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Improving quantitation accuracy 
in isobaric‑labeling mass 
spectrometry experiments 
with spectral library 
searching and feature‑based 
peptide‑spectrum match filter
Tzu‑Yun Kuo 1, Jen‑Hung Wang 2,3,4, Yung‑Wen Huang 5, Ting‑Yi Sung 3* & Ching‑Tai Chen 6,7*

Isobaric labeling relative quantitation is one of the dominating proteomic quantitation technologies. 
Traditional quantitation pipelines for isobaric‑labeled mass spectrometry data are based on sequence 
database searching. In this study, we present a novel quantitation pipeline that integrates sequence 
database searching, spectral library searching, and a feature‑based peptide‑spectrum‑match (PSM) 
filter using various spectral features for filtering. The combined database and spectral library searching 
results in larger quantitation coverage, and the filter removes PSMs with larger quantitation errors, 
retaining those with higher quantitation accuracy. Quantitation results show that the proposed 
pipeline can improve the overall quantitation accuracy at the PSM and protein levels. To our 
knowledge, this is the first study that utilizes spectral library searching to improve isobaric labeling‑
based quantitation. For users to conveniently perform the proposed pipeline, we have implemented 
the feature‑based filter being executable on both Windows and Linux platforms; its executable files, 
user manual, and sample data sets are freely available at https:// ms. iis. sinica. edu. tw/ comics/ Softw 
are_ FPF. html. Furthermore, with the developed filter, the proposed pipeline is fully compatible with 
the Trans‑Proteomic Pipeline.

Mass spectrometry (MS)-based proteomics has become a powerful technology for the identification and quantita-
tion of protein mixtures in complex  samples1. Isobaric labeling, a widely used protein quantitation technique, has 
the advantage of multiplexed and high-throughput capabilities which enables quantifying thousands of proteins 
from multiple samples in a single  run2. TMT (Tandem Mass Tag)3 and iTRAQ (isobaric Tags for Relative and 
Absolute Quantitation)4 are the two most commonly used reagents. For example, a number of research teams 
from CPTAC 5, 6 (Clinical Proteomic Tumor Analysis Consortium) use TMT in analyzing oncoproteomic data 
for cancer research.

Several existing isobaric labeling quantitation tools support identification results from a single search engine 
for quantitation; for instance,  MaxQuant7 supports  Andromeda8, and  PatternLab9 supports  Comet10. Some other 
tools support the results from multiple search engines, such as Libra, which is included in the Trans-Proteomic 
Pipeline (TPP)11, 12, Multi-Q  213, and the commercial Proteome Discoverer; these tools in general have a larger 
coverage of quantifiable peptides and proteins. Notably, in recent years, spectral library searching that matches a 
query spectrum against a library of experimental reference spectra with known identifications has been emerging 
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as a complementary approach to database searching. Spectral library searching utilizes the intensities of frag-
ment ions for spectrum matching, thereby enhancing sensitivity and reducing search  time14–19. This approach 
has been demonstrated to improve the identification of TMT-labeled peptides by sequence database  searching20. 
Previous studies on spectral library searching have made efforts to identification, but systematic analysis of its 
impact on quantitation accuracy remains  limited21. Specifically, the use of spectral library searching to improve 
quantitation accuracy of isobaric-labeled data requires further investigation.

In this study, we construct a pipeline that integrates sequence database searching, spectral library search-
ing, and a spectrum filter to achieve better quantitation accuracy for isobaric-labeling MS experiments. First, 
sequence database searching is applied to the isobaric-labeled spectral files. A sample-specific spectral library 
is then constructed with database search results, which is used for spectral library searching. The combined 
results of database and spectral library searching contain more peptide-spectrum matches (PSMs) than using 
database searching alone for subsequent quantitation analysis. Next, we develop a software tool, the feature-based 
PSM filter (FPF), in an attempt to filter out PSMs with larger quantitation errors by examining various spectral 
features, such as peptide length, charge state, and average reporter ion intensity. Diverse features are considered 
because they can be significantly correlated with the accuracy of quantitation ratios according to Fischer and 
Renard’s  study22. The identification results of combined database and spectral library searching are processed by 
FPF to remove PSMs with larger quantitation errors, and the resulting PSMs are used for quantitation, thereby 
improving quantitation accuracy. Our experiment results show that the PSMs removed by FPF have median 
AREs (average relative errors) of 0.407, 0.173, and 0.172 for three standard data sets, respectively, while the PSMs 
retained by FPF have significantly smaller median AREs of 0.083, 0.105, and 0.094. It is demonstrated that the 
proposed pipeline includes more PSMs with higher quantitation accuracy while removing a majority of PSMs 
with lower accuracy in general, resulting in improved quantitation performance compared to conventional 
quantitation workflow based on only sequence database searching. Noteworthily, the quantitation improvement 
can be achieved at the protein level, even though spectral library searching usually increases sensitivity at the 
PSM and peptide levels. For example, the proposed pipeline results in 8.3% and 52.9% increases in the number 
of more accurately quantified proteins, i.e., proteins with ARE smaller than 0.04 and 0.075 for two standard data 
sets, respectively, compared to the conventional approach. The study demonstrates that the integration of FPF 
and spectral library searching, initially developed to enhance the sensitivity of PSM identification, can lead to 
improved quantitation accuracy for isobaric labeling experiments. FPF, a lightweight and installation-free tool, 
is designed to be fully compatible with TPP and can be executed on both Windows and Linux platforms. Its 
source code is open and freely available to public.

Materials and methods
Standard proteomics data sets. Three data sets were downloaded from the public domain for this study. 
The first data set, denoted as DS-Schmidt, was downloaded from the ProteomeXchange  Consortium23 with the 
identifier  PXD00334624. The data set consisted of six samples with varying amounts of B. henselae peptide digests 
(from 0.5 μL up to 25 μL) mixed with 40 μL of HeLa S3 peptide digests. The mixtures of samples were inten-
tionally designed so that PSM ratios of human proteins are closer to their ideal values and those of B. henselae 
proteins are less accurate because of the interference of co-eluting peptides. Thus, we took only human proteins 
to demonstrate the capability of FPF. Taking the intensity of the first channel as the denominator and those of the 
rest as numerators, we obtained five protein ratios with theoretical values of 1 for each human protein.

The second data set, named DS-NCI-725, was downloaded from the CPTAC Data  Portal6. It consisted of 
TMT-10 samples from seven different cancer cell lines. Channels one to three, four to six, and seven to nine are 
of proportions 1:1:0.5 from three biological replicates of the digested mixtures, respectively. The last channel is 
a pooled reference generated with equal amounts of proteins from each cell line. In this data set, the last channel 
was used as the denominator, leading to nine ratios with theoretical values of either 1 or 0.5.

The third data set, denoted as DS-Yang, was downloaded from the ProteomeXchange Consortium with the 
identifier  PXD00548626. Thirteen proteins were spiked in with different concentrations ranging from 0 to 80 pmol 
in 10 E. coli lysates of 70 μg. We took the intensity of the first channel as the denominator and those of the rest as 
numerators, resulting in nine ratios with theoretical values of 1 for E. coli proteins and theoretical values ranging 
from 0.025 to 20 for spiked-in proteins.

For peptide and protein identifications, all data sets were searched with Comet and X!Tandem27, for which the 
databases and search parameters were identical to those described in the original papers, listed in Supplementary 
Tables S1−S2. Reporter ions of each spectrum were normalized according to the median intensity of each channel 
across all the identified  spectra13. In this study, the DS-Schmidt data set was used to determine a set of filtering 
conditions through the analyses of quantitation errors and various spectral features. Based on the set of filtering 
conditions, all three data sets were used to evaluate the quantitation performance of the proposed workflow.

Overview of the workflow. The workflow proposed in this study is briefly described as follows. Peptide 
identification via sequence database (DB) searching is performed on spectral files in the mzML/mzXML format 
and the identification results are used to build up a sample-specific spectral library (SL). Next, we perform SL 
searching on the entire data set, and the output is combined with the output from DB searching using statisti-
cal validation tools provided by TPP. The identification results based on DB searching are then compared with 
identification results based on the combined DB and SL searching, denoted as DB + SL searching, to distinguish 
the common and distinct PSMs between both approaches. For convenience, the PSMs exclusively belonging to 
the identification results of DB searching are termed DB-exclusive PSMs, and those exclusively belonging to the 
results of DB + SL searching are termed DB + SL-exclusive PSMs. Then only DB + SL-exclusive PSMs are pro-
cessed by FPF to remove PSMs with larger quantitation errors. The remaining PSMs from DB + SL searching can 
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lead to improved quantitation compared to the conventional approach using DB searching alone, because they 
contain more PSMs with relatively minor quantitation errors. A more detailed workflow is illustrated in Fig. 1.

DB searching and SL construction. As illustrated in the upper half of Fig. 1, the mzML or mzXML files 
of an input data set are searched by Comet and X!Tandem, followed by  PeptideProphet28 for statistical valida-
tion, and then both resulting pep.xml files are combined and validated by  iProphet29 to obtain the results of DB 
searching, i.e., PSMs with a false discovery rate (FDR) of 1% at the peptide level (called valid PSMs in this paper). 
For all the valid PSMs, the signal-to-interference (S2I) measure is calculated as the abundance of a precursor and 
its isotopic clusters divided by the sum of all ion signals observed within the isolation window. To eliminate the 
PSMs affected by higher co-eluting interferences, an S2I filter removes PSMs with S2I values smaller than 0.7. 
The resulting PSMs are used to construct a sample-specific SL using  SpectraST16, 30 with default parameters as 
listed in Supplementary Table S3.

DB + SL searching and FPF. As illustrated in the lower half of Fig. 1, SpectraST is used to re-search the 
input mzML/mzXML files against the SL using parameters listed in Supplementary Table S4, followed by Pepti-
deProphet for statistical validation. The resulting pepXML file and the two pepXML files from database search-
ing (based on Comet and X!Tandem) are processed by iProphet, producing an ipro.pep.xml file consisting of 
PSMs identified by the three search engines, i.e., by DB + SL searching, with an FDR < 1% at the peptide level. 
The file is compared to the iProphet output based on DB searching alone to obtain DB-exclusive PSMs and 
DB + SL-exclusive PSMs. FPF is then applied on DB + SL-exclusive PSMs to filter out PSMs with larger quan-
titation errors, retaining PSMs with better quality for quantitation. Because we regard DB search results as the 
baseline for quantitation analysis, applying FPF on only DB + SL-exclusive PSMs allows us to perform a direct 
comparison between the proposed pipeline and the conventional pipeline based on DB searching alone. The 
output of FPF is an ipro.pep.xml file modified from the identification results of DB + SL searching that is fully 
compatible with the original iProphet format, facilitating a follow-up protein level identification analysis with 
 ProteinProphet31 or  Mayu32 and quantitation analysis with Libra or Multi-Q 2.

FPF features. FPF takes into account the following features of PSMs for filtering: (1) precursor’s charge 
state, (2) precursor’s mass, (3) peptide length, (4) number of PTMs in a peptide, (5) PTM ratio, defined as the 
number of PTMs in a peptide divided by peptide length, (6) absolute mass difference, which is the absolute dif-
ference between the observed and theoretical peptide mass, (7) average reporter ion intensity, calculated from 
normalized reporter ion intensity of each channel, (8) F-value, (9) intra-protein distance (IProtDist), the dis-
tance between a PSM to all the other PSMs in the same protein in terms of PSM ratios, and (10) intra-peptide 
distance (IPepDist), the distance between a PSM to all the other PSMs assigned to the same peptide in terms of 
PSM ratios. When a PSM has missing reporter ion(s), FPF bypasses the filtering conditions of average reporter 
ion intensity, IProtDist, and IPepDist for this PSM.

IProtDist of PSM j, denoted as IProtDistj, is calculated as

where Ri
j stands for the ith ratio of PSM j; Avg_Resti stands for the average of the ith ratio across all the PSMs 

except for PSM j within the protein; Avgi stands for the average of the ith ratio across all PSMs within the protein; 
n stands for the number of predefined ratios. IProtDistj is zero if PSM j is the only PSM assigned to the protein.

The calculation of IPepDist is the same as IProtDist, except that Avg_Resti and Avgi are calculated based on 
PSMs assigned to the same peptide instead of those assigned to the same protein. For single-hit peptides (peptides 
identified by only a single PSM), Avg_Resti, and Avgi cannot be calculated; thus, we merge all such peptides from 
a protein as a pseudo-peptide, for which Avg_Resti, and Avgi are calculated. Similarly, IPepDistj is zero if PSM j 
is the only PSM assigned to the pseudo-peptide.

In addition, FPF also examines features exclusive to the SpectraST output file, including (1) absolute precur-
sor m/z difference, (2) dot product, (3) delta score, (4) number of hits, (5) mean of the dot products of the hits, 
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Figure 1.  The workflow of spectral library-assisted isobaric labeling quantitation with feature-based PSM filter 
(FPF).
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denoted as hit_mean, and (6) standard deviation of the dot products of the hits, denoted as hit_std. For some 
PSMs without such features reported in the iProphet file, FPF directly ignores the filtering conditions regarding 
these features.

Filtering conditions for FPF. For DS-Schmidt, we collected DB + SL-exclusive PSMs and calculated their 
AREs, which is defined as the average of |xi-yi|/yi over all the predefined ratios in a PSM, where xi is the observed 
ratio and yi is the theoretical ratio. We regarded the 25% PSMs with the top AREs in a data set as PSMs with 
larger quantitation errors, which were expected to be filtered out.

Filtering conditions for FPF are determined under the rationale that the eliminated PSMs of a certain condi-
tion should include as many PSMs with larger quantitation errors as possible, while the majority of PSMs of better 
quantitation accuracy are preserved. In this study, we used the DS-Schmidt data set to analyze the distribution of 
PSMs with larger quantitation errors on each single feature described above for the sake of generating reasonable 
filtering conditions for DB + SL-exclusive PSMs. Such conditions were then applied on DS-Schmidt, DS-Yang, 
and DS-NCI-7 data sets for quantitation analysis. Please note that the default parameters of FPF conditions were 
set based on the analysis of DS-Schmidt, but these parameters are adjustable in the tool by users.

Evaluation of quantitation results. We used ARE and area under the curve of PSM coverage vs. PSM 
ARE, denoted as AUC, to evaluate quantitation results at the PSM level. The former is described in the previous 
section; the latter is calculated by the area under the curve for which the x-axis denotes the PSM ARE, and the 
y-axis denotes the coverage of PSM within the ARE. A large AUC indicates larger coverage of PSMs within the 
specific range of PSM ARE, thus implying better PSM-level quantitation accuracy. A valid PSM is evaluated only 
if it is not a shared peptide and has no missing reporter ion.

Protein-level quantitation accuracy was also evaluated even though spectral library searching is originally 
used to enhance PSM identification, not protein-level quantitation. There are various protein ratio calculation 
algorithms, such as MedianPsmRatio, WeightedPsmRatio, and  SumPsmIntensity13. Optimization of protein-level 
quantitation is beyond the scope of this study. Thus, we simply used SumPsmIntensity algorithm to demon-
strate the quantitation performance at protein level. The algorithm is based on the summation of the reporter 
ion intensity of each channel across all the PSMs assigned to the protein. Protein ARE is used to evaluate the 
accuracy of quantitation at the protein level. Only proteins satisfying the 1% FDR cutoff at the protein level 
validation are evaluated.

Results
Determination of FPF conditions. FPF is a rule-based filtering mechanism that relies on a set of prede-
fined conditions, in terms of features and their cutoffs, to remove PSMs with larger quantitation errors. To deter-
mine the suitable conditions, we analyzed the frequency distribution of PSMs with larger quantitation errors in 
PSM groups associated with each spectral feature in DB + SL-exclusive PSMs (2259 PSMs of human proteins, 
including 564 PSMs with larger quantitation errors) of DS-Schmidt, where the frequency of PSMs with larger 
quantitation errors (called frequency for short) is the number of such PSMs divided by the number of PSMs 
having a specific feature value or range, as shown in Supplementary Fig. S1. As observed from the figure, some 
features such as charge state, peptide length, and IPepDist can be associated with a clear threshold for filtering 
PSMs, as the frequency of PSM groups below and above the threshold differ significantly. For example, 61.9% 
(13 out of 21) PSMs with a peptide length of at least 25 are PSMs with larger quantitation errors; in contrast, for 
peptides with a length of at most 24, the frequency is 24.6% (551 out of 2238), indicating that the peptide length 
25 can be a suitable threshold. Such results suggest that using spectral features as filtering conditions can be a 
valid approach to eliminate PSMs with larger quantitation errors from quantitation analysis.

Judging from the frequency distributions of PSMs with larger quantitation errors shown in Supplemen-
tary Fig. S1, we determined the filtering conditions as follows: (1) precursor’s charge state ≥ 5, (2) precursor’s 
mass ≥ 4000 Da, (3) peptide length ≥ 25, (4) average reporter ion intensity < 10,000, (5) IPepDist ≥ 0.8, (6) IProt-
Dist ≥ 0.6, (7) absolute mass difference ≥ 2 Da, (8) dot product < 0.4, and (9) F-value < 0.4. A PSM is filtered out 
if any of the above-mentioned conditions is satisfied. These filtering conditions are in consistence with previous 
studies, for example, charge state and peptide length are reported to be positively correlated with quantitation 
 error22. Longer peptides in general have larger precursor’s mass. It is also known that smaller reporter ion intensi-
ties lead to less quantitation  accuracy33–35. Moreover, larger IPepDist and IProtDist indicate the PSM has larger 
ratio differences to other PSMs belonging to the same peptide and protein, respectively, implying that the PSM 
is likely to be an outlier and less quantitatively accurate. On the other hand, PSMs with larger absolute mass 
difference, smaller dot product, and smaller F-value are associated with less confident identifications or perhaps 
false positive hits, which are also likely to produce larger quantitation errors. Some features are not used because 
they do not reveal a clear threshold.

Quantitation results on DS‑schmidt at the PSM level. For DS-Schmidt, as explained in Materials 
and methods, we use the human proteins with known quantitation ratios to evaluate whether DB + SL search-
ing combined with FPF improves quantitation accuracy compared to using DB searching alone. As shown in 
Fig. 2A, there are 521 DB-exclusive PSMs and 2830 DB + SL-exclusive PSMs, among which 398 DB-exclusive 
PSMs and 2259 DB + SL-exclusive PSMs belong to human proteins. Applying FPF on the 2259 DB + SL-exclu-
sive PSMs removes 509 PSMs and retains 1750 PSMs. Figure 2B shows that the 398 DB-exclusive PSMs (pink 
boxplot) and 2259 DB + SL-exclusive PSMs (orange boxplot) have rather similar ARE distributions. The 509 
DB + SL-exclusive PSMs removed by FPF (blue boxplot) have a significantly larger median PSM ARE of 0.407, 
whereas the 1750 DB + SL-exclusive PSMs retained by FPF (green boxplot) have a much smaller median PSM 
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ARE of 0.083. The results demonstrate that FPF is capable of retaining PSMs of high quantitation accuracy while 
excluding those of low accuracy.

In this data set, a majority of DB + SL-exclusive PSMs have low quantitation errors, yet some of them have 
large ARE, as shown in Supplementary Fig. S2. For example, 321 DB + SL-exclusive PSMs have their AREs above 
0.3, yet the number of DB-exclusive PSMs in this range is only 38, much less than DB + SL-exclusive PSMs. Such 
DB + SL-exclusive PSMs can deteriorate the quantitation accuracy of some proteins, rendering worse ARE than 
using DB searching alone. When FPF is applied on DB + SL-exclusive PSMs (green bars), a large number of PSMs 
with larger quantitation errors are removed while still retaining most PSMs with low quantitation errors. For 
example, 308 out of 321 PSMs with ARE above 0.3 are removed by FPF, whereas 1175 out of 1249 PSMs with 
ARE smaller than 0.1 are retained. Furthermore, DB + SL-exclusive PSMs retained by FPF has an AUC of 0.912 
and compares favorably over the AUC of 0.855 and 0.819 for DB-exclusive PSMs and DB + SL-exclusive PSMs, 
respectively, as shown in Supplementary Fig. S3. The results show that through incorporating DB + SL searching 
with FPF, termed DB + SL + FPF, we include more PSMs with lower AREs and exclude PSMs with higher AREs 
from DB + SL-exclusive PSMs, thus improving overall quantitation accuracy.

Quantitation results on DS‑schmidt at the protein level. For DS-Schmidt, the 398 DB-exclusive 
PSMs and 1750 DB + SL-exclusive PSMs retained by FPF can render different protein-level quantitation results 
for a total of 714 proteins, which account for 37.9% of the 1883 proteins identified by DB searching alone. For 
these proteins, we examined the distribution of protein numbers with different ranges of protein ARE for quan-
titation based on DB searching alone and that based on the proposed DB + SL + FPF. As shown in Fig. 3, the 
number of proteins with lower AREs increases, and that with higher AREs decreases for quantitation based on 
DB + SL + FPF. For example, the number of proteins with ARE < 0.04 increases from 265 to 287 (8.3% increase), 
and the number of proteins with ARE ≥ 0.04 decreases from 449 to 427 (4.9% decrease). Nevertheless, we also 
observe that the number of proteins with ARE ≥ 0.1 is larger for DB + SL + FPF because a small number of 

Figure 2.  Analysis on valid PSMs of DB searching and DB + SL searching results of the DS-Schmidt data set. 
(A) Venn diagram of PSMs identified by DB searching and DB + SL searching. There are 398 of 521 DB-exclusive 
PSMs and 2259 of 2830 DB + SL-exclusive PSMs belonging to human proteins. (B) Distribution of PSM ARE for 
DB-exclusive PSMs, DB + SL-exclusive PSMs, DB + SL-exclusive PSMs retained by FPF, and DB + SL-exclusive 
PSMs removed by FPF. The three values beside each boxplot (from top to bottom) represent Q3, median, and 
Q1, respectively.

Figure 3.  The number of proteins within different ranges of protein ARE for quantitation based on DB 
searching alone (pink bars) and that based on DB + SL + FPF (green bars) for DS-Schmidt.
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DB + SL-exclusive PSMs with larger quantitation errors cannot be completely removed by FPF, as shown in 
Fig. S2 of the Supporting Information.

The 714 proteins were further categorized by their abundances, which was calculated based on the average of 
reporter ion intensities across all the PSMs belonging to a protein. Supplementary Fig. S4 illustrates the protein 
level quantitation results for proteins of different abundances. For proteins with the bottom 25% abundances 
(Fig. S4A), quantitation based on DB + SL + FPF yields more proteins of larger ARE (ARE ≥ 0.1) compared to 
quantitation based on DB searching alone. In contrast, for proteins with the top 25% abundances (Fig. S4C), 
quantitation based on DB + SL + FPF yields more proteins of smaller ARE (ARE < 0.04) compared to quantitation 
based on DB searching alone. This is because proteins of higher abundances are associated with PSMs of larger 
reporter ion intensities and better signal quality, which benefits spectral library searching in finding other PSMs 
of good signal quality and high quantitation accuracy.

PSM‑level quantitation results on DS‑NCI‑7 and DS‑Yang. As the filtering conditions of FPF are 
determined by DS-Schmidt, we evaluate the generalizability of the filter on DS-NCI-7 and DS-Yang at both PSM 
and protein levels. At the PSM level, for DS-NCI-7, in addition to 89,722 common PSMs identified by both DB 
searching and DB + SL searching, there are 2162 DB-exclusive PSMs and 36,624 DB + SL-exclusive PSMs, as 
shown in Supplementary Fig. S5, implying that the inclusion of SL searching significantly increases the iden-
tification coverage. As shown in Fig. 4A, the median ARE of DB-exclusive PSMs (pink boxplot) and DB + SL-
exclusive PSMs (orange boxplot) are rather similar. Among the 36,624 DB + SL-exclusive PSMs, FPF filters out 
15,704 PSMs with a median ARE of 0.173 (blue boxplot), significantly larger than the median ARE of 0.105 for 
the 20,920 remaining PSMs (green boxplot). It can also be observed that the 20,920 DB + SL-exclusive PSMs 
retained by FPF have a median PSM ARE of 0.105, smaller than the median PSM ARE of 0.122 for the 2162 
DB-exclusive PSMs. The observation implies that DB + SL + FPF contains more accurate PSMs for quantitation 
compared to using DB searching alone. The distribution of PSM count across different PSM ARE ranges is illus-
trated in Supplementary Fig. S6, where the number of DB + SL-exclusive PSMs (orange bars), compared to that 
of DB-exclusive PSMs (pink bars), shows a drastic increase across both lower ARE ranges (e.g., ARE < 0.2) and 
higher ARE ranges (e.g., ARE > 0.3). Applying FPF on DB + SL-exclusive PSMs (green bars) effectively reduces 
the latter while retaining the majority of the former. Furthermore, the DB + SL-exclusive PSMs retained by FPF 
has an AUC of 0.894, compared favorably over the AUC of 0.857 and 0.84 for DB-exclusive PSMs and DB + SL-
exclusive PSMs, respectively, as shown in Supplementary Fig.  S7. The above phenomena are consistent with 
the observations from DS-Schmidt, even though the filtering conditions are determined by the analyses of DS-
Schmidt instead of DS-NCI-7.

For DS-Yang, there are 980 DB-exclusive PSMs and 6574 DB + SL-exclusive PSMs, among which 962 DB-
exclusive PSMs and 6395 DB + SL-exclusive PSMs belong to E. coli proteins, as shown in Supplementary Fig. S8, 
and are used for performance evaluation. DB-exclusive PSMs (pink boxplot) have marginally higher AREs than 
DB + SL-exclusive PSMs (orange boxplot), as shown in Fig. 4B. FPF filters out 3664 PSMs with a median ARE 
of 0.172 (blue boxplot), significantly larger than the median ARE of 0.094 for the 2731 remaining PSMs (green 
boxplot). The Q3, median, and Q1 AREs of 2731 DB + SL-exclusive PSMs retained by FPF are 0.122, 0.094, and 
0.071, respectively, considerably smaller than 0.208, 0.137, and 0.098 for DB-exclusive PSMs. The situation 
indicates that more quantitatively accurate PSMs are in place of less accurate PSMs when using DB + SL + FPF 
for quantitation. The distribution of PSM count across different PSM ARE ranges shown in Supplementary 
Fig. S9 reveals a similar trend to DS-Schmidt and DS-NCI-7, namely, applying FPF on DB + SL-exclusive PSMs 
effectively reduces PSMs of higher AREs while retaining the majority of the PSMs of lower AREs. Furthermore, 
DB + SL-exclusive PSMs retained by FPF have an AUC of 0.905, which compares favorably over the AUC of 0.809 
and 0.826 for DB-exclusive PSMs and DB + SL-exclusive PSMs, respectively, as shown in Supplementary Fig. S10.

Figure 4.  Distribution of PSM ARE for DB-exclusive PSMs, DB + SL-exclusive PSMs, DB + SL-exclusive 
PSMs retained by FPF, and DB + SL-exclusive PSMs removed by FPF on (A) PSMs in DS-NCI-7 and (B) PSMs 
in DS-Yang. The three values within each boxplot (from top to the bottom) represent Q3, median, and Q1, 
respectively.
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Quantitation results of DS‑NCI‑7 and DS‑Yang at the protein level. For DS-NCI-7, a total of 2162 
DB-exclusive PSMs and 20,920 DB + SL-exclusive PSMs retained by FPF correspond to 6727 human proteins 
(accounting for 74.7% of the 8998 proteins identified by DB searching), for which the protein-level quantitation 
results can be altered. For these proteins, the distributions of protein numbers with different ranges of protein 
ARE for quantitation based on DB searching alone and that based on DB + SL + FPF are shown in Fig. 5A. Quan-
titation based on DB + SL + FPF demonstrates a significant increase in the number of proteins with lower AREs 
and a significant decrease in the number of proteins with higher AREs. For example, the number of proteins with 
ARE < 0.075 increases from 2036 to 3114 (52.9% increase), whereas the number of proteins with ARE ≥ 0.075 
decreases from 4691 to 3613 (23% decrease). The results reveal the generalizability of the FPF conditions though 
determined by a single large data set.

For DS-Yang, a total of 962 DB-exclusive PSMs and 2731 DB + SL-exclusive PSMs retained by FPF correspond 
to 1064 E. coli proteins, accounting for 46.0% of the 2314 E. coli proteins identified by DB searching. For these 
proteins, the distributions of protein numbers with different ranges of protein ARE for quantitation based on 
DB searching alone and that based on DB + SL + FPF are shown in Fig. 5B. Unlike the other two data sets which 
show considerable protein-level improvement for quantitation based on DB + SL + FPF, there are only marginal 
differences in the number of proteins across different protein ARE ranges. The outcome can be explained by the 
fact that the 962 DB-exclusive PSMs, and the 2731 DB + SL-exclusive PSMs retained by FPF and even the 6395 
DB + SL-exclusive PSMs before filtering, are far less than the 51,487 common PSMs between the identification 
results of DB searching and DB + SL searching. In other words, both DB searching and DB + SL + FPF use similar 
sets of PSMs to quantify proteins, irrelevant of the filtering, thus producing similar protein quantitation outcomes. 
The scenario suggests that in cases where spectral library searching does not yield a substantial increase in PSM 
identification, namely, there being relatively few DB + SL-exclusive PSMs, the proposed pipeline may exhibit 
protein-level quantitation accuracy comparable to that of the conventional approach using DB searching alone.

Case studies for exploring the efficacy of DB + SL + FPF. To understand why SL searching and FPF 
help improve protein quantitation accuracy, we particularly selected four proteins from the DS-Schmidt and 
DS-NCI-7 data sets for exploration, as summarized in Supplementary Table S5.

Case study of RBP56_HUMAN. As shown in Supplementary Table S5, the protein sp|Q92804|RBP56_HUMAN 
in DS-Schmidt has a protein ARE of 0.0789 for the quantitation based on DB searching alone. DB + SL searching 
yields 9 DB + SL-exclusive PSMs (the rows in blue color in Table 1) mostly with lower PSM ARE (7 out of 9 have a 
PSM ARE < 0.15); thus, quantitation based on DB + SL searching yields a reduced protein ARE of 0.0193. Apply-
ing FPF on 9 DB + SL-exclusive PSMs filters out one PSM with a much higher ARE of 0.5535 (the row with red 
text in Table 1). As a result, quantitation based on the 18 PSMs obtained by DB + SL + FPF further improves the 
protein ARE to 0.0187. Spectral features of each PSM are shown in Supplementary Table S6, in which the PSM 
removed by FPF satisfies the following filtering conditions. Its average reporter ion intensity of 5912 is smaller 
than the cutoff of 10,000; its IPepDist of 1.4691 is greater than the cutoff of 0.8; its IProtDist of 1.3082 is greater 
than the cutoff of 0.6.

Figure 5.  The number of proteins within different protein ARE ranges for quantitation based on DB searching 
alone and that based on DB + SL + FPF on (A) Human proteins in DS-NCI-7 and (B) E. coli proteins in DS-Yang.
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Case study of MDC1_HUMAN. The protein sp|Q14676|MDC1_HUMAN in DS-Schmidt has a protein ARE of 
0.1004 for quantitation based on DB searching alone (Supplementary Table S5). The protein has 9 DB + SL-exclu-
sive PSMs, all of which pass the FPF filtering, as shown in Supplementary Table S7. The quantitation based on 
DB + SL searching improves the protein ARE to 0.0487. This case shows that the quantitation based on DB + SL 
searching can improve quantitation accuracy since the DB + SL-exclusive PSMs can be fairly accurate.

Case study of RL27A_HUMAN. The protein sp|P46776|RL27A_HUMAN in DS-Schmidt has a protein ARE 
of 0.1034 for quantitation based on DB searching alone (Supplementary Table S5). As shown in Supplementary 
Table S8, there is exactly one DB-exclusive PSM with a PSM ARE of 0.8579, and one DB + SL-exclusive PSM with 
a PSM ARE of 0.1827 passing the FPF filtering. Thus, the quantitation based on DB + SL searching leads to an 
improved protein ARE of 0.0211. The situation shows that combining SL and DB searching can exclude highly 
inaccurate DB-exclusive PSMs from quantitation, thus leading to improved quantitation.

Case study of NP_055874.2. The protein NP_055874.2 in DS-NCI-7 has a protein ARE of 0.1218 for quantita-
tion based on DB searching alone (Supplementary Table S5). There are in total 76 DB + SL-exclusive PSMs, in 
which the 68 removed by FPF have an average PSM ARE of 0.567 and the remaining 8 have an average PSM 
ARE of 0.1172 (detailed spectral features are shown in Supplementary Table S9). This phenomenon explains why 
quantitation based on DB + SL searching generates a much larger protein ARE of 3.1154, and the quantitation 
based on DB + SL + FPF generates a much smaller protein ARE of 0.1001. This case demonstrates that though 
much-increased PSMs obtained by DB + SL searching can deteriorate protein ARE, applying FPF removes the 
majority of DB + SL-exclusive PSMs with larger quantitation errors and retains quantitatively accurate DB + SL-
exclusive PSMs, thus yielding an improved protein ARE.

Conclusions
Most of the existing isobaric-labeling quantitation relies on the identification results from DB searching. Iden-
tification through SL searching has been shown to provide higher sensitivity, yet its potential for quantitation 
remains largely unexplored. In this study, we propose a novel quantitation pipeline that combines DB searching, 
SL searching, and FPF to improve quantitation accuracy. FPF is a publicly available installation-free software 
tool that filters out noisy and quantitatively unreliable PSMs based on a discriminating set of spectral features. 

Table 1.  PSMs of the protein sp|Q92804|RBP56_HUMAN in DS-Schmidt. a The rows in yellow color are 
common PSMs between the identification results of DB + SL searching and DB searching. b Those in blue are 
DB + SL-exclusive PSMs, and the row with red text is DB + SL-exclusive PSMs removed by FPF.

ERA5r4r3r2r1reditpeP.oNMSP

1 n[230]EFHGNIIK[357]a 1.189 0.734 0.902 2.802 0.61 0.549 

2 n[230]TGK[357]PM[147]INLYTDK[357] 1.037 0.81 0.9 2.705 0.799 0.447 

3 n[230]ENYSHHTQDDR 0.998 1.219 0.954 0.868 1.284 0.137 

4 n[230]ENYSHHTQDDR 0.948 0.942 1.027 0.646 1.057 0.11 

5 n[230]ENYSHHTQDDR 1.044 1.097 1.033 0.697 1.098 0.115 

6 n[230]SGGYGGDR 0.924 1.085 1.022 0.705 0.985 0.099 

7 n[230]SGGGYGGDR 1.088 1.06 1.021 0.761 1.07 0.096 

8 n[230]GYGGSQGGGR 1.027 0.987 1.023 0.85 1.052 0.053 

9 n[230]SSGGGYSGDR 1 1.114 1.003 0.782 1.026 0.072 

10 n[230]TGK[357]PMINLYTDK[357] 1.004 1.081 1.085 0.98 1.189 0.076 

11 n[230]TGK[357]PMINLYTDK[357]b 0.94 0.848 0.977 0.998 0.879 0.072 

12 n[230]SGGGYGGDR 0.895 1.009 0.935 0.807 0.956 0.084 

13 n[230]SSGGGYSGDR 0.944 0.971 1.036 0.751 1.113 0.097 

14 n[230]SGGYGGDR 0.702 0.869 0.906 0.74 0.795 0.198 

15 n[230]SGGYGGDR 0.951 1.052 1.064 0.836 1.076 0.081 

16 n[230]SGGYGGDR 0.979 1.087 1.092 0.814 1.119 0.101 

17 n[230]SGGYGGDR 1.016 1.096 1.12 0.983 1.1 0.07 

18 n[230]SGGYGGDR 0.877 0.885 0.944 0.734 0.864 0.14 

19 n[230]ENYSHHTQDDR 0.273 0.495 0.622 0.372 0.47 0.554 
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Our results on three different data sets demonstrate that the PSMs retained by FPF have significantly smaller 
average ARE than those removed by FPF. Taking DS-Schmidt as an example, the median PSM ARE for DB + SL-
exclusive PSMs retained by FPF is 0.083, whereas that for DB + SL-exclusive PSMs removed by FPF is 0.407. We 
also show that the improved quantitation accuracy at the PSM level can propagate to the protein level, i.e., the 
number of proteins with lower ARE increases. Compared to protein quantitation based on DB searching, the 
quantitation based on DB + SL + FPF results in an 8.3% increase in the number of proteins with ARE < 0.04 for 
DS-Schmidt, and a 52.9% increase in the number of proteins with ARE < 0.075 for DS-NCI-7. This study shows 
that, in addition to its better sensitivity, SL searching can be used to improve quantitation in isobaric labeling 
experiments, incorporating with the usage of FPF. However, we also observed two possible limitations of the 
proposed DB + SL + FPF pipeline. First, a small number of proteins may yield increased ARE because of FPF 
unable to completely remove their PSMs with larger quantitation errors. Second, if applying DB + SL searching to 
a data set does not substantially increase the number of PSMs compared to DB searching alone, the data set may 
exhibit limited overall quantitation improvement using our pipeline. Nevertheless, the proposed DB + SL + FPF 
pipeline generally shows higher quantitation accuracy than the conventional approach based on DB-searching 
results alone.

Data availability
FPF executable files, sample data sets, and user manual are freely available at https:// ms. iis. sinica. edu. tw/ com-
ics/ Softw are_ FPF. html. The MS data sets analyzed during the current study are public data available in the 
ProteomeXchange Consortium via the PRIDE repository with identifiers PXD003346 and PXD005486, and in 
CPTAC Data Portal with identifier PDC000295.
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