Body fat can influence breast cancer risk through an effect on hormones34. By elevating 
estrogen levels, having more fat tissue can raise your risk of developing breast cancer. Additionally, obese women 
have higher insulin levels than normal, another hormone whose elevated levels have been connected to a variety 
of malignancies, including breast cancer.

Our study found that high HDL-C levels may increase breast cancer risk. This result is somewhat surprising 
given that increasing HDL-C is thought to be healthier28. Higher levels of HDL cholesterol have been linked 
to a lower risk of heart disease. However, there’s been debate in lipid-related therapy whether targeting raised 
HDL-C levels is beneficial35–37. Our findings provide additional evidence against general use of HDL-C therapy.

The association between HDL-C and breast cancer has been reported intensively8,13,15. Similarly, BMI also 
been found to be associated with breast cancer in observational studies2,25,26,32. Those studies were conducted 
individually and did not consider the correlations among those metabolic risk factors. When analyzing those 
risk factors together, we observed that SNPs associated with one metabolic-related trait tend to associate with 
other metabolic traits, highlighting their pleiotropic nature. Therefore, assessing those metabolic risk factors 
together is needed. Although, in univariable analysis, we observed significant causal effects of both BMI and 
TG with breast cancer risk, those associations were diminished when we adjusted for HDL-C. Those findings 
have clarified the underlying biological pathways of BMI, HDL-C, TG and breast cancer association. Our study 
provided additional insight into the genetic and biological basis of the association between metabolic risk fac-
tors and breast cancer risk.

In the univariable analysis, there was evidence of horizontal pleiotropy for all the risk factors, which reflected 
the shared biological pathways between metabolic risk factors and breast cancer. We addressed this issue by 
using the cML-MA method, which removed the potential pleiotropy variants and provided a more accurate 
causal estimate. The pleiotropic variants identified in univariable analysis were further removed when conduct-
ing multivariable MR analysis. By taking horizontal pleiotropy into account, we have considered many of the 
relevant factors in our analyses. Thus, our results provided robust estimates between HDL-C and BC risk after 
adjusting for BMI and TG.

We performed MR analysis to explore the potential causal effects on breast cancer subtypes of six metabolic 
risk factors. In univariable analysis, we observed that height was only causally associated with ER + , while BMI 
was suggestively associated with both ER + and ER −. We found strong evidence that both HDL-C and TG causally 

https://www.cdc.gov/healthyweight/effects/index.html
https://www.cdc.gov/healthyweight/effects/index.html
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linked to both ER + and ER- breast cancer. After multivariable analysis, only the causal effect of HDL-C remained 
for ER-, this is consistent with our observation of BC risk. It is interesting to note that for ER + , only the causal 
effect of TG remained in the multivariable MR analysis.

We did not find any significant causal relationship between T2D or LDL-C and BC risk. One possible explana-
tion is the IVs we selected for T2D and LDL-C in our analyses are also associated with breast cancer. We noted 
that the funnel plots show asymmetry for both T2D and LDL-C, indicating the presence of horizontal pleiotropy. 
Another possibility is that the SNPs associated with T2D or LDL-C only account for a small proportion of the her-
itability, so there’s not enough power to detect the causal effect, as has been seen in traditional observational data.

Finding the causal link between metabolic characteristics and breast cancer risk still presents several dif-
ficulties. To continue implicating additional loci, larger sample sizes will be required, and if cohorts are pooled 
in the original GWAS heterogeneity among studies may become an issue. When evaluating the causal effect, 
horizontal pleiotropy may provide challenges. It will be required to carefully take into account the prospective 
IVs and statistical techniques.

Figure 4.   Univariable and Multivariable Mendelian Randomization Analysis of BMI, INV HDL-C and 
INV logTG on Breast Cancer Risk and Subtypes Using Sex-specific GWAS Studies. (a) Breast Cancer (b) 
Estrogen receptor (ER) positive (c) Estrogen receptor (ER) negative. Abbreviations: SNP, single nucleotide 
polymorphisms; P-value, corresponding P-value; OR, odds ratio; CI, confidence interval; BMI, Body Mass 
Index; INV HDL-C, Inverse normal transformation of High-Density Lipoprotein Cholesterol; INV logTG, 
Inverse normal transformation of log transformed triglycerides.
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Materials and methods
Study design.  To calculate the causal inference between metabolic risk factors and breast cancer risk, this 
study used a two-sample MR design. The MR study required to employ three hypotheses (Fig. 1b).

•	 Assumption 1 the genetic variants must be significantly associated with the exposure. SNPs that have been 
replicated in an independent sample and pass genome-wide significance (P < 5 × 10–8) are typically employed 
as instruments in MR investigations. The employment of weak instruments can cause MR estimates to be 
biased towards the confounded observational estimate. It may be beneficial to use multiple SNPs as instru-
ment variables in MR research because common genetic variations only account for a small fraction of a 
trait’s variance.

•	 Assumption 2 the IVs ought to be independent of any confounding factors. It is technically impossible to 
demonstrate that this assumption is true in an MR study, but by looking at the link between the variant and 
known confounders of the exposure-outcome relationship, it may be possible to do so.

•	 Assumption 3 there were no alternative paths by which the IVs directly impacted the outcome (breast cancer), 
only the exposure. This is also known as the exclusion restriction criterion or the "no pleiotropy" assumption. 
This presumption may be violated by horizontal pleiotropy, in which an SNP is linked to several phenotypes 
independently. While it is impossible to demonstrate that this assumption is true in an MR study, there are 
several adaptations to the standard MR design that can be utilized to identify its presence and estimate the 
causal effect of the exposure even when the assumption is violated.

Data sources and instrumental variable selection.  Summary statistics for all six exposures were 
available from public GWAS repositories (Table 1). All exposure sets included a strictly European sample. To 
ensure the assumption 1: the genetic variants must be significantly associated with the exposure, we selected 
SNPs associated with the exposure at the genome-wide significance level (P < 5 × 10–8) in the European popula-
tion as instrumental variants for each exposure. For BMI, we selected 941 variants genome wide significantly 
associated with BMI from a GWAS from the Genetic Investigation of ANthropometric Traits (GIANT) consor-
tium of 681,275 European individuals38. We selected 697 variants that were genome wide significantly associated 
with height from 253,288 European individuals that also came from of GWAS of the GIANT consortium38. For 
T2D, there were 139 common variants that were genome wide significantly associated with T2D from a sample 
of 655,666 Europeans38. Lastly, we selected 534 variants from a 403,943 sample of European individuals that 
were genome wide significantly associated with high density lipoprotein cholesterol levels, and 220 variants 
from a 440,546 sample of European individuals that were genome wide significantly associated with low density 
lipoprotein cholesterol levels 38. For sex-specific MR analysis, we selected sex-specific SNPs associated with the 
exposure at genome-wide significance level (P < 5 × 10–8) in the European population.

Next, to ensure assumption 2, the IVs ought to be independent of any confounding factors. Unless steps are 
made in the MR analysis to account for any correlation structures that occur through linkage disequilibrium 
(LD), it is crucial to make sure the instruments chosen for an exposure are independent45. This was accomplished 
by further clumping the exposure-related SNPs in the European sample based on the linkage disequilibrium 
structure of the 1000 Genomes Project (r2 < 0.001 with any other associated SNP within 10 Megabase (Mb)).

The Breast Cancer Association Consortium (BCAC), which included 122,977 cases and 105,974 controls 
of European ancestry, provided effect estimates for those chosen SNPs on breast cancer risk46. It is possible 
to substitute SNPs that are LD ’proxies’ if a chosen SNP was unavailable from the breast cancer GWAS study. 
Using data from the 1000 Genomes Project, we chose proxy SNPs that had high correlations (r2 > 0.8) with the 
desired variant.

To ensure that the effect alleles for the SNP effects in the exposure and outcome are the same, we harmonized 
exposure and outcome SNP effects. We flipped the sign of breast cancer effect estimates if the effect allele in the 
study associated with the exposure is the non-effect allele in the study associated with breast cancer. Palindromic 
SNPs, which have A/T or G/C alleles, can make it difficult to determine the identification of the effect allele in 

Table 1.   Description of the six metabolic risk factors with available genetic data from GWAS.

Risk factor Number of SNPs Study reference Sample size Population Year

BMI 941 Yengo et al.38 681,275 European 2018

BMI female 12 Randall et al.39 67,957 European 2013

Height 697 Wood et al.40 253,288 European 2014

Height female 323 Randall et al.39 67,957 European 2013

T2D 139 Xue et al.41 655,666 European 2018

T2D female 14 Morris et al.42 149,821 European 2012

HDL 534 Richardson et al.43 403,943 European 2020

HDL female 323 Kanoni et al.44 565,724 European 2022

LDL 220 Richardson et al. 43 440,546 European 2020

LDL female 281 Kanoni et al.44 558,498 European 2022

TG 313 Richardson et al. 43 441,016 European 2020

TG female 296 Kanoni et al.44 558,498 European 2022
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exposure and outcome GWASs45. Palindromic SNPs with an intermediate minor allele frequency (MAF > 0.42) 
were further eliminated45.

Statistical analysis.  First, we conducted two-sample mendelian randomization analyses to assess the rela-
tionship between each of the six metabolic risk factors and breast cancer risk individually. In order to accurately 
evaluate the causal relationship, we applied a cutting-edge approach called cML-MA which produces a robust 
estimate by eliminating invalid IVs (i.e. pleiotropic variants)24. We understand that such pruning could pos-
sibly remove variants that are in the same causal pathway with the risk of breast cancer, affecting the strength 
and validity of study instruments. Additionally, we applied four other MR techniques, MR-PRESSO, MR-Egger, 
IVW and Weighted median as sensitivity analysis. We presented results from analyses using the instruments that 
either included or excluded pleiotropic SNPs.

Second, individual MR analyses results were carried out to further elucidate which of the metabolic traits is 
of fundamental relevance to breast cancer. We further employed the multivariable MR (Fig. 1b) to examine these 
metabolic traits together in multivariable MR. When there are two or more correlated exposures, multivariable 
MR may be used to determine if all of the exposures have a causal effect on the outcome or whether one of the 
exposures mediates the effect of the other31.

The odds ratios and corresponding 95% confidence intervals for the results were displayed. To account for 
multiple comparisons, the Bonferroni method is used to handle the estimation of the chance of error in multiple 
testing for the six exposures. In the univariable MR analyses, a P-value between 0.008 and 0.05 was regarded 
as suggestively significant and a P-value less than 0.008 (0.05/6 after Bonferroni adjustment) as statistically 
significant.

Sensitivity analysis.  Besides just applying all the MR analyses described above to demonstrate sensitiv-
ity to different patterns of assumption violations, we calculated the Cochran’s Q statistic and the I2 statistic to 
quantify heterogeneity among causal estimates across all IVs. The corresponding P-value of Q statistic (P > 0.05) 
offers more reliability for causal effects47. The SNPs were also assessed by the F-statistics for week IV bias48. 
Additionally, we conducted a leave-one-out analysis to identify any potential high influence variant driving the 
causal association between metabolic traits and breast cancer risk.

Conclusions
In conclusion, our findings demonstrated that HDL-C was critical in facilitating the causal effects of breast cancer 
risk. Additional MR studies of breast cancer subtypes (e.g., ER positive and ER negative) helped to establish the 
exact nature of this relationship. BMI, HDL-C and TG may be utilized as prognostic indicators of breast cancer 
and have significant clinical significance.

Data availability
The GWAS summary datasets for BMI, height, T2D and BC are publicly available in TwoSampleMR at https://​
mrcieu.​github.​io/​TwoSa​mpleMR/. The GWAS summary datasets for HDL and LDL are available at S1 Table 
and S2 Table from 43. The Sex-specific GWAS summary datasets for BMI and height are downloaded from 
https://​porta​ls.​broad​insti​tute.​org/​colla​borat​ion/​giant/​index.​php/​GIANT_​conso​rtium_​data_​files. The Sex-
specific GWAS summary dataset for T2D is available at https://​diagr​am-​conso​rtium.​org/​downl​oads.​html. The 
Sex-specific GWAS summary datasets for HDL-C, LDL-C and TG are downloaded from https://​csg.​sph.​umich.​
edu/​willer/​public/​glgc-​lipid​s2021/. All MR methods used in this manuscript are publicly available R packages 
TwoSampleMR, MendelianRandomization (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​Mende​lianR​andom​izati​
on/​index.​html), and MRcML (https://​github.​com/​xue-​hr/​MRcML).
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