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Integrated analysis 
of inflammatory mRNAs, 
miRNAs, and lncRNAs elucidates 
the molecular interactome 
behind bovine mastitis
Aliakbar Hasankhani 1,5*, Maryam Bakherad 2,5, Abolfazl Bahrami 1,3*, 
Hossein Moradi Shahrbabak 1*, Renzon Daniel Cosme Pecho 4 & 
Mohammad Moradi Shahrbabak 1

Mastitis is known as intramammary inflammation, which has a multifactorial complex phenotype. 
However, the underlying molecular pathogenesis of mastitis remains poorly understood. In this 
study, we utilized a combination of RNA-seq and miRNA-seq techniques, along with computational 
systems biology approaches, to gain a deeper understanding of the molecular interactome involved 
in mastitis. We retrieved and processed one hundred transcriptomic libraries, consisting of 50 RNA-
seq and 50 matched miRNA-seq data, obtained from milk-isolated monocytes of Holstein–Friesian 
cows, both infected with Streptococcus uberis and non-infected controls. Using the weighted gene 
co-expression network analysis (WGCNA) approach, we constructed co-expressed RNA-seq-based 
and miRNA-seq-based modules separately. Module-trait relationship analysis was then performed 
on the RNA-seq-based modules to identify highly-correlated modules associated with clinical traits 
of mastitis. Functional enrichment analysis was conducted to understand the functional behavior 
of these modules. Additionally, we assigned the RNA-seq-based modules to the miRNA-seq-based 
modules and constructed an integrated regulatory network based on the modules of interest. To 
enhance the reliability of our findings, we conducted further analyses, including hub RNA detection, 
protein–protein interaction (PPI) network construction, screening of hub-hub RNAs, and target 
prediction analysis on the detected modules. We identified a total of 17 RNA-seq-based modules and 
3 miRNA-seq-based modules. Among the significant highly-correlated RNA-seq-based modules, six 
modules showed strong associations with clinical characteristics of mastitis. Functional enrichment 
analysis revealed that the turquoise module was directly related to inflammation persistence and 
mastitis development. Furthermore, module assignment analysis demonstrated that the blue miRNA-
seq-based module post-transcriptionally regulates the turquoise RNA-seq-based module. We also 
identified a set of different RNAs, including hub-hub genes, hub-hub TFs (transcription factors), hub-
hub lncRNAs (long non-coding RNAs), and hub miRNAs within the modules of interest, indicating their 
central role in the molecular interactome underlying the pathogenic mechanisms of S. uberis infection. 
This study provides a comprehensive insight into the molecular crosstalk between immunoregulatory 
mRNAs, miRNAs, and lncRNAs during S. uberis infection. These findings offer valuable directions for 
the development of molecular diagnosis and biological therapies for mastitis.
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Abbreviations
KEGG  Kyoto encyclopedia of genes and genomes
GO  Gene ontology
GS  Gene significance
MCC  Maximal clique centrality
MM  Module membership
PAMP  Pathogen associated molecular pattern
PPI  Protein-protein interaction
PRR  Pattern recognition receptor
SCC  Somatic cell count
TF  Transcription factor
TOM  Topological overlap matrix
TBC  Total bacterial count
WGCNA  Weighted gene co-expression network analysis

Mastitis, characterized by inflammation of the mammary glands, is a complex and multifactorial disease that 
poses significant economic losses in the dairy  industry1,2. In the United States and the European Union, annual 
economic losses due to bovine mastitis are estimated at approximately $2 billion and €2 billion  respectively3–5. 
Various pathogens, including gram-negative coliforms (e.g., Escherichia coli), gram-positive streptococci (e.g., 
Streptococcus uberis), and staphylococci (e.g., Staphylococcus aureus), can cause mastitis in high-producing 
dairy cows, leading to a wide range of disease manifestations from subclinical to severe and life-threatening 
 infections6–8. Among these pathogens, S. uberis is the most prevalent species of mastitis-causing pathogens in 
Europe and North  America9.

Evidence suggests that bovine mastitis, as a local bacterial infection, is associated with a robust inflamma-
tory  response10. Upon infection, pathogens such as S. uberis enter the udder through the teat canal and interact 
with mammary gland epithelial cells and resident immune cells such as monocytes. This interaction involves 
the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) 
on the cell surfaces of both cell  types11,12. The over-stimulation of PRRs triggers the secretion of proinflamma-
tory cytokines, including interleukins (ILs), tumor necrosis factors (TNFs), and chemokines, initiating a local 
pathological inflammatory response in the mammary  glands11,13,14. Simultaneously, systemic immune cells such 
as neutrophils and monocytes are recruited to the site of infection/inflammation for antibacterial activities, 
infection resolution, and inflammation  control15. The somatic cell count (SCC), which includes immune cells 
like monocytes and neutrophils, as well as mammary gland epithelial cells, can be measured in milk samples 
and serves as a potential tool to monitor the inflammatory status of the mammary gland, predict mastitis, and 
differentiate between chronically infected and non-infected  animals16,17. A SCC greater than 200,000 cells/ml is 
considered diagnostic and a hallmark of  mastitis18,19. Despite extensive research aimed at developing effective 
diagnostics, prevention, and treatment strategies, mastitis remains an important health concern in both human 
and veterinary medicine.

High-throughput transcriptome-based techniques such as gene expression microarrays and RNA sequencing 
(RNA-seq) have been widely used in biological, medical, clinical, and pharmaceutical research to explore gene 
expression profiles, identify biomarkers, and facilitate drug  discovery20. Previous studies have employed microar-
ray or RNA-seq techniques to investigate mastitis in different tissues, including blood, mammary epithelial cells, 
and liver, revealing increased expression of inflammatory mediators in infected  samples21–24. These findings have 
been validated using other experimental analytical methods such as quantitative real-time PCR (qRT-PCR)25.

Emerging evidence suggests that non-coding regions of the genome, including non-coding RNAs such as 
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play crucial regulatory roles in various aspects 
of innate and adaptive immunity and  inflammation26. miRNAs are small non-coding RNAs (~ 22 nucleotides) 
that post-transcriptionally regulate gene expression by binding to target  mRNAs27. Several studies have reported 
differentially expressed (DE) miRNAs in response to S. uberis infection, such as bta-miR-200c, bta-miR-182, bta-
miR-30a-5p, bta-miR-146b, and bta-miR-125a, which are key amplifiers of monocyte inflammatory response 
 networks7,28. LncRNAs, on the other hand, are longer non-coding RNAs (> 200 bp) that regulate gene expression 
through diverse mechanisms at the transcriptional, post-transcriptional, and translational levels. They have been 
implicated in immune responses and  inflammation29,30. In this regard, Wang et al.31 identified 53 DE lncRNAs 
with inflammatory functions in bovine mammary epithelial cells using a high-throughput infection model of 
mastitis. However, existing research primarily focuses on individual RNA species (mRNAs, miRNAs, and lncR-
NAs) and fails to consider the effects of RNA  clusters32.

Given the complex phenotype of mastitis susceptibility, with genes, proteins, miRNAs, lncRNAs, and other 
RNA species interacting in intricate molecular networks during infection, there is a need to explore compre-
hensive regulatory networks to gain insights into the onset and development of  mastitis33. Weighted gene co-
expression network analysis (WGCNA) is an integrated network-based approach widely used in bioinformatics 
applications for microarray or RNA-seq datasets, providing a systems-level understanding without information 
 loss34–36. WGCNA identifies highly correlated nodes (modules) based on expression patterns and calculates 
intramodular gene connectivity, thereby pinpointing highly connected nodes, or "hubs," that play central func-
tional roles associated with network biological  properties35. Module-trait relationships, a popular method within 
WGCNA, examine the correlation between co-expression modules (genome level) and external clinical traits 
(phenome level), allowing for deep investigations of various  diseases37–40.

Despite the efficiency of WGCNA’s module-trait relationships method, to our knowledge, no study has 
explored the correlation between functional modules and hallmark clinical features of bovine mastitis, such 
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as SCC and total bacteria count (TBC) in the milk of S. uberis-infected animals. Moreover, understanding the 
crosstalk between immunoregulatory mRNAs, miRNAs, and lncRNAs during mastitis can provide valuable 
insights into the underlying molecular mechanisms, leading to the development of drug treatment or disease 
prevention therapies. Therefore, we hypothesized that constructing an integrated regulatory network incorpo-
rating various RNA species, including lncRNAs, miRNAs, and mRNAs (genes and transcription factors), and 
examining their molecular interactome, can provide systemic insights into the regulatory elements involved in 
the onset and development of mastitis. Our research paper aimed to provide a comprehensive understanding of 
the interconnectivity of key regulatory elements in bovine mastitis, contributing to novel insights into molecular 
mechanisms and the development of promising diagnostic biomarkers and therapeutic targets for subclinical 
and clinical mastitis cases.

Results
Transcriptome data preprocessing and analysis. An overview of the step-by-step pipeline used in 
this study for the different stages of the analysis is schematically described in Fig. 1. A total of 1,827,194,323 
raw RNA-seq reads and 926,360,382 matched raw miRNA-seq reads were retrieved and processed from milk-
isolated CD14 + monocytes of 44 Holstein–Friesian cows, including 19 S. uberis-infected and 25 non-infected 
samples. The average raw reads per sample were 42 million for RNA-seq and 21 million for miRNA-seq data. 
After preprocessing the raw reads, 1,713,184,434 high quality RNA-seq clean reads and 791,307,783 high-quality 
miRNA-seq clean reads were obtained. The results of reads mapping showed that on average, 93% of RNA-seq 
clean reads were uniquely aligned to the bovine reference genome, and 88% of miRNA-seq clean reads were 
aligned to pre-mature miRNA sequences. Detailed information on the preprocessing and analysis steps of RNA-
seq and miRNA-seq data can be found in Supplementary File S1. To ensure the minimization of sampling noise 
and increase the reliability of co-expression network construction, several parameters were applied to remove 
low-expressed and low-variance RNAs. Consequently, a normalized RNA-seq-based expression matrix compris-
ing 9,263 different RNAs (including 8,564 genes, 571 TFs, and 128 lncRNAs) and a normalized miRNA-seq-
based expression matrix comprising 328 miRNAs were generated.

Weighted co-expression network construction and module detection. To gain a deeper under-
standing of the molecular regulatory mechanisms underlying bovine mastitis and establish novel insights into the 
molecular interactome during S. uberis infection, separate weighted co-expression networks were constructed 
using the normalized and filtered RNA-seq-based and miRNA-seq-based expression matrices. Outlier data were 
identified and excluded using distance-based adjacency metrics. One RNA-seq sample (GSM1254086) had a 
standardized connectivity score <  − 2.5 and was identified as outlier data and removed (Fig. 2a; Supplementary 
File S2). Additionally, GSM1253778 and GSM1253780 miRNA-seq samples were also identified as outliers and 
removed (Fig. 2b; Supplementary File S2). Soft threshold powers (β) were determined to ensure the scale-free 
topology of the networks. β values of 17 and 6 were calculated for RNA-seq-based and miRNA-seq-based matri-
ces, respectively, achieving a scale-free topology fitting index  (R2) ≥ 0.80 (Supplementary File S3). Weighted co-
expression networks were constructed, and co-expression modules were identified through hierarchical clus-
tering analysis and dynamic hybrid tree-cutting algorithm based on TOM dissimilarity (1-TOM) and labeled 
with specific colors as a branch of the hierarchical clustering dendrogram by the WGCNA R package (Fig. 3). 
Seventeen RNA-seq-based modules with an average size of 531 RNAs were identified. The turquoise module was 
the largest, containing 2,980 RNAs (2,767 genes, 201 TFs, and 12 lncRNAs), while the grey60 module was the 
smallest, with 43 genes (without TFs and lncRNAs). Three miRNA-seq-based modules with an average size of 85 
miRNAs were identified. The turquoise and brown modules as the largest and smallest miRNA-seq-based mod-
ules, containing 183 and 33 miRNAs, respectively. Additionally, 231 uncorrelated RNAs were identified in the 
RNA-seq-based modules, and 74 uncorrelated RNAs were identified in the miRNA-seq-based modules. Detailed 
information on RNA-seq and miRNA-seq-based modules is presented in Supplementary File S4.

Module-trait relationships analysis. To explore the association of the genome with phenotypic traits 
of mastitis and identify key regions regulating the clinical signs of this disorder, module-trait relationships 
analysis was performed for RNA-seq-based modules. Among the 17 identified RNA-seq-based modules, 2, 4, 
3, and 2 modules showed significantly high correlations with rectal temperature, TBC, SCC, and CD14 cell 
number, respectively (Fig. 4; Supplementary File S5). The MEcyan (R = 0.65, p = 2e-06) and MEpurple (R = 0.67, 
p = 9e-07) modules were significantly highly-correlated with rectal temperature (Fig. 4). Moreover, the MEtur-
quoise (R = 0.73, p = 3e-08), MEpurple (R = 0.56, p = 9e-05), MEred (R = -0.57, p = 7e-05), and MEblue (R = -0.78, 
p = 9e-10) modules were significantly highly-correlated with TBC and MEturquoise (R = 0.59, p = 4e-05), MEpur-
ple (R = 0.59, p = 3e-05), and MEblue (R = -0.67, p = 7e-07) modules were also significantly highly-correlated with 
SCC (Fig. 4). Additionally, the MEred (R = -0.57, p = 6e-05) and MEsalmon (R = -0.64, p = 4e-06) modules were 
significantly highly-correlated with CD14 cell number (Fig. 4). Notably, the turquoise RNA-seq-based module, 
the largest module identified (2980 RNAs), displayed the highest significant positive correlation with the hall-
mark features of mastitis, SCC, and TBC (Fig. 4).

Functional enrichment analysis and identification of RNA-seq-based module of inter-
est. Functional enrichment analysis was performed to describe the biological differences, putative functions, 
and specific molecular mechanisms of the significant highly-correlated RNA-seq-based modules. A total of 871 
biological processes and 153 KEGG pathways were significantly enriched in the cyan, purple, red, blue, and 
salmon modules. Interestingly, the turquoise module exhibited the highest functional enrichment rate compared 
to the other modules, with 669 significant biological processes and 111 enriched KEGG pathways. Moreover, the 
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salmon module with two biological processes and one KEGG pathway had the least enriched functional terms 
compared to others. Comprehensive details of the results of functional enrichment analysis of significant highly-
correlated RNA-seq-based modules are provided in Supplementary File S6. Based on the functional enrichment 
analysis results, most of the significant highly-correlated modules including cyan, purple, blue, and salmon were 
enriched in common cellular processes such as cell cycle and metabolism, DNA replication, gene expression, 
rRNA processing, ribosome biogenesis, and translation. Whereas, surprisingly, the largest significant highly-cor-
related RNA-seq-based module, the turquoise module, which had the highest positive correlation with mastitis 

Figure 1.  Schematic step-by-step pipeline used for construction an integrated regulatory network.
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phonotypic/clinical measurements and the highest functional enrichment rate, was highly enriched in biological 
processes and KEGG pathways associated with the host immune response, cell death, inflammatory response, 
and S. uberis pathogenesis. Some of these terms included “Toll-like receptor signaling pathway”, “MAPK signal-
ing pathway”, NF-kappa B signaling pathway, “TNF signaling pathway”, “cytokine-mediated signaling pathway 

Figure 2.  Sample clustering to detect outliers in the (a) RNA-seq and (b) miRNA-seq samples. The statistics 
of the adjacency matrices of samples indicated that one RNA-seq sample (GSM1254086) and two miRNA-seq 
samples (GSM1253778 and GSM1253780) had a standardized connectivity score <  − 2.5 (red color) and were 
excluded from downstream analyses.
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(GO:0,019,221)”, “Chemokine signaling pathway”, “positive regulation of nitric-oxide synthase biosynthetic pro-
cess (GO:0,051,770)”, “positive regulation of reactive oxygen species metabolic process (GO:2,000,379)”, “posi-
tive regulation of acute inflammatory response (GO:0,002,675)”, “Focal adhesion”, “positive regulation of leuko-
cyte cell–cell adhesion (GO:1,903,039)”, “positive regulation of leukocyte chemotaxis (GO:0,002,690)”, “positive 

Figure 3.  Hierarchical clustering dendrogram of (a) mRNAs and lncRNAs and (b) miRNAs. A total of 17 and 
3 RNA-seq-based and miRNA-seq-based modules were identified based on the TOM dissimilarity (1-TOM) 
through hierarchical clustering analysis and dynamic hybrid tree cutting algorithms. The x-axis represents 
the RNAs and the y-axis represents the co-expression distance. The branches indicate the modules which was 
labeled with a specific color using the static tree cutting method. the grey color indicates uncorrelated RNAs.
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regulation of lymphocyte chemotaxis (GO:0,140,131)”, “neutrophil mediated immunity (GO:0,002,446)”, “Neu-
trophil extracellular trap formation”, “positive regulation of phagocytosis (GO:0,050,766)”, “Necroptosis”, “Apop-
tosis”, “Ferroptosis”, “positive regulation of programmed cell death (GO:0,043,068)”, “T cell receptor signaling 
pathway”, “B cell receptor signaling pathway”, “Th17 cell differentiation”, “positive regulation of T cell cytokine 
production (GO:0,002,726)”, “positive regulation of T-helper 1 type immune response (GO:0,002,827)”, “nega-
tive regulation of metabolic process (GO:0,009,892)”, “negative regulation of lipid storage (GO:0,010,888)”, 
“type I interferon signaling pathway (GO:0,060,337)”, and “interferon-gamma-mediated signaling pathway 
(GO:0,060,333)” (Supplementary File S6). Figure 5 shows the top significant biological processes and KEGG 
pathways of the turquoise RNA-seq-based module. These results suggest the potential role of the turquoise RNA-
seq-based module in the host-S. uberis interactions and the immunopathogenesis of mastitis, so it can be con-
sidered a promising essential module to dissect the underlying molecular/pathological regulatory mechanisms 
of mastitis. Therefore, we narrow down the subsequent analysis to deeply explore the pathological mechanisms 
and evaluate the molecular interactome of the turquoise RNA-seq-based module as the module of interest in 
this study.

Assigning the miRNA-seq-based modules to the RNA-seq-based modules and miRNA tar-
get prediction. Module-trait relationships and functional enrichment analysis revealed that the turquoise 
RNA-seq-based module as the module of interest in this study, plays a key role during mastitis and is involved 
in active immunological-inflammatory-pathological networks during S. uberis infection. Therefore, to under-
stand which of the miRNA-seq-based modules post-transcriptionally regulates the turquoise RNA-seq-based 
module and also to obtain an in-depth molecular interactome (mRNAs-miRNAs-lncRNAs) of the underlying 
immunological-inflammatory-pathological processes of mastitis, miRNA-seq-based modules were assigned to 
RNA-seq-based modules, and then target prediction analysis of selected miRNAs was performed. Here, the blue 
miRNA-seq-based module consisting of 38 miRNAs (Supplementary File S4) was found to negatively regulate 
(R = -0.57, p = 8e-05) the turquoise RNA-seq-based module and therefore could be a potential regulator of this 
module (Fig. 6; Supplementary File S7). Furthermore, in agreement with these results, target prediction analysis 
revealed that miRNAs of the blue miRNA-seq-based module strongly target RNAs (genes, TFs, and lncRNAs) 
of the turquoise RNA-seq-based module. More information from the results of target prediction analysis and 

Figure 4.  Module–trait relationship analysis between RNA-seq-based modules and clinical traits of mastitis. 
The blue and red colors indicate strong negative and strong positive correlation, respectively. Rows represent 
module eigengene and columns indicate clinical traits of mastitis. Asterisks corresponds to significant highly 
correlated values. Milk volume (in Liters), rectal temperature (in Fahrenheit), ambient temperature (in Celsius), 
humidity (%), total bacterial counts (TBC; per 10 mL), somatic cell count (SCC; per mL), and CD14-cell-
number (per mL).
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interactions between blue miRNA-seq-based module miRNAs and turquoise RNA-seq-based module RNAs 
(mRNAs and lncRNAs) are available in Supplementary File S8.

Detection of hub-hub RNAs in the RNA-seq-based module of interest. To better understand the 
underlying molecular mechanisms of immunological-inflammatory-pathological processes of mastitis and to 
identify the key regulators involved in these processes, intramodular hub RNAs (genes, TFs, and lncRNAs) of 
the turquoise RNA-seq-based module were identified using the MM criterion calculated by WGCNA R pack-
age. A total of 1779 hub RNAs including 1637 hub genes, 141 hub TFs, and 1 hub lncRNA were identified in 
the turquoise RNA-seq-based module (Supplementary File S9). We also calculated the GS criterion for RNAs 
of the turquoise RNA-seq-based module to investigate and validate the association of hub RNAs (identified by 
MM criterion) with clinical measurements of SCC as one of the main hallmarks of mastitis. The results indicated 
a significantly strong correlation (R = 0.71, p < 1e − 200) between GS and MM criteria (Fig. 7). In other words, 
these measurements confirm that the significant RNAs with the clinical features of mastitis are often the center 
and hub RNAs in the turquoise RNA-seq-based module. Comprehensive information from GS for SCC related 
to the turquoise RNA-seq-based module is available in Supplementary File S10. Moreover, we identified 19 hub 
miRNAs in the blue miRNA-seq-based module as the main post-transcriptional regulator of the turquoise RNA-
seq-based module (Supplementary File S11). Then, to investigate the network density and molecular connec-
tions at the translational level and extraction of the PPI network, the co-expressed hub mRNAs (genes and TFs) 
of the turquoise RNA-seq-based module were subjected to the STRING database. Interestingly, the resulting PPI 
network of co-expressed hub mRNAs of the turquoise RNA-seq-based module was densely connected (number 
of nodes: 1542, number of edges: 13,854, average node degree: 18, and PPI p-value < 1.0e-16), indicating close 
interactions of their encoding proteins. Then, the co-expressed hub mRNA-based PPI network was merged 
with the predicted interactions of the turquoise RNA-seq-based module calculated by WGCNA and assessed to 
identify hub-hub RNAs. Finally, the top 50 hub-hub RNAs with the highest MCC score were identified in the 
turquoise RNA-seq-based module, including 37 genes, 12 TFs, and 1 lncRNA (Table 1). Indeed, these RNAs were 
identified as central RNAs in both WGCNA-calculated co-expression and PPI networks and can be considered 
as potential candidates for understanding the etiology of complex diseases such as mastitis, promising diagnostic 

Figure 5.  Top significant biological processes and KEGG pathways of the turquoise RNA-seq-based module. 
The y-axis represent significant terms and x-axis represents enriched genes. Moreover, the color in both plots 
indicates adjusted p-value.
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biomarkers, and valuable prognostic and therapeutic targets for the development of effective strategies for the 
management/control of mastitis.

Integrated regulatory network construction. To generate the molecular interactome of RNA species 
(mRNA-miRNA-lncRNA) involved in the important underlying processes of mastitis, especially inflammatory 
response, and to construct an integrated immunoregulatory network, the interactions generated from STRING-
PPI, WGCNA-calculated co-expressed hub mRNAs, and WGCNA-calculated co-expressed hub lncRNAs of the 
turquoise RNA-seq-based module were combined with WGCNA-calculated interactions of co-expressed miR-
NAs of the blue miRNA-seq-based module and target prediction results. The summary of the constructed inte-
grated regulatory network is provided in Supplementary File S12. The molecular interactome of the integrated 
immunoregulatory network involved in bovine mastitis is shown in Fig. 8. Moreover, the constructed integrated 
regulatory sub-networks of important inflammatory hub-hub genes during mastitis are shown in Supplemen-
tary File S13.

Discussion
In this study, signed weighted gene co-expression networks were constructed and then, 17 and 3 RNA-seq-based 
(including genes, TFs, and lncRNAs) and miRNA-seq-based (including miRNAs) modules were identified, 
respectively through the WGCNA approach. Technically, signed networks distinguish modules based on biologi-
cal function with high accuracy and obtain more significant terms associated with co-expression  patterns32. Then, 
module-trait relationships analysis of the WGCNA was performed between RNA-seq-based modules and clinical 
hallmarks of mastitis including SCC and TBC in order to extract significant highly-correlated RNA-seq-based 
modules with the aforementioned clinical measurements. Interestingly, the results indicated that the turquoise 
RNA-seq-based module, which was the largest co-expression module, had the highest enrichment rate and the 
highest significant positive correlation with SCC and TBC, and was highly enriched in the pathways related to 
inflammation and immunopathogenesis of mastitis. Moreover, it was found that the blue miRNA-seq-based 
module has a negative correlation with the turquoise RNA-seq-based module, indicating the inverse interac-
tions between these two modules. Consequently, an integrated regulatory network comprising immunoregula-
tory mRNAs-miRNAs-lncRNAs was constructed from the turquoise RNA-seq-based module and its assigned 
miRNA-seq-based module, the blue module.

Functional enrichment analysis. Overall, our findings indicated that during S. uberis infection, bacterial 
PAMPs are recognized by surface PRRs, particularly TLRs such as TLR2 and TLR4. This recognition triggers 

Figure 6.  Assigning the miRNA-seq-based modules to the RNA-seq-based modules. Rows represent RNA-seq-
based modules and columns represent miRNA-seq-based modules. The green and red colors indicate strong 
positive and strong negative correlation, respectively. Asterisks corresponds to significant highly-correlated 
values. As shown, the blue miRNA-seq-based module negatively regulates (R = -0.57; p-value 8e-05) the 
turquoise RNA-seq-based module.
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a cascade of downstream inflammatory signals, ultimately leading to the activation of NF-kappa B signaling, 
MAPK signaling, and JAK-STAT signaling  pathways41,42. The activation of these pathways results in the secre-
tion of various cytokines and chemokines, especially pro-inflammatory cytokines such as TNF-α, IL6, and IL1β 
and the recruitment of inflammatory cells to the site of  infection42. Previous research on clinical and subclinical 
cases of mastitis has highlighted that S. ubris infection induces acute/chronic inflammation in mammary glands 
through prolonged stimulation of inflammatory  signals43,44. Furthermore, in agreement with these results, the 
activation of other types of PRRs, including NOD-like, C-type lectin, and RIG-I-like receptors, has been repeat-
edly reported in clinical cases of mastitis caused by S. uberis  infection7,45,46.

Functional enrichment analysis revealed several important biological processes enriched in the tur-
quoise RNA-seq-based module. The process “positive regulation of reactive oxygen species metabolic process 
(GO:2,000,379)” was observed, indicating the involvement of reactive oxygen species (ROS) production in 
microbial killing during the initiation and recovery of  mastitis47,48. However, excessive accumulation of ROS can 
lead to oxidative stress, which plays a major significant role in mediating uncontrolled inflammatory responses 
and causing tissue  damage49. Additionally, terms such as “mTOR signaling pathway” and “PI3K-Akt signaling 
pathway” were enriched in the turquoise RNA-seq-based module. These pathways have been identified as criti-
cal in coordinating the inflammatory response mediated by TLRs/NF-κB50,51. Recent studies have reported that 
crosstalk between the PI3K/Akt/mTOR and TLRs/NF-κB axes promotes inflammation in mammary epithelial 
cells during S. uberis  infection52.

Furthermore, the co-regulated genes in the turquoise module showed high enrichment in processes related 
to innate immunity. During bacterial infections like mastitis, a massive influx of polymorphonuclear leukocytes 
occurs at the site of inflammation in infected mammary glands, aiming to control bacterial spread and resolve 
the  infection53. Focal adhesion and cell adhesion molecules are crucial for leukocyte cellular migration to the 
site of  inflammation54. Neutrophils constitute the majority of immune cells recruited to the site of inflammation 
during S. uberis infection and contribute to the resolution of the inflammation through phagocytosis or the for-
mation of neutrophil extracellular traps (NETs)15. Additionally, systemic monocytes are secreted from the bone 
marrow into the circulatory system and subsequently recruited to the site of infection, where they differentiate 
into macrophages and dendritic cells (DCs)55. However, studies have shown that the massive recruitment of 
immune cells like neutrophils and monocytes to the site of infection, prolonged phagocytosis, and NET forma-
tion are directly associated with increased SCC in the milk of infected animals, mammary gland damage, and 
an increased risk of clinical  mastitis56–59.

Figure 7.  Scatterplots of module membership (MM) versus gene significance (GS) plots for somatic cell counts 
(SCC) as a hallmark of mastitis in the turquoise RNA-seq-based module. The results indicated a significant 
strong correlation between GS and MM criteria. These measurements confirm that the significant RNAs with 
the clinical features of mastitis are often the central and hub RNAs in the turquoise RNA-seq-based module.
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Table 1.  List of the hub-hub RNAs including 37 genes, 12 TFs, and 1 lncRNA identified in the turquoise RNA-
seq-based module. MM, module memberships; MCC, maximal clique centrality; TF, transcription factor.

Hub-hub RNAs RNA type MM MM p-value MCC score

CDC42SE1 lncRNA 0.80 5.57E−11 4.70E + 20

TNF Protein coding 0.67 6.32E−07 4.54E + 20

IL6 Protein coding 0.87 2.39E−14 4.52E + 20

IL10 Protein coding 0.76 1.71E−09 4.51E + 20

STAT3 TF 0.97 3.60E−29 4.39E + 20

IL15 Protein coding 0.74 7.22E−09 4.22E + 20

CD40 Protein coding 0.89 3.18E−16 3.83E + 20

STAT1 TF 0.73 2.10E−08 3.37E + 20

IL1B Protein coding 0.84 7.88E−13 3.31E + 20

TLR4 Protein coding 0.85 4.96E−13 3.31E + 20

CXCL8 Protein coding 0.68 4.94E−07 3.29E + 20

ICAM1 Protein coding 0.83 3.13E−12 3.28E + 20

TLR2 Protein coding 0.92 8.20E−19 3.28E + 20

PTPRC Protein coding 0.97 7.46E−28 3.02E + 20

CD274 Protein coding 0.87 1.71E−14 2.99E + 20

CD80 Protein coding 0.87 3.33E−14 2.99E + 20

CD44 Protein coding 0.92 9.88E−19 2.88E + 20

IL18 Protein coding 0.87 8.20E−15 2.48E + 20

CCR2 Protein coding 0.79 2.57E−10 2.25E + 20

CXCR4 Protein coding 0.77 9.73E−10 2.22E + 20

JAK2 Protein coding 0.96 2.26E−24 1.90E + 20

CD69 Protein coding 0.92 2.80E−18 1.86E + 20

SELL Protein coding 0.94 2.51E−21 1.78E + 20

STAT2 TF 0.91 6.13E−18 1.26E + 20

STAT6 TF 0.88 4.54E−15 1.23E + 20

JAK1 Protein coding 0.84 8.14E−13 1.23E + 20

TYK2 Protein coding 0.83 2.80E−12 1.23E + 20

JAK3 Protein coding 0.92 9.19E−19 1.23E + 20

STAT5B TF 0.82 7.25E−12 1.22E + 20

STAT5A TF 0.92 3.38E−19 1.22E + 20

IL4R Protein coding  0.94 4.46E−25 1.22E + 20

IL12A Protein coding 0.85 1.88E−13 1.19E + 20

IL23A Protein coding 0.91 4.89E−18 1.19E + 20

STAT4 TF 0.68 4.42E−07 1.17E + 20

IL2RG Protein coding 0.94 7.37E−22 1.16E + 20

CSF1 Protein coding 0.92 4.96E−19 1.14E + 20

SOCS1 Protein coding 0.80 7.79E−11 1.14E + 20

IL2RA Protein coding 0.88 4.95E−15 1.11E + 20

VEGFA Protein coding 0.94 3.00E−21 1.03E + 20

MYD88 Protein coding 0.79 2.86E−10 1.01E + 20

CCR5 Protein coding 0.84 1.78E−12 6.89E + 19

SOCS3 Protein coding 0.95 9.91E−23 6.32E + 19

RELA TF 0.91 1.16E−17 3.09E + 19

NFKB1 TF 0.94 5.09E−22 3.07E + 19

JUN TF 0.67 7.48E−07 3.00E + 19

IL1A Protein coding 0.73 2.75E−08 2.79E + 19

NFKB2 TF 0.92 3.54E−19 2.28E + 19

IRF1 TF 0.80 9.34E−11 2.20E + 19

PTGS2 Protein coding 0.86 7.61E−14 2.17E + 19

DDX58 Protein coding 0.75 5.87E−09 1.98E + 19
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Functional enrichment analysis also indicated that genes in the turquoise RNA-seq-based module were highly 
enriched in processes related to different types of cell death. Apoptosis, a type of programmed cell death, has been 
observed to be induced in response to mastitis-causing pathogens such as E. coli60 and S. aureus61. Moreover, in 
a nonspecific infection model of mastitis, healthy quarters showed a lower percentage of cell  apoptosis55. Apop-
tosis after infection with mastitis-causing pathogens is known to be directly associated with bovine mammary 
epithelial cell damage and subsequent decreased milk  production62.

Necroptosis, a newly discovered pathway of regulated necrosis associated with inflammation, plays a key role 
in the pathogenesis of many inflammatory  diseases63. The occurrence of necroptosis along with apoptosis during 
mastitis has been reported to exacerbate inflammation and cause severe mammary tissue  damage64. Additionally, 
ferroptosis, characterized by lethal iron-dependent lipid peroxidation, is an inflammation-associated cell death 
mechanism that contributes to mammary epithelial cell  dysfunction65 and the development of clinical mastitis 
in dairy  cows66.

The functional annotation of the turquoise RNA-seq-based module indicated the activation and involvement 
of the adaptive immune system in host–pathogen interactions during mastitis, consistent with previous tran-
scriptomic  studies67,68. CD4 T-lymphocytes are stimulated and differentiate into T-helper 1 (Th1) inflammatory 

Figure 8.  Integrated regulatory network of the turquoise RNA-seq-based and blue miRNA-seq-based modules. 
Small circles and rectangles represent hub genes and hub transcription factors (TFs) of the turquoise RNA-
seq-based module, respectively. Small diamonds represent regulatory miRNAs of the blue miRNA-seq-based 
module. On the other hand, large circles and rectangles represent hub-hub genes and hub-hub TFs of the 
turquoise RNA-seq-based module, respectively. large diamonds represent hub miRNAs of the blue miRNA-seq-
based module. Additionally, the large pink octagon represents the only hub-hub lncRNA in the turquoise RNA-
seq-based module. Cytoscape software (version 3.7.1) (https:// cytos cape. org/) was used to generate this figure.

https://cytoscape.org/
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 phenotypes69, secreting cytokines including TNF-α, IFN-γ, and  IL270. CD4 T lymphocytes differentiation into 
Th17 is mediated by transforming growth factor β (TGF-β) and IL6, and Th17 is involved in the secretion of 
IL17, IL21, and IL22  cytokines70. Dysregulation of the Th1/Th2 and Th17/Treg balance has been implicated in 
the pathogenesis of chronic inflammatory  mastitis70,71.

We also observed suppression of metabolic processes in the turquoise RNA-seq-based module. This finding 
is in line with a previous study that demonstrated extensive changes in the host’s transcriptional profile during S. 
uberis-induced mastitis, leading to the induction of inflammatory responses and the simultaneous suppression of 
several metabolic  pathways7. Metabolic profiling in infected animals has shown that exposure to S. uberis leads 
to inflammation and metabolic dysfunction in mammary glands and mammary epithelial  cells72. For instance, 
downregulation of PPAR-γ and PPAR-α, which are anti-inflammatory cores involved in lipid and cholesterol 
storage and metabolism, has been consistently observed during  mastitis7,73.

Identification of hub-hub genes and their regulatory miRNAs. In terms of hub-hub genes, we iden-
tified several crucial immune and inflammatory response genes, including TLR2, TLR474, TNF, IL1β, IL1A, 
IL675, JAK276,77, and IL1068, which play important roles in the pathogen-host interactions during mastitis. TLR2 
and TLR4 are putative surface receptors of PAMPs from Gram-positive (like S. uberis and S. aureus) and Gram-
negative (like E. coli) bacteria, respectively, and they are the first initiators of downstream inflammatory cascades 
during  mastitis74. For example, Wu, et al.78 reported an induction of inflammatory response and increased secre-
tion of proinflammatory cytokines due to TLR4-mediated activation of NF-κB during  mastitis78. Interestingly, 
several previous in vivo and in vitro studies have demonstrated that various antagonists, including  nuciferine79, 
hederacoside-C80, chlorogenic  acid81,  polydatin82,  curcumin83, and  indirubin84, attenuate the phosphorylation of 
MAPKs and NF-κB through suppression of TLR2 and TLR4, thereby preventing hyperinflammation and immu-
nopathology induced by LPS and S. aureus infection in mastitis.

Furthermore, our target prediction analysis revealed that the TLR4 hub-hub gene was preferentially targeted 
by bta-miR-30a-5p (hub) and bta-miR-486 miRNAs. However, a decrease in the expression of bta-miR-30a-5p hub 
miRNA was observed in response to S. uberis7 and S. aureus85 infections, which could indicate a complex strategy 
of mastitis-causing pathogens to induce inflammation by blocking key suppressors of inflammatory mediators. 
On the other hand, in vivo evidence from S. uberis infection indicates the upregulation of bta-miR-486 in the 
milk of infected animals at 48 h post-infection, suggesting the effective role of this miRNA as a brake to control 
inflammation and the host’s immune response in the late stages of  infection7. Additionally, bta-miR-204, which 
targets TLR2 and PTGS2 hub-hub genes, has been identified as one of the key mediators of vascular inflam-
mation, playing an important role in regulating inflammation by attenuating the main inflammatory  factors86.

As expected, a significant increase in the concentrations of proinflammatory cytokines, including TNF, IL6, 
and IL1β, in the serum and mammary glands of clinical mastitis cases has been observed in several previous 
 studies75,87. These findings indicate that the expression levels of these proinflammatory cytokines are directly 
related to the progression of infection, the clinical severity, and the pathophysiology of bacterial  mastitis88,89. 
Interestingly, the essential role of IL1β and IL1A in the induction of apoptosis and necroptosis, respectively, 
has also been  discussed90. Therefore, targeting proinflammatory cytokines such as TNF, IL1β, IL1A, and IL6 to 
reduce their expression or targeting upstream cores that stimulate these cytokines such as NF-κB and MAPKs, 
has been suggested as a novel therapeutic approach to reduce mammary gland damage and pathology caused 
by  mastitis91–93.

Molecular interactome analysis of the turquoise RNA-seq-based module revealed that TNF hub-hub gene is a 
potential target for bta-miR-193b and bta-miR-125a hub miRNAs. Consistent with our results, a previous study 
demonstrated that miR-193b regulates the inflammatory response in inflamed chondrocytes by inhibition of TNF 
 expression94–96. Interestingly, miR-125a has been found to be negatively correlated with inflammation and could 
significantly reduce the production of proinflammatory cytokines especially TNF in patients with inflammatory 
bowel  diseases97,98. However, a decrease in the expression of the bta-miR-125a hub miRNA has been observed 
in response to S. uberis infection in the milk of infected  animals7. Additionally, miR-125a potentially targets 
the IL1A hub-hub gene and may play a key role in preventing IL1A-induced necrosis in mammary glands, in 
addition to its anti-inflammatory effects.

IL6 another hub-hub gene, was predicted to be targeted by bta-miR-455-5p and bta-miR-96 miRNAs. Remark-
ably, the use of miR-455-5p as an important IL6 suppressor has been recommended as a promising tool to improve 
disease severity and control inflammation and attacks in patients with multiple  sclerosis99. Furthermore, the IL6-
JAK2-STAT3 axis has been found to induce plasma cell mastitis  development76. On the other hand, bta-miR-96 
has been associated with the risk of  mastitis100. Moreover, the IL1β hub-hub gene was targeted by bta-miR-375 
and bta-miR-31 hub miRNAs. Surprisingly, miR-375 is one of the most downregulated miRNAs in bovine mam-
mary tissue infected with S. aureus101, E. coli67, and S. uberis7 indicating its crucial role in regulating immune 
and inflammatory responses. Thus, the targeting of the IL1β hub-hub gene by miR-375 in the turquoise RNA-
seq-based module can be predicted to regulate bovine mammary inflammation and IL1β-induced apoptosis. 
Moreover, recent studies showed that mir-31 hub miRNA by targeting the IL1B gene exerts an inverse relationship 
with the progression of inflammation in diabetic  nephropathy102 and apoptosis in mammary cancer cell  lines103.

IL10 is one of the most potent anti-inflammatory cytokines that terminates the inflammatory response by 
suppressing the production of inflammatory cytokines (TNF-α, IL1β, and IL6) and returns the inflammatory 
system to a resting state when the microbial infection is  eradicated104. Simultaneously with the increase in the 
levels of proinflammatory cytokines, a significant decrease in the expression of IL10 at the early stage of infec-
tion has been reported by previous  studies71. Also, this cytokine has been introduced as one of the key down-
stream targets of E. coli for the elevation of inflammation and establishment of mastitis through expression 
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 suppression105. In this regard, IL10 was considered by He, et al.68 as key candidate biomarker for anti-S. aureus 
mastitis study and treatment.

In our candidate network, this hub-hub gene was targeted by bta-miR-143 and bta-miR-504 hub miRNAs. 
Surprisingly, unlike other previously miRNAs, miR-143 was highly expressed in bovine mammary glands in 
response to various mastitis infections, including S. aureus and E. coli101. Therefore, the increase in the expression 
of this miRNA during mastitis infection can have a key effect in promoting inflammation in favor of mastitis-
causing pathogens by targeting anti-inflammatory factors such as IL10. On the other hand, there is no data on 
the role of miR-504 in the inflammation caused by mastitis. However, a previous study has shown that in diabetic 
mice, high glucose leads to increase in inflammation through several mechanisms. Interestingly, one of these 
mechanisms to exacerbation of inflammation was the upregulation in the expression of miR-504106.

In addition to these findings, other hub-hub genes in the turquoise RNA-seq-based module including 
IL12A107, CD44108, CD274109, SOCS1110, SOCS3111, IL18112, JAK3113, CXCL8114, ICAM1115, IL2RA, IL2RG, IL4R116, 
CCR2, IL15, IL23A, CCR5117, CXCR4118,119, VEGFA105, PTGS2120, CD40121, and PTPRC122 have also been reported 
to play a role in the pathogenesis of mastitis. For instance, Corl, et al.123 found that ICAM1, which is involved in 
the development of several inflammatory diseases including atherosclerosis, was among several proinflammatory 
factors involved in the activation and early migration of leukocytes into the mammary gland during the early 
stages of coliform mastitis, and reached peak expression between 4 and 12 h following stimulation. Our results 
showed that ICAM1 is targeted by bta-miR-151-3p, bta-miR-148a, and bta-miR-10b miRNAs. Interestingly, 
consistent with our results, the anti-inflammatory properties of miR-151-3p and miR-148a miRNAs have been 
revealed previously in E. coli, S. aureus, and LPS-induced inflammatory  processes85,124.

The CXCL8 hub-hub gene, which encodes the IL8 protein, is one of the essential chemokines for the recruit-
ment of neutrophils to the site of inflammation, and therefore can have a significant correlation with SCC in 
mastitis  animals125. Pathogenic strains of E. coli have been shown to induce strong expression of proinflamma-
tory cytokines and chemokines such as IL8 in the udder, leading to acute  mastitis114. Interestingly, CXCL8 is 
preferentially targeted by bta-miR-183 hub miRNA, which could be considered as a potential therapeutic factor 
to counteract mastitis-induced inflammation and tissue damage caused by leukocyte influx. Furthermore, the 
PTGS2 gene, which is involved in prostaglandin synthesis and regulated during inflammation, was found to be 
targeted by bta-miR-429 hub miRNA and bta-miR-204 in the blue miRNA-seq-based module.

Interestingly, mir-429 has previously been shown to play a critical role in inducing inflammation caused by 
LPS challenge in vivo, so it was concluded that targeting this miRNA with anti-miRNAs attenuates the LPS-
induced inflammatory  response126. Eventually, it has been suggested that VEGFA hub-hub gene may have key 
functions in the immune response, inflammation or mastitis development, which could provide a basis for strate-
gies to improve the diagnosis and treatment of mastitis in dairy  cattle105. In this regard, comprehensive infor-
mation from the miRWalk database indicated the targeting of VEGFA by bta-miR-205 (hub) and bta-miR-27b 
miRNAs. In this regard, miR-205 was identified as a mastitis resistance-related miRNA in a recent miRNAomic 
 study127. Additionally, miR-27b, which is involved in mammary gland development, has been suggested as an 
early mastitis  indicator128.

Identification of hub-hub TFs and their regulatory miRNAs. Several hub-hub TFs were also identi-
fied including STAT1, STAT2, STAT3, STAT5A, STAT5B, STAT646, NFKB1, NFKB2129, and IRF133, as well as a 
hub-hub lncRNA including CDC42SE1130, which had essential immunoregulatory roles in mastitis immunity. It 
is well clarified that signal transducers, and activators of transcription proteins (STATs) members are involved in 
cell growth, differentiation, cell survival, apoptosis, inflammation, and mammary gland development. Previous 
data suggest the effective role of STAT3 in tumor development in breast  cancer131. Moreover, this hub-hub TF 
showed significant upregulation in response to S. uberis infection and has also been introduced as an essential 
mediator for mammary cell apoptosis and  inflammation132. Interestingly, previous studies have reported that 
IL6 expression correlates with STAT3 phosphorylation levels, thus concluding that the IL6-STAT3 axis is directly 
related to the chronic inflammatory state of the breast during  mastitis105. STAT3 hub-hub TF is regulated by the 
bta-miR-30a-5p, bta-miR-31, and bta-miR-125a hub miRNAs which were discussed earlier. Moreover, STAT3 
was post-transcriptionally negatively regulated by bta-mir-127 hub miRNA. Accordingly, this hub miRNA could 
be a key anti-inflammatory candidate during mastitis. In this regard, previous researches indicate the central role 
of mir-127 to promotion the reduction of lung  inflammation133.

Moreover, it has been reported that E. coli-induced mastitis leads to dephosphorylation of STAT5, which is 
one of the lactation-specific genes and one of the main elements for the synthesis of milk  components74. In other 
words, it has been concluded that the inactivation of STAT5 and the activation of NFKB1 and STAT3 are directly 
related to the milk loss in mammary glands after  infection89. Additionally, STAT5A/B and STAT6 hub-hub TFs 
were targeted by bta-miR-200a and bta-miR-141 hub miRNAs, respectively. Interestingly, Luoreng, et al.67 recently 
reported that miR-200a was significantly upregulated during E. coli-induced mastitis, which could be directly 
related to the reduction of milk production during mastitis by targeting STAT5 TF.

NFKB1 and NFKB2 hub-hub TFs are main members of the NF-κB pathway, which are essential for the tran-
scription of downstream cytokine genes and initiation of inflammatory  response134. As expected, previous data 
showed that NFKB1 and NFKB2 were upregulated in LPS- and LTA-induced mastitis in mammary epithelial 
cells, which was directly related to infection-induced inflammation during  mastitis120,129. Accordingly, NFKB1 
has recently been observed among highly-correlated genes with SCC and other clinical mastitis-related  traits117. 
These findings suggested that NFKB1 hub-hub TF can be considered as the main therapeutic components to 
manage and eradicate mastitis. Surprisingly, bta-miR-30a-5p hub miRNA showed the ability to target NFKB1 in 
addition to TLR4 and STAT3. Therefore, this hub miRNA can have a promising potential to develop therapeutic 
strategies against mastitis-induced inflammation by targeting the TLR4-NFKB1-STAT3 axis.
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Identification of hub-hub lncRNAs and their regulatory miRNAs. Furthermore, the precise role 
of CDC42SE1 hub-hub lncRNA in mastitis inflammation and immunity is still unclear. However, in relation 
to inflammation, it has also been highlighted that CDC42SE1 had a positive correlation with the inflammatory 
features of clear cell renal cell  carcinoma135. CDC42SE1 hub lncRNA was targeted by several miRNAs, including 
bta-miR-151-3p, bta-miR-486, bta-miR-125a, bta-miR-504, and bta-mir-1388-5p. Among them, bta-mir-1388-5p 
has been reported to have a potential anti-inflammatory role by interfering with inflammatory  signals136. These 
findings provide novel insights into the pathogenesis of mastitis by investigating the molecular interactome 
involving mRNAs, miRNAs, and lncRNAs. The transcriptional suppression of specific miRNAs can amplify 
the proinflammatory response, tissue damage, and immunopathogenesis of mastitis. Conversely, targeting anti-
inflammatory mediators and their specific miRNAs could potentially be utilized as therapeutic strategies. How-
ever, further research is needed to fully understand these mechanisms and their potential applications.

Conclusion
Mastitis, a prevalent inflammatory condition of the mammary glands, exhibits a complex immunopathology 
and multifactorial phenotype. In this study, we employed an integrative approach combining RNA-seq and 
miRNA-seq techniques with systems biology computational algorithms to gain comprehensive insights into the 
molecular regulatory mechanisms underlying mastitis. Our findings led to the construction of an integrated 
immunoregulatory network specific to bovine mastitis. The turquoise RNA-seq-based module demonstrated 
the strongest positive correlation with clinical features of mastitis, including somatic cell count (SCC) and 
total bacterial count (TBC). Additionally, module assignment analysis revealed that the blue miRNA-seq-based 
module exerts post-transcriptional regulation on the turquoise RNA-seq-based module. Consequently, several 
important regulatory elements were identified, including hub-hub genes (TLR2, TLR4, TNF, IL6, IL1B, IL1A, 
JAK2, SOCS1, SOCS3, IL10, ICAM1, CXCL8, VEGFA, and PTGS2), hub-hub TFs (STAT3, STAT5, NFKB1, and 
NFKB2), hub-hub lncRNA (CDC42SE1), and hub miRNAs (bta-mir-30a-5p, bta-mir-125a, bta-mir-205, bta-
mir-193b, bta-mir-455-5p, bta-mir-31, bta-mir-200a, bta-mir-127, and bta-mir-143) were identified. Our results 
provide compelling evidence suggesting that dysregulation in the interplay between these regulatory elements 
plays a critical role in the aggravation of inflammation and the pathogenesis of mastitis. As key components of 
the host immune response, these regulatory elements hold promise as diagnostic tools, prognostic biomarkers, 
and potential targets for therapeutic interventions, particularly for subclinical mastitis cases. However, further 
experimental research involving in vitro and in vivo analyses are necessary to validate the findings of this study, 
thereby elucidating the immunoregulatory roles of miRNAs-mRNAs-lncRNAs in bovine mastitis.

Materials and methods
Datasets. Publicly available raw RNA-seq and matched miRNA-seq data were obtained from the Gene 
Expression Omnibus (GEO) database at the National Center for Biotechnology Information (NCBI) under 
accession number GSE51858. The dataset consisted of milk-isolated CD14 + monocytes from five S. uberis-
infected and five non-infected control Holstein–Friesian cows at five time points 0, 12, 24, 36, and 48 h post 
infection (hpi). Each time point had five biological replicates. Ten primiparous Holstein–Friesian cows in the 
middle of their first lactation period, aged between 26 and 30 months and between 3 and 5 months postpartum, 
were selected for an in vivo experiment. Among these, five cows were infected at each time point via the teat 
canal of the right front quarter with approximately 500 colony-forming units (CFU) of S. uberis 0140, a mastitis-
causing pathogen, in 10 ml saline. The remaining, five non-infected control cows were inoculated with saline 
only at the same time points. Milk-derived CD14 + monocytes were isolated using fluorescence-activated cell 
sorting (FACS) and labeled with monoclonal anti-bovine CD14 and PE-conjugated anti-mouse IgG1 antibody. 
Labeled cells were then separated based on fluorescence intensity, and cells with more than 95% purity were 
isolated from the milk of each cow. Infection progression was monitored using recorded milk bacterial counts 
(CFU/ml) and somatic cell counts (per ml) at each time  point7,46. An Illumina HiSeq 2000 platform was used 
to generate 50-bp single-end reads, resulting in a total of 50 RNA-seq and 50 miRNA-seq libraries (25 S. uberis-
infected vs. 25 non-infected controls) from the milk of both animal groups. Further details about the data can 
be found in the source  paper7. According to the source  paper7, five RNA-seq infected samples (GSM1254114, 
GSM1254115, GSM1254116, GSM1254117, and GSM1254118) and five matched miRNA-seq infected samples 
(GSM1253803, GSM1253804, GSM1253805, GSM1253806, and GSM1253807) were excluded due to very low 
bacterial counts, which indicated an incomplete infection (bacterial count < 200  CFU/ml). Additionally, one 
RNA-seq infected sample (GSM1254121) and one matched miRNA-seq infected sample (GSM1253810) were 
excluded due to a low number and poor quality of reads (Q < 20). Finally, a total of 44 RNA-seq samples and 44 
matched miRNA-seq samples were retained for downstream analysis (19 S. uberis-infected vs. 25 non-infected 
samples). Clinical traits of bovine mastitis including milk volume (in liters), rectal temperature (in Fahrenheit), 
ambient temperature (in Celsius), humidity (%), total bacterial counts (TBC) per 10 ml, somatic cell counts 
(SCC) per ml, and CD14 cell number per ml were obtained from the supplementary material section of the 
source  paper7 and filtered for functional measurements.

RNA-seq and miRNA-seq data analysis and preprocessing. The FastQC software version 0.11.9 
(https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/) was used to evaluate the sample sequencing 
protocol and quality control of the raw RNA-seq and miRNA-seq reads. After checking the quality of the raw 
reads, low-quality reads/bases (Q < 20) and adapter sequences for both RNA-seq and miRNA-seq reads were 
trimmed using Trimmomatic  software137 (version 0.39). The trimming parameters for RNA-seq reads were 
ILLUMINACLIP:Adapter.fa:2:30:10, SLIDINGWINDOW:6:20, TRAILING:20, and MINLEN:30. For miRNA-
seq data, the trimming parameters were ILLUMINACLIP:Adapter.fa:2:30:10, SLIDINGWINDOW:6:20, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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TRAILING:20, and MINLEN:12. After obtaining clean reads, FastQC was used again to assess the quality 
and confirm the improvements. For RNA-seq data analysis, clean reads were aligned to the latest bovine refer-
ence genome (ARS-UCD1.2, release-108 from Ensemble database) using  Hisat2138 aligner version 2.2.1 with 
default parameters. The python script HTSeq-count139 (version 0.13.5) was used in intersection-strict mode to 
count uniquely mapped reads to annotated genes based on the Ensembl bovine GTF file (release 108). Then, all 
counted files were merged into a single table and a raw expression matrix was constructed that contained read 
counts information of mRNAs and lncRNAs for all samples (infected and non-infected). For miRNA-seq data 
analysis, putative non-miRNA reads such as ncRNAs, piRNAs, and phasiRNAs were removed using  Unitas140 
(version 1.7.0). The clean miRNA-seq reads were aligned to the bovine pre-mature miRNA sequences (version 
22, downloaded from miRBase database) using  Bowtie141 software (version 1.3.1) allowing one mismatch. The 
HTSeq-count139 version 0.13.5 was then used in intersection-strict mode to assign uniquely mapped miRNA-seq 
reads to miRBase miRNA annotations (version 22). Finally, all miRNA-seq-based counted files were merged into 
a table and a raw expression matrix was constructed that contained read counts information of all miRNAs for 
all samples (infected and non-infected).

To address the issue of low-expression or low-variance RNAs, which can represent sampling noise and result 
in unreliable correlations for co-expression network analysis, several filtering parameters were applied. First, 
RNAs were evaluated in both expression matrices, and those with read counts ≥ 5 in at least 10 samples were 
selected for further analysis. Next, both RNA-seq-based and miRNA-seq-based expression matrices were nor-
malized using the default procedure from the  DESeq2142 R package version 1.36.0 with correction for the parity 
number to reduce potential effects from the parity number factor. Then, both expression matrices were trans-
formed using the getVarianceStabilizedData function in  DESeq2142 R package as recommended in the WGCNA 
manual (https:// horva th. genet ics. ucla. edu/ html/ Coexp ressi onNet work/ Rpack ages/ WGCNA/). Finally, RNAs 
with a standard deviation < 0.25 were excluded from both expression matrices.

Weighted co-expression network analysis. Weighted co-expression network analysis was performed 
separately for the RNA-seq-based and miRNA-seq-based matrices using the  WGCNA35 R package (version 
1.71). To ensure the reliability of the network construction and account for outliers, the adjacency matrices of the 
samples were constructed for both expression matrices using the adjacency function of the WGCNA R package. 
Sample network connectivity was standardized based on the distances, and samples with a standardized con-
nectivity score < -2.5 were considered outliers and excluded. The goodSamplesGenes function of the WGCNA 
R package was used to identify samples and genes with > 50% missing entries and genes with zero variance. To 
construct the scale-free network, an appropriate soft threshold power was calculated using the pickSoftThresh-
old function of the WGCNA R package for each expression matrix. The soft thresholding power β = 17 and β = 6 
were determined for RNA-seq-based and miRNA-seq-based co-expression module construction, respectively. 
The weighted adjacency matrix was constructed for each expression matrix based on the respective soft thresh-
olding power using Pearson correlation coefficient. The adjacency matrix was then transformed into a topologi-
cal overlap matrix (TOM), which describes the interconnectedness between genes in the network. The signed 
weighted co-expression network was constructed separately, for RNA-seq and miRNA-seq datasets. Modules 
with different sizes were detected using average linkage hierarchical clustering analysis based on the dissimilarity 
of the TOM (1-TOM) through a dynamic hybrid tree cutting algorithm. Modules with highly similar expression 
profiles were merged based on the correlation between the module eigengenes, which represents the first princi-
pal component of the expression profile for a given module.

All the above steps were performed in both datasets independently using automatic, one-step network con-
struction and module detection function blockwiseModules of the WGCNA R package. Therefore, for RNA-
seq-based module detection, blockwiseModules function of the WGCNA R package was used with the following 
main parameters: power = 17, networkType = "signed", TOMType = "signed", maxBlockSize = 12,000, minMod-
uleSize = 30, reassignThreshold = 0, mergeCutHeight = 0.25. On the other hand, miRNA-seq-based modules were 
detected using blockwiseModules function of the WGCNA R package, with the following major parameters: 
power = 6, networkType = "signed", TOMType = "signed", maxBlockSize = 2000, minModuleSize = 30, reassign-
Threshold = 0, mergeCutHeight = 0.25.

Module–trait relationships analysis for RNA-seq-based modules. To investigate the relation-
ship between the genome and the measured phenotypic traits and also to identify significant highly-correlated 
modules with clinical traits of bovine mastitis such as SCC and TBC, module-trait relationships analysis was 
performed using the  WGCNA35 R package. The correlation between the clinical traits of mastitis and mod-
ule eigengenes of the RNA-seq-based modules was calculated using Pearson correlation coefficient. Then, the 
cutoff of significant highly-correlated RNA-seq-based modules with clinical traits of mastitis was defined as 
p-value < 0.05 and |R|> 0.55. Additionally, the gene significance (GS) criterion was calculated for each gene 
through the correlation between gene expression profiles and the clinical trait of interest, such as SCC.

Identification of the RNA-seq-based module of interest and functional annotation. To assess 
the biological behavior of significant highly-correlated RNA-seq-based modules with clinical traits of mastitis 
and identify modules involved in immune response, inflammation mechanisms, and S. uberis-host interactions, 
the co-expressed genes in each highly-correlated module were subjected to functional enrichment analysis using 
the  Enrichr143 online tool (https:// maaya nlab. cloud/ Enric hr/). Gene Ontology (GO) terms (biological process) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. The 
threshold for significant overrepresentation of functional terms was set as adj p-value < 0.05 (corrected by the 
Benjamini–Hochberg method). Additionally, a set of bovine transcriptional regulatory factors were extracted 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://maayanlab.cloud/Enrichr/
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from the AnimalTFDB3.0144 database (http:// bioin fo. life. hust. edu. cn/ Anima lTFDB/#!/) to identify crucial tran-
scription factors (TFs) that regulate the expression of functional genes in the significant highly-correlated RNA-
seq-based modules.

Detection of Hub RNAs. In biological networks, the scale-free topology of the network describes the dis-
tribution of interactions among nodes. In other words, one of the main characteristics of a scale-free network is 
several nodes with low interactions and few nodes with high interactions, which are called  hubs26. Indeed, these 
hub nodes have the highest degree of connectivity compared to other nodes in the network and are more closely 
related to the biological function of that  network145. In many cases, these central nodes have been evaluated as 
potential candidates for understanding the molecular mechanisms of many diseases and developing therapeutic/
preventive  methods146,147. The module memberships (MM) or eigengene-based connectivity kME criterion of the 
WGCNA package assesses the relationship of a gene with the corresponding module compared to other genes 
of that module and explains how the genes of a module are correlated with the characteristics of that  module35. 
In this study, to identify intramodular hub RNAs (mRNAs, lncRNAs, and miRNAs) in the selected modules, the 
MM criterion was calculated by WGCNA R package through the correlation between the expression profiles 
and module eigengenes. In this regard, RNAs with high MM values play a central role in terms of biological and 
topological properties in a  module35. Therefore, RNAs with kME > 0.65 were considered as intramodular hubs in 
the relevant modules.

Assign the miRNA-seq-based modules to the RNA-seq-based modules and miRNA target pre-
diction. To reveal which of the miRNA-seq-based modules are post-transcriptionally regulates the RNA-
seq-based module of interest, Pearson correlation was calculated between module eigengenes of RNA-seq-based 
and module eigengenes of miRNA-seq-based modules. Negative correlations indicate that miRNA-seq-based 
modules may inversely regulate the RNA-seq-based  modules26. The cutoff for assigning miRNA-seq-based mod-
ules to RNA-seq-based module of interest was defined as p-value < 0.05 and a negative correlation larger than 
0.50. miRNA-seq-based modules meeting this threshold were considered important regulators of the RNA-seq-
based-module of interest and selected for further investigation.

Moreover, to enhance the reliability of the assignment analysis results and explore molecular interactions more 
deeply, the target prediction analysis was performed for miRNAs in the selected miRNA-seq-based module that 
were negatively correlated with the RNA-seq-based module of interest. The miRNAs from the selected miRNA-
seq-based module were subjected to target prediction using miRWalk 3.0148 database (http:// mirwa lk. umm. uni- 
heide lberg. de/). The miRWalk database incorporates predictions from various target prediction tools, including 
DIANA-microT, miRanda, miRDB, RNA22, miRTarBase, RNAhybrid, PicTar4, PicTar5, PITA, and Targetscan, 
and provides up-to-date information on mRNA-miRNA and lncRNA-miRNA  interactions148,149. Additionally, 
to avoid false positive results, TargetScan, miRDB, and miRTarBase parameters of the miRWalk database were 
applied with binding score > 0.95, target binding region = 3’UTR, and minimum free energy (ΔG) = -15.

Identification of hub-hub RNAs in the RNA-seq-based module of interest. To identify the most 
important intramodular highly connected hub RNAs, including hub-hub mRNAs (genes and TFs) and hub-
hub lncRNAs, several steps were followed. First, to evaluate the network density at the translational level and 
extract protein interactions, co-expressed hub mRNAs (obtained from previous step) were selected from the 
RNA-seq-based module of interest for protein–protein interaction (PPI) network analysis using Search Tool for 
the Retrieval of Interacting Genes (STRING)150 database (https:// string- db. org/). Next, all the generated interac-
tions related to the RNA-seq-based module of interest, including PPI network derived from co-expressed hub 
mRNAs, WGCNA-calculated co-expressed hub mRNAs, and WGCNA-calculated co-expressed hub lncRNAs 
were inputted into the  Cytoscape151 software version 3.7.1 (https:// cytos cape. org/) and then were interpreted 
with the  cytoHubba152 plugin (version 0.1) for maximal clique centrality (MCC) analysis. Importantly, it is well 
established that among the topological analytical methods, MCC has a better performance on the precision of 
predicting featured nodes in the complex biological  networks152,153. Hence, the top 50 intramodular hub RNAs of 
the RNA-seq-based module of interest with the highest MCC score were identified as hub-hub RNAs.

Integrated regulatory network construction. To generate a molecular interactome and subsequently 
construct an integrated regulatory network, all possible interactions of the RNA-seq-based module of interest 
(co-expressed hub mRNA-based PPI networks, WGCNA-calculated co-expressed hub mRNAs, and WGCNA-
calculated co-expressed hub lncRNAs) were combined with its assigned miRNA-seq-based module interactions 
(WGCNA-calculated co-expressed miRNAs) and target prediction results. Then, the integrated regulatory net-
work was constructed and visualized in the  Cytoscape151 software version 3.7.1 (https:// cytos cape. org/).

Data availability
Raw RNA-seq and their matched miRNA-seq data were obtained from the Gene Expression Omnibus (GEO) 
database (https:// www. ncbi. nlm. nih. gov/ geo/) at the National Center for Biotechnology Information (NCBI) 
under accession number of GSE51858.
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