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Machine learning models 
for efficient characterization 
of Schottky barrier photodiode 
internal parameters
Richard O. Ocaya 1*, Andronicus A. Akinyelu 2, Abdullah G. Al‑Sehemi 3,4,5,9, Ayşegul Dere 6,9, 
Ahmed A. Al‑Ghamdi 7,9 & Fahrettin Yakuphanoğlu 8,9

We propose ANN-based models to analyze and extract the internal parameters of a Schottky 
photodiode (SPD) without presenting them with any knowledge of the highly nonlinear thermionic 
emission (TE) expression of the device current. We train, evaluate and demonstrate the ML models on 
thirty-six private datasets from three previously published devices, which denote current responses 
under illumination and ambient temperature of graphene oxide (GO) doped p-Si Schottky barrier 
diodes (SBDs). The GO doping levels are 0%, 1%, 3%, 5%, and 10%. The illumination ranged from 
dark (0 mW/cm2) to 30 mW/cm2. The predictions are then made completely at the intensity of 60 mW/
cm2. For each diode, some values of the barrier height ( φ ), ideality factor (n), and series resistance ( R

s
 ) 

independently calculated using the Cheung–Cheung method were included in the training dataset. 
The predictions are done at unspecified intensities on the model development data at 80 and 100 mW/
cm2, and on external data at 5% and 20% GO doping which were not part of the development dataset. 
The ANN achieved a mean square error and mean absolute error score below 0.003 across all datasets. 
This demonstrates the effective learning capabilities of the ANN models in accurately capturing the 
photo responses of the photodiodes and accurately predicting the internal parameters of the Schottky 
Barrier Diodes (SBDs), all without relying on an inherent understanding of the thermionic emission 
(TE) equation for SBDs. The ANN models achieved high accuracy in this process. The proposed ML 
models can significantly reduce analysis time in device development cycles and can be applied to other 
datasets in various fields.

Today, artificial intelligence (AI) systems are demonstrating abilities that match or surpass skilled human per-
formance in many fields, a feat that was barely possible 1 year ago and that is evolving at an unprecedented rate1. 
There is a growing focus on applying AI techniques to data extraction and analysis in the physical and applied 
sciences2. Only a few studies have applied ML-based algorithms to model the internal parameters of photodiodes. 
Ruiz Euler et al.3 utilized deep neural networks (DNN) to optimize multi-terminal nanoelectronics devices. 
They employed the gradient descent algorithm4 and achieved successful predictions of device functionality in 
disordered networks of dopant atoms in silicon. El-Mahalawy and El-Safty5 employed the Quantum Neural 
Network (QNN) to model the characteristics of the NTCDA/p-Si UV photodiode, accurately capturing trends 
and extrapolating unknown current values under different illuminations. ML algorithms have also found appli-
cations in laser welding6–8, optical photodiodes9,10, organic diodes11, and photonics12.
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Theoretical background
In this study, we assemble, train, and apply ML to evaluate the internal parameters of semiconductor photodi-
odes (SPDs) when their current responses to illuminations are empirically known. This is a standard experiment 
for semiconductor diodes. The current response of an SPD is governed by the TE equation. This is a complex 
equation that depends on the aforementioned internal parameters φ , n, Rs , on the applied voltage bias V, and 
on the ambient parameters i.e. the absolute device temperature T, and illumination, P. An empirical data point 
in a typical SPD measurement (at a given P and T) consists of the external, observable diode current I, and V. 
Incidentally, in the TE model, I is circularly dependent on itself in combination with Rs , V, T, φ , and n accord-
ing to the expression

where q is electronic charge, k is the Boltzmann constant, A is the diode area, A∗ is the Richardson constant13–16. 
For a given SPD, the interest is to characterize n, Rs , and φ . Evidently, Eq. (1) is extremely difficult to evaluate 
for these parameters, with many methods having been devised over the last five decades. Many are still in use, 
but almost all rely on heavy simplifying approximations owing to the typically non-zero Rs in real devices17–20. 
One such method is the Cheung–Cheung method which was developed in the 1980s18. It relies on two functions 
that are linear in the current:

with the symbols as previously defined. The method gives two estimates of Rs . The intercepts from the first 
and second plots then lead to an estimate of n and φ , respectively. For the datasets used in this study, A∗=32 A/
K2cm2 , A=1mm, and T=300K. Then, we assemble, train, and apply an ANN machine language model to the 
empirical datasets to evaluate the internal parameters of a p-Si/Au SPD without explicitly presenting Eq. (1) to 
the models. For background, we briefly shall describe the ANN model, but the detailed operational principles 
can be found in several sources. (Fig. 1)

In brief, the ANN model simulates interconnected neuron networks (through interconnected nodes) that are 
inspired by the human brain. The depiction shows an input layer, one or more hidden layers that extract input 
and output features and patterns, and an output layer that produces the final classification. The j-th output, Yj , 
is computed using weights wi on inputs Xi according to

A bias factor, b, is included for flexibility in training the model. In this study, the weighted sum is input to 
the efficient, nonlinearity-inducing mathematical function called the rectified linear unit (ReLU) to determine 
whether or not a node with critical inputs is activated. The function ReLU is defined as
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Figure 1.   A schematic depiction of a typical ANN model.
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where x refers to the input to a neuron in the network.
In this study, we trained and evaluated the ANN ML model on thirty-six private experimental datasets from 

three different SBDs, denoted D1, D2, and D3, using Google Colaboratory21. The dataset is derived from our 
previously published SPDs22–24. They contain responses to the illumination falling on three photodiodes doped 
with 0%, 1%, 3%, 5%, and 10% graphene on the p-type silicon substrate material. Each SPD is subjected to dark 
up to 30 mW/cm2 illumination. The datasets also contain the calculated values of the following parameters for 
each diode: barrier height ( φ ), ideality factor (n), and the series resistance ( Rs ). The results demonstrate that 
the ANN achieved a mean square error (MSE) and a mean absolute error (MAE) score of less than 0.003 for 
all datasets. Thus, the ANN ML model efficiently learned the photo responses of the photodiodes and correctly 
predicted their barrier height, ideality factor, and series resistance with extreme accuracy. We show that the ML 
model does not need prior knowledge of the mathematical TE model in any form to reach its predictions. We 
argue that ML modeling should be seen as a complement to researchers by adding a new, rapidly evolving tool 
into their arsenal. These tools can substantially reduce the time for analysis in the device development cycle and 
can be adapted to other areas and fields.

Results
The ANN model.  Table  1 shows the train and validation accuracy for the ANN model after 30 epochs. 
An Epoch marks the processing of all data once. It typically involves several iterations, which can involve data 
batches of a specified size.

Additionally, the table provides the average test accuracy for each model, which was calculated by summing 
the three test accuracies and dividing them by three. These findings suggest that the ANN model achieved good 
accuracy in predicting the target variables. The results also indicate that the model’s performance varied depend-
ing on the dataset used for training. This could be due to differences in the characteristics of the datasets, such 
as the range and distribution of the variables. Further investigations are needed to determine the factors affect-
ing the model’s performance and to optimize its training parameters. In summary, the ANN model trained on 
thirty-six datasets from three devices using two independent and three target variables showed promising results 
in predicting φ , n, and Rs . Figure 2 shows the training loss and accuracy curve for some models. The plots show 
the model’s performance for 30 epochs. The figures show that both the train—validation accuracy curve distance, 
and the train—validation loss curve distance is small, indicating that there is no overfitting in the ANN models.

The comparison is depicted in Fig. 3, where space limitations allowed us to present the comparison for ten 
predicted and actual values per dataset. The plots reveal a negligible difference between the predicted and actual 
values. This compellingly demonstrates the accuracy of the ANN models’ predictions, as the predicted values 
align satisfactorily with the expected values.

Furthermore, it affirms the effective learning of the photodiodes’ light responses by the ANN models, lead-
ing to accurate predictions of barrier height, ideality factor, and series resistance. The performance of the ANN 
models exhibited variability based on the training dataset utilized. This variability may arise from disparities 
in dataset characteristics, encompassing variables’ range and distribution. To comprehensively understand the 
factors influencing the model’s performance and optimize training parameters, further investigations are war-
ranted. In summary, the ANN model trained on twelve datasets, incorporating two independent variables and 
three target variables, demonstrated promising outcomes in accurately predicting � , n, and Rs.

(4)f (x) = max(0, x) =

{

x if x > 0
0 otherwise,

Table 1.   Averaged MSE and MAE performance of the ANN models for three different SBDs, D1, D2, and D3.

Illumination (mW/cm2)

GO:CoPc (= D1) GO:PCBM (= D2) GO:Coumarin (=D3)

Doping MSE MAE Doping MSE MAE Doping MSE MAE

% (10-3) (10-3) % (10-3) (10-3) % (10-3) (10-3)

0 0 2.33 9.22 0.5 1.49 2.52 3 1.25 1.64

10 0 1.93 3.34 0.5 1.55 2.74 3 1.28 1.43

30 0 1.44 7.66 0.5 1.93 2.51 3 1.43 4.00

60 0 1.59 5.60 0.5 1.19 1.82 3 1.23 2.60

0 1 1.22 2.57 3 1.11 1.37 5 1.47 1.48

10 1 1.94 2.91 3 1.14 2.09 5 0.91 0.80

30 1 1.54 6.75 3 2.56 3.82 5 1.89 1.91

60 1 1.78 2.05 3 1.71 1.35 5 1.48 1.25

0 10 1.35 4.10 10 1.34 2.99 10 1.35 0.42

10 10 1.78 3.29 10 1.18 1.70 10 0.76 0.69

30 10 1.88 4.39 10 1.42 2.33 10 1.08 0.94

60 10 2.24 3.89 10 1.81 3.25 10 1.23 1.52
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Discussion
The aforementioned machine learning (ML) languages have demonstrated the ability to deduce patterns in data 
pertaining to the transfer characteristics of the SPD without any prior knowledge of the device physics or the 
TE equation. This is achieved through training on a small set of data, allowing the ML model to generalize and 
make accurate predictions on unseen data. The current-voltage relationship of SPDs is governed by the highly 
non-linear TE equation. In the context of parameter extraction for a given SPD, it is essential to linearize specific 
regions of the V-I characteristic. Many methods, like the previously described Cheung–Cheung method, are 
viable to accomplish this task but require a carefully selected voltage range to give accurate results. As a conse-
quence, different individuals may select different ranges, leading to a significant variance in the extracted param-
eters even for a given SPD. During the implementation of the ANN models, it was observed that the algorithms 
rapidly and unexpectedly converged to the optimal ranges of applied bias across all instances. The study’s findings 
demonstrate the effectiveness of using ANN ML-based algorithms to accurately model the light responses of 
photodiodes. Through extensive training and evaluation of data collected from three photodiodes, the models 
successfully predicted critical parameters, such as barrier height, series resistance, and ideality factor. Importantly, 
the models also exhibited the ability to estimate photodiode light responses under varying illuminations and 
voltage settings, demonstrating their broad applicability. Furthermore, the models proved capable of predicting 
responses with minimal error, from 0 to 100 mW/cm2. However, complete reliance on machine learning (ML) 
models may not provide a comprehensive understanding of peculiarities in the data, such as negative differential 
conductance regions or breakdowns. Moreover, this study only explored one type of Schottky barrier diode (SBD) 
with p-Si/Au construction. However, SBDs with different constructions exhibit similar characteristics to the 
present devices, and it is highly likely that the same models can be used to determine their internal parameters. 

Figure 2.   Collated plots showing the training (curves T) and validation (curves V) losses for the ANN ML 
model applied to three SBDs D1, D2, and D3. All the plots have a scale factor of 10−3. The doping levels range 
from 0 to 10% GO, and the illuminations from 0 to 60 mW/cm2. The original simulation images are available21.
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Further investigations are necessary to verify this, as the scope of this work is not intended to be exhaustive, but 
rather to demonstrate the potential of ML tools. Researchers can utilize these models to minimize the time and 
resources required for conducting experiments. These findings provide an exciting avenue for future research 
through the application of ML techniques to model complex and highly nonlinear systems, thereby enhancing 
our overall understanding of their behaviors. Finally, the dataset25 and models26–28 are available upon request to 
enable independent evaluation.

Methods
Dataset creation.  The datasets presented to the developed ML models are based on V and I data points 
measured on three different published SBDs: D1 = Al/GO:CoPc/p-Si/Au22, D2 = Al/pSi/GO:PCBM/Au23, and 
D3 = Au/GO:Coumarin/p-Si/Al24. The publications summarize the instantaneous estimates of φ , n, and Rs using 
the Cheung–Cheung functions in Eq. (2). Table 2 shows the known results of the Cheung–Cheung method for 
all three diodes with 0%, 1%, 3%, 5%, and 10% GO content.

Each dataset entry therefore has the structure (V, I, φ , n, Rs ) for each illumination intensity. The four illu-
mination intensities used are 0 mW/cm2 (dark), 10, 30, and 60, all measured in mW/cm2. Thirty-six private 
datasets denoting 0%, 1%, 3%, 5%, and 10% doping levels were collected from three different devices. Twelve of 
the datasets were collected from D1 with 101 measured (I, V) samples, twelve from D2 with 201 samples, and 
twelve from D3 with 251 samples. Figure 4 shows the plot of the raw empirical data collected for these diodes 
over the illumination range from dark to 100 mW/cm2. Only the 0–60 mW/cm2 intensities were used in the 
development of the models. The 80 and 100 mW/cm2 intensities were used as data for prediction during the ML 
model development.

In all, there are 36 datasets consisting of 101, 201, and 251 sample points, respectively. They represent actual 
measurements along the current-voltage characteristics, from − 5 V to + 5V, including 0, in steps of 0.1, 0.04 V, 
and 0.05 V, respectively.

The datasets were standardized before training and contain the calculated φ , n, and Rs for each diode. Stand-
ardization was done to ensure that all the responses in the dataset contribute equally to the applied ML model.

Figure 3.   Plots showing comparisons between the actual and the ANN model predicted values of n, � , and Rs 
for three SBDs, D1, D2, and D3. For reasons of limited space, only values at dark and 30 mW/cm2 intensities are 
compared21.
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The overall approach.  We utilize ANN models to assess internal parameters of a p-Si/Au SPD using 
empirical datasets, without explicitly presenting Eq. (1). The ANN model comprises an input layer and an out-
put layer, with a specific number of layers determined through experimentation. The input layer consists of two 
neurons, while the output layer consists of three neurons representing � , n, and Rs . The ANN architecture and 
training parameters are depicted in Fig. 1 and Table 3, respectively. Figure 5 shows the data flow in the ANN ML 
used in this work. To accommodate the dataset size, we employed five-fold cross-validation to evaluate the ANN 
models, ensuring a more reliable estimation of performance on unseen samples. The five-fold cross-validation 
procedure utilized the KFold cross-validation function from the scikit-learn ML library29. Figure 6 illustrates the 
steps involved in the five-fold cross-validation.

The dataset is split into five-folds, and the experiment is executed over five iterations. In each iteration, 
four folds are utilized for training the ANN model, while the remaining fold is used for testing. This process is 
repeated until all five folds have been employed for training and testing. Throughout each iteration, the MSE 
and the MAE are calculated and recorded. Ultimately, the average MSE and MAE are computed at the conclu-
sion of the final iteration.

Training and model testing.  The ANN model was first trained and then cross-validated by the five-fold 
approach in Fig. 6. The training and validation made use of thirty-six (3x12) different datasets, based on the 
parameters in Table 3. The 3 × 12 datasets comprised 101, 201, and 251 (I, V) samples, respectively.

Finally, the trained model was tested on all samples from the original datasets. Table 1 also shows the MSE 
and MAE for the developed ANN model for D1, D2, and D3. Figure 7 plots the current-voltage characteristics 
for external data that were used to validate the ML models further.

Performance metrics.  The performance of the ANN models was assessed by the aforementioned metrics: 
MSE and MAE. A low MSE and MAE indicate a highly accurate model, with a zero MSE signifying a perfect 
match between predicted and actual values. Mathematically,

where N is the number of samples in the dataset, Va,i and Vp,i are the actual and predicted values, respectively, 
in the dataset. Table 1 displays the MSE and MAE results for the ANN models after 30 Epochs, where an Epoch 
represents the processing of all data once through several iterations, possibly involving data batches. The per-
formance evaluation utilized five-fold cross-validation. Remarkably, all ANN models achieved an average MSE 
below 0.003, indicating an accurate prediction of the target variables. This successful outcome demonstrates the 
models’ ability to learn and capture the values of � , n, and Rs , while effectively capturing the target variable trends. 

(5)MSE =
1

N

N
∑

i=1

(Va,i − Vp,i)
2 and MAE =

1

N

N
∑

i=1

|Va,i − Vp,i|,

Table 2.   Empirical results using the Cheung–Cheung functions for SBDs D1, D2, and D3. The entries at 80 
and 100 mW/cm2 are the predictions by the ANN model.

SBD

Dataset n Rs (k�) φ (eV) n Rs (k�) φ (eV) n Rs (k�) φ (eV)

(mW/cm2) 0%GO 1%GO 10%GO

D1

0 13.28 0.516 0.583 13.55 4.42 0.737 22.44 4.32 0.707

10 23.78 0.509 0.579 12.44 4.90 0.764 20.91 4.49 0.686

30 27.15 0.468 0.563 12.85 4.60 0.757 6.60 4.13 0.874

60 23.00 0.516 0.577 9.89 6.60 0.807 10.86 2.07 0.758

80 23.85 0.497 0.572 12.11 4.90 0.764 11.16 1.58 0.753

100 22.23 0.502 0.576 11.00 4.54 0.776 12.39 1.72 0.736

0.5%GO 3%GO 10%GO

D2

0 3.80 3022 0.761 6.84 7128 0.762 4.89 2934 0.819

10 3.57 19.56 0.764 1.02 2860 0.996 4.07 1017 0.849

30 3.62 18.58 0.761 1.53 1803 0.944 4.33 678 0.835

60 3.91 17.37 0.753 1.62 1613 0.935 4.50 481 0.827

80 4.07 15.95 0.748 4.01 848 0.817 4.78 311 0.815

100 5.91 13.41 0.721 4.25 737 0.813 5.31 232 0.801

3%GO 5%GO 10%GO

D3 0 10.03 0.632 0.768 10.93 0.670 0.772 9.75 0.369 0.760

10 14.79 0.393 0.675 12.57 0.743 0.729 10.25 0.313 0.751

30 12.65 0.582 0.696 18.33 0.543 0.658 9.86 0.345 0.756

60 14.20 0.472 0.680 20.74 0.448 0.637 9.42 0.370 0.759

80 12.60 0.597 0.712 15.3 0.662 0.685 9.95 0.336 0.752

100 19.23 0.287 0.633 18.91 0.476 0.650 9.90 0.381 0.739
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These findings underscore the impressive potential of ANN models to analyze and predict the internal param-
eters of an SPD, even without prior knowledge of the nonlinear thermionic emission (TE) expression for SBDs.

Figure 4.   The plots of the measured current-voltage characteristics for the three diodes D1, D2, and D3 with 
various dopants and doping concentrations. Each set of I-V characteristics is measured over the 0 to 100 mW/
cm2 illumination intensity range.
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Conclusions
ML models can be valuable tools that complement researchers, offering significant time savings in the device 
development cycle and adaptability to various fields. In this study, we successfully designed and developed 
diverse ANN-based models to analyze and extract the internal parameters of a Schottky photodiode (SPD). 
These models were trained and evaluated on 36 SPD datasets, yielding remarkable results. With an MSE and 
MAE score below 0.003, the ANN models accurately learned the internal parameters, predicting barrier height, 
series resistance, and ideality factor. It is worth noting that the ANN models also demonstrate their utility as a 
tool for post-publication validation of the results of earlier work that was based on the pedantic Cheung–Cheung 
method. Notably, the models demonstrated their ability to estimate unknown photodiode light responses under 
different illuminations and voltage settings without overfitting. This underscores their reliability. The utility of ML 
models to researchers lies in reducing the time-consuming repetition of experiments, enabling the generation of 
reliable internal parameters from prior data. By streamlining analysis tasks, researchers can now dedicate more 
attention to critical aspects of their investigations, thereby improving productivity.

Table 3.   Training parameters for the ANN used in this work.

Dataset Values

Batch size 32

Number of Epochs 30

Learning rate 0.001

Max Num value 2

L2 regularization factor 0.001

Optimizer Adam30

Figure 5.   A block schematic representation of the machine language models and the data flows in the 
processing.

Figure 6.   The five-fold cross-validation procedure. TE is the total error.
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Data availability
The datasets generated during and/or analyzed during the current study are available in the Google Colaboratory 
repository26–28, and figshare25.
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