
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14445  | https://doi.org/10.1038/s41598-023-41110-8

www.nature.com/scientificreports

Autonomous assessment 
of spontaneous retinal venous 
pulsations in fundus videos using 
a deep learning framework
Amirhossein Panahi 1, Alireza Rezaee 1*, Farshid Hajati 2, Sahar Shariflou 3, Ashish Agar 4,5,6 & 
S. Mojtaba Golzan 3

The presence or absence of spontaneous retinal venous pulsations (SVP) provides clinically significant 
insight into the hemodynamic status of the optic nerve head. Reduced SVP amplitudes have been 
linked to increased intracranial pressure and glaucoma progression. Currently, monitoring for the 
presence or absence of SVPs is performed subjectively and is highly dependent on trained clinicians. 
In this study, we developed a novel end-to-end deep model, called U3D-Net, to objectively classify 
SVPs as present or absent based on retinal fundus videos. The U3D-Net architecture consists of two 
distinct modules: an optic disc localizer and a classifier. First, a fast attention recurrent residual U-Net 
model is applied as the optic disc localizer. Then, the localized optic discs are passed on to a deep 
convolutional network for SVP classification. We trained and tested various time-series classifiers 
including 3D Inception, 3D Dense-ResNet, 3D ResNet, Long-term Recurrent Convolutional Network, 
and ConvLSTM. The optic disc localizer achieved a dice score of 95% for locating the optic disc in 30 
milliseconds. Amongst the different tested models, the 3D Inception model achieved an accuracy, 
sensitivity, and F1-Score of 84 ± 5%, 90 ± 8%, and 81 ± 6% respectively, outperforming the other 
tested models in classifying SVPs. To the best of our knowledge, this research is the first study that 
utilizes a deep neural network for an autonomous and objective classification of SVPs using retinal 
fundus videos.

Spontaneous retinal venous pulsations (SVP) are rhythmic changes of the central retinal vein that are visible on 
(or adjacent) to the optic disc1. Their frequency is also closely matched to the cardiac frequency2. SVPs origi-
nated as a result of a complicated interplay between systemic blood pressure, intraocular pressure, cerebrospinal 
fluid pressure (also known as intracranial pressure (ICP)), vessel structure, stiffness, and diameter3. Due to this 
interaction with the intraocular and intracranial space, SVPs hold clinically significant information relevant to a 
range of eye and brain diseases such as glaucoma4, intracranial hypertension5, and visual impairment intracranial 
pressure (VIIP)4–6. Despite the clinical significance of SVP monitoring, an autonomous and objective method for 
SVP assessment is currently not available, and SVPs are monitored subjectively by an expert clinician.

In the eye, SVP assessment has been recognized as an important marker for glaucoma onset and progression7. 
Previous studies have shown that SVPs are less evident in glaucoma and glaucoma suspects than in healthy 
individuals8,9. Morgan et al.8 show that SVP was visible in 54% of glaucoma cases, 75% of glaucoma suspects, 
and 98% of healthy instances. Legler and Jonas showed SVP presence in 64.1% of glaucoma subjects and 75.3% 
of healthy cases9. Several factors have been suggested as to why SVPs are reduced in glaucoma and glaucoma 
suspects. Those include an alteration in the ocular perfusion pressure10, fluctuations in translaminar pressure 
gradient11, and downstream increased vascular resistance12.

In the brain, the cerebrospinal fluid (CSF) comes into contact with the central retinal vein via the optic nerve 
sheath13. As a result, fluctuations in the CSF, directly transverse to the central retinal vein, leading to changes in 
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the SVP amplitude. An increase in CSF pressure (aka, ICP) is a characteristic of several neurological conditions 
such as trauma14, intracranial mass lesions15, idiopathic intracranial hypertension16, hydrocephalus17, stroke18, 
and VIIP experienced astronauts19. Previous studies have shown that SVPs are reduced with increasing ICP and 
may be re-established by raising the IOP to above the ICP by about 5–10 mm Hg20. Collectively, the presence or 
absence of SVPs can be a clinical indicator for normal or abnormal levels of ICP, respectively.

Both statistical and structural image analysis models have been proposed to quantify SVPs. McHugh et al.21 
used the Spectralis optical coherence tomography device to record an infrared video, of 10 s in length, from each 
retina, centered on the optic disc. The presence of SVPs was assessed subjectively using the grading system sug-
gested by Hedges et al.22. Principal Component Analysis (PCA) was applied by Moret et al.3 to sequential retinal 
images to detect SVP. They found that the most vital pulsatile signs were hidden in the first 5 to 10 components. 
Shariflou et al.23 applied a custom-written algorithm based on contrast-limited adaptive histogram equalization 
(CLAHE) and a method proposed by Fischer et al.24 to measure SVP amplitudes. While their approach enabled 
an objective measurement of SVPs, it was heavily resource-intensive. Despite previous attempts, to the best of 
our knowledge, an autonomous method to detect SVPs using fundus videos does not exist. In this study, we 
have developed a deep neural network trained on retinal fundus videos to autonomously detect the presence 
or absence of SVPs.

Materials and methods
Dataset.  The retinal images used in the study were obtained from publicly available repositories. For retinal 
videos, the study was performed in accordance with the guidelines of the tenets of the Declaration of Helsinki 
and approved by the University of Technology Sydney’s Human Research Ethics Committee (ETH17-1392). 
Informed consent was obtained from each participant following an explanation of the nature of the study.

Two distinct sets of fundus videos and images were used to develop and test the performance of our proposed 
model. For fundus videos, a total of 185 were collected from 113 participants attending the Marsden Eye Clinic. 
All participants were recruited subject to the following inclusion/exclusion criteria:

•	 Inclusion criteria 

1.	 Adults (i.e., over 18 years of age)
2.	 A normal fundus on ophthalmoscopy with no visible vascular changes.
3.	 Clear ocular media with visual acuity better than 6/12.

•	 Exclusion criteria 

1.	 Persistent vision loss, blurred vision, or floaters.
2.	 History of laser treatment of the retina or injections into either eye, or any history of retinal surgery.
3.	 Anomalies of the ocular media that would preclude accurate imaging.
4.	 Participant is contraindicated for imaging by fundus imaging systems used in the study (e.g. hypersensi-

tive to light or on medication that causes photosensitivity)

Participants had a dilated fundoscopy and a minimum 3-second recording (30 frames per second at a 46/60 
degrees’ field of view of the retina and 2.2 image magnification) centered on the optic disc Fig. 1a. Co-authors 
SMG and SS reviewed all videos and marked SVPs as present or absent. Occurrence of SVPs were only assessed 
within one-disc diameter of the optic nerve head. Co-author AA adjudicated any disagreement in the assessment 
between the two graders.

For fundus images, we used the DRIONS-DB database25, a public dataset containing 110 fundus images with 
their annotated ground truth, for training the optic disc localization model (Fig. 1b).

SVP classification.  To classify SVPs, we developed an end-to-end deep model called U3D-Net. Figure 2 
shows the overall structure of the model. The U3D-Net receives fundus videos as input and classifies SVPs as 
present or absent. The U3D-Net consists of two main blocks: Optic Disc Localizer and Classifier. Since SVP 
occurs on (or adjacent to) the optic disc, the U3D-Net has been tuned to focus on the optic disc. For this pur-
pose, the U3D-Net has an accurate and fast localizer that processes individual video frames and locates the optic 
disc in each image. The order of the frames, due to their synchronization with the cardiac frequency, is also an 
essential factor. This has been taken into account in the design of the localizer, which feeds sequential frames into 
the classifier. Therefore, SVPs are classified based on a batch of 30 sequential frames.

Optic disc localizer.  SVPs are mainly observable on the central retinal vein located on (or adjacent to) 
the optic disc. Therefore, prior to analyzing retinal videos for the presence or absence of SVPs, we developed 
a model that could localize optic discs in an image. For the purpose of our study, attention mechanisms26 with 
recurrent residual convolutional layers, which are depth-wise separable27, were used. A depth-wise separable 
layer decreases the computational cost in the network. The process includes a depth-wise and a spatial convo-
lution operated separately across every input data channel. Following this, it is supported by a pointwise 1× 1 
kernel convolution. To obtain the outcome of each channel (O1,O2,O3,O4) , each of the convolution kernels 
(K1,K2,K3,K4) is convolved with one of the input channels (I1, I2, I3, I4) . Ultimately, the outcomes from different 
kernels are fused into one. The output of the i − th kernel, Oi , is defined as
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where Ki and Oi are convolution kernels and the outcome of each channel convolution kernels and outcome of 
each channel, respectively.

Equation (1) establishes the number of convolution operations needed for depth-wise separable layers. 
Our proposed architecture for optic disc localizer (Fig. 3) contains recurrent residual layers and an attention 

(1)Oi = Ki ⊗ Li

Figure 1.   Some samples from SVP and DRIONS-DB datasets.

Figure 2.   The overall structure of the U3D-Net.
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mechanism. In this architecture, we have eliminated and modified the original U-Net28 copying and cropping 
block and have employed a concatenation operation, resulting in a highly developed structure and improved 
proficiency. The fundamental idea of recurrent connections is to reuse maps or weights and keep some data. The 
output of a depth-wise separable convolution layer returns to the layer’s input before passing it to the next layer. 
Also, a residual unit assists in avoiding vanishing gradient problems during the training. Hence, feature extraction 
with recurrent residual convolutional layers ensures a more compelling feature representation, enabling us to 
design a more accurate optic disc localizer. The localizer model trained with Attention Gates (AGs)26 thoroughly 
learns to ignore unnecessary areas in an input image and focus on distinctive features valuable for optic disc 
detection. AGs can be mixed with recurrent residual convolutional layers with minimum computational cost 
while improving the model’s accuracy.

Figure 4a displays the proposed AG. Attention values are computed for each pixel (u). We assumed that udownl  
and uupl  are represented as ul and gl , respectively. The gating signal gl specifies the attention region per pixel. 
The additive attention29 is utilized to acquire the attention coefficient to achieve higher accuracy. The additive 
formula presents as follows:

where Wg is the weight σ1 and σ2 represent the activation functions of ReLU and sigmoid, respectively, and bg 
and bψ denote the bias. The AG parameter is updated and trained based on the backpropagation technique rather 
than utilizing the sampling-based update process30. Finally, the result of AGs is the multiplication of the attention 
coefficient and the feature map are shown as follows:

The construction of the RRL block is illustrated in Fig. 4b. Localization of the optic disc encompasses con-
tracting and expansive paths. The input of the localization block, which is individual video frames, is initially 
passed through a depth-wise separable convolutional layer with 3× 3 filters. Then, the recurrent convolutional 
layers are utilized, and the final output of each recurrent convolution layer is passed on to the residual layer. We 

(2)QL = ψ(σ1(Wuul +Wggl + bg )+ b)ψ ,α1 = α2(QL)

(3)c
up
l = α × u1

Figure 3.   Proposed optic disc localizer. The number of filters of Depth-wise 2D Convolutional layers has been 
shown.
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applied a time step of 1 second, indicating one forward convolution layer supported by one recurrent convo-
lutional layer. Next, the ReLU activation function and max-pooling operation are applied, reducing the input 
width and height. The image resolution is reduced by passing the image through the sequence of layers multiple 
times. The same convolution layers and settings are used on the expansive side, with up-sampling layers, which 
lead to increased image resolution. Information obtained from the contracting path is utilized in the attention 
gate to remove noisy and unnecessary responses in skip connections. This is implemented directly before the 
concatenation process to merge just relevant and important activations.

The optic disc localizer model’s input is video frames, and the output is the segmentation map of the optic 
discs. As shown in Fig. 5, by calculating the coordinates area of the optic discs (white pixels) from the segmenta-
tion map, the region of the optic discs has been characterized. Finally, by applying a function to the frames of 
the video, the optic disc region will be cropped as a sequence form.

Figure 4.   The details of RRL block and attention gate that are used in optic disc localizer model.

Figure 5.   Optic disc localization steps: video frame extraction, creating segmentation maps by U-Net, 
localizing the optic discs using the segmentation maps, and building cropped optic disc videos.
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75% part of the DRIONS-DB dataset was used for training, 20% for validation, and the remaining 5% for 
testing the localizer model. An initial learning rate of 0.003 was used with a batch size of 6 and 100 epochs of 
training. In order to update the weights of the network iteratively, the RMSprop algorithm was used. In order 
to train and evaluate the optic disc localization model, the Dice loss function was selected since it is commonly 
used in medical image segmentation. By learning an effective feature representation and weight parameter, the 
model learned how to locate optic discs in fundus images accurately.

Classifier.  Following localization of the optic disc, sequential frames of the input video are then passed on to 
the classifier block of the U3D-Net. Each video frame was resized to 64× 64 pixels and converted into grayscale 
to decrease computational time and complexity. Different deep learning networks in this paper have been evalu-
ated: 3D Inception, 3D Dense-ResNet, 3D ResNet, Long-term Recurrent Convolutional Network (LRCN), and 
ConvLSTM. These networks were chosen as they have been used widely for medical image and video applica-
tion tasks. All networks comprise some layers such as convolutional layers, pooling layers, and a fully connected 
layer that makes a label for the input data. Also, the final performance of each network has been analyzed in the 
next part. Two characteristics are essential for video classification: spatial (static) features within each frame and 
temporal (dynamic) features between sequential frames. To evaluate the performance of each classifier model 
in classifying SVPs, and to increase the number and variety of fundus videos, data augmentation using a 180 
degrees rotation of original videos was used. Also, to remove any bias due to the chosen sets, a K-fold cross-
validation was used in which the SVP dataset is indiscriminately divided into five equal-sized folds (partitions). 
In this procedure, a single fold is chosen to serve as the test set, while the rest of the four folds are combined to 
form the training set. This process is repeated five times, with each fold serving as a test set once. Rotating the 
test set between the folds guarantees that the algorithm is assessed on various subsets of the data. Finally, the 
average of the results is calculated. This enables a more reliable estimation of its performance and generalization 
capabilities. The structure of each classifier model based on different deep learning structures with their detail 
has been presented in what follows.

3D inception.  One of the classifier models used includes Inception modules31, 3D pooling, and 3D convolu-
tion layers to extract spatial-temporal features from the input videos in real-time. As shown in Fig. 6a, the 3D 
Inception-Based classifier block consists of different layers, including the input. Each Inception module is a com-
bination of 3D convolution, batch normalization, and ReLU activation functions in which their outputs merge 
into a single vector and create the input of the next layer. Max-pooling layers support alternating convolutional 
layers. Also, the dropout layer is applied as a regularization operation to limit overfitting. Finally, fully connected 
layers are linked to an output layer which classifies the SVP status.

3D Dense‑ResNet.  In this paper, we use the iterative advancement properties of ResNets to make densely con-
nected residual networks for classifying SVP, which we call 3D Dense-Resnet. In FC DenseNets32, the convo-
lution layers are densely connected, but in Dense-Resnet, we apply dense connectivity to ResNets modules. 
Therefore, the 3D Dense-Resnet model executes iterative advancement at each representation step (in a single 
ResNet) and utilizes dense connectivity to get refined multi-scale feature representations. Hence, by combining 
FC-DenseNets and FC-ResNets into a single model that merges the advantages of both architectures. This brings 
the architecture to use the advantages of both dense connectivity and residual patterns, namely: iterative refine-
ment of representations gradient flow, multi-scale feature combination, and deep supervision33. The connectivity 
pattern of 3D Dense-ResNet is shown in Fig. 6b. First, the input is processed with a Conv3D convolution fol-
lowed by a Max-Pooling 3D operation. After that, the output is fed to a Dense block organized by residual blocks 
based on ResNets.

The number of kernels in a convolution process in CNN is equal to that of the input maps used for the input. 
Also, to provide an output feature map of the layers, the outcomes add with a bias term; the procedure is repeated 
with various kernels to get the desired number of output feature maps. These convolution layers are followed by 
Batch Normalization and a Rectified Linear Unit (ReLU) and set to decrease the number of input feature maps 
at the output. Global-Average-Pooling and Dense layers followed the final output.

3D ResNet.  The proposed 3D ResNet network is based on the ResNets structure34. ResNets present shortcut 
connections that skip a signal from one layer to another layer. The connections transfer the gradient flows of the 
model from later layers to earlier layers, leading to facilitating the training process of deep models. The structure 
of the proposed 3D Resnet is shown in Fig. 6c.

First, the input is processed with a Conv3D convolution followed by Max-Pooling, Batch-Normalization, 
and a Rectified Linear Unit (ReLU) to decrease the number of input feature maps at the output. After that, the 
output is fed to a residual block organized by a skip connection, and to provide an output feature map of each 
layer, the outcomes add with a bias term. The number of kernels of Conv3D layers in residual blocks and in 
the first layer is 3× 3× 3 . All the other Conv3D layers in the 3D ResNet have kernel size of 1× 1× 1 . Finally, 
Global-Average-Pooling and Dense layers followed the final output.

Long‑term recurrent convolutional network (LRCN).  Another method that can be utilized for the detection of 
SVP is a CNN model and LSTM model trained individually. To extract spatial features from the frames of the 
video, the CNN network can be used, and for this goal, a pre-trained model can be employed that can be fine-
tuned for the issue. Then, the LSTM network can use features extracted from the previous model to predict the 
absence or presence of SVP in the video. But here, another method known as the Long-term Recurrent Convo-
lutional Network (LRCN) has been used35, which integrates CNN and LSTM layers in a single network (Fig. 6d). 
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The Convolutional layers are utilized for spatial feature extraction from the video frames, and after that, the 
spatial features are fed to the LSTM layer(s) at each time-steps. This process is Temporal sequence modeling, and 
the model directly learns spatiotemporal features in a robust end-to-end model.

Also, the TimeDistributed wrapper layer has been utilized, which provides usage of the same layer for every 
frame of the video separately. So it creates a layer that has the potential to take input of shape (Num-of-Frames, 
Width, Height, Num-of-Channels) if the layer’s input shape was (Width, Height, Num-of-Channels), which is 
very advantageous as it authorizes the input of the whole video into the network in a single shot. For training 

Figure 6.   The classifier models that are used to detect SVP.
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the proposed LRCN model, time-distributed Conv2D layers have been used, followed by Dropout layers and 
MaxPooling2D layers. Conv2D layers extract features and then will be flattened by using the Flatten layer. After 
that, the output will be fed to an LSTM layer. The Dense layer with activation of softmax will then apply the final 
result from the LSTM layer. In this model, the size of kernel size of Conv2D layers is 3 × 3, and the pooling size 
of MaxPooling2D is 2× 2.

ConvLSTM.  The other approach proposed for detecting the presence or absence of SVP is a combination of 
ConvLSTM cells. A ConveLSTM cell is a kind of an LSTM model that includes convolutions functions in the 
model. It is an LSTM with convolution infixed in the network, which makes it apt to identify spatial features of 
the data while considering the temporal relation. This method effectively catches the spatial connection in the 
individual frames and the temporal connection across the various frames for video classification. Consequently, 
the ConvLSTM can take in 3D (Width, Height, Num-of-Channels) as input in this convolution network, whereas 
a simple LSTM takes in 1D input.

The overall structure of the proposed ConvLSTM cell is shown in Fig. 7, where σ is the sigmoid function, W 
is presented as the weight for each layer, b is the bias, Xt is the input in time step t, and the hyperbolic tangent 
function is represented by the tanh. Also, the Hadamard product operator is shown by 

⊙
 , ft is forget gate, ct is 

the cell state, it is the input gate, and Ot is the output gate.
The value obtained by taking the sigmoid function after getting xt and ht−1 is equal to the value that the 

forget gate sends out. The range of the sigmoid function output is from 0 to 1. Information from the previous 
cell is forgotten if the output value is 0, and if it is 1, information from the previous cell is wholly memorized. 
Also, it

⊙
gt is a gate for holding current information and catches ht − 1 and xt , and uses the sigmoid function.

Figure 6.   (continued)
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Figure 6.   (continued)

Figure 7.   Structure of the convolutional LSTM (ConvLSTM) cell.
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After that, the value that takes the Hadamard product operation and Hyperbolic Tangent (tanh) function is 
sent from the input gate. As the range of gt is from -1 to 1 and it is from 0 to 1, each represents the direction and 
intensity of storing current information. The formula of ConvLSTM cell is shown in what follows:

The cell state H, input gate i, output gate O, cell output C, cell input X, and forget gate f are all 3D tensors while 
in the original LSTM, where all these elements were 1D vectors. Also, all matrix multiplications are considered 
by operations’ convolution, which shows that the number of presented weights in all W in each cell can be less 
than in the original LSTM36.

In our proposed model, ConvLSTM2D has used Keras layers. Also, the ConvLSTM2D layer catches the num-
ber of kernels and filters size needed for using the convolutional processes. The outcome of the layers, in the 
end, is flattened and after that is fed to the Dense layer with SoftMax activation. Also, MaxPooling3D layers have 
been used to decrease the sizes of the frames and avoid unneeded calculations and Dropout layers to control the 
overfitting of the proposed model.

As the architecture is simple, the number of trainable parameters is small. The overall structure of our 
proposed method based on ConvLSTM is shown in Fig. 6e. The kernel size of ConvLSTM2D is 3× 3 , and the 
Hyperbolic Tangent (Tanh) activation function is applied for ConvLSTM2D layers. After each ConvLSTM2D 
layer, MaxPooling3D layers with pooling sizes of 1× 2× 2 and Batch Normalization layers have been applied. 
The final result has passed from Flatten and Dense layers.

To analyze the best performance of every classifier model, we ran several different experiments modifying the 
number of epochs, batch size, and learning rate. Table 1 summarizes the characteristics of the proposed classifiers.

Results
For interpreting the performance of every model, various metrics have been utilized, which include some param-
eters. These parameters are TP, TN, FP, and FN, which refer to the true positive, true negative, false positive, and 
false negative, respectively. Accuracy, Precision, Recall, Specificity, F1-score, Negative Predictive Value (NPV), 
Dice score, and Intersection-Over-Union (IOU) have been used for evaluating the proposed models37–39.

U3D‑Net localizer result.  To evaluate the proposed optic disc localizer model, the Dice score and IOU 
have been used. Dice Score was applied as a statistical validation factor to measure the similarity between the 
manual segmentation map and the final segmentation map of the model. IOU is a factor utilized to define the 
area of overlap between two regions. The greater the region of overlapping brings greater the IOU factor. IOU 
and Dice factors utilize different methods to calculate how matching an image segmentation algorithm’s out-
comes are to its ground truth segmentation map.

Figure 8 is a sample comparison of the optic disc segmentation maps extracted by the model with the ground 
truth. The localizer model was able to achieve a Dice score of 0.95 and an IOU of 0.91 (Table 2). Also, with regard 
to the (partial) evaluation of localization performance on the actual dataset, we randomly selected a number of 
samples from the dataset. The average Dice and IOU scores for the given samples were 0.87 and 0.84, respectively.

U3D‑Net classifiers result.  Table 3 summarizes the Sensitivity, Specificity, Precision, Accuracy, F-1 Score, 
and Negative Predictive Value attained for each classifier model utilizing the abovementioned parameters. For 
evaluating the classifier models, K-fold cross-validation has been used. It typically results in a less biased model 
compared to other techniques, as every observation from the dataset has the opportunity to come into view in 
training and test set45. Our results demonstrate that the 3D Inception achieved better results.

(4)ft =σ(WXf ∗ Xt +WHf ∗Ht−1 +Wcf ⊙ Ct−1 + bf )

(5)it =σ(WXi ∗ Xt +WHi ∗Ht−1 +Wci ⊙ Ct−1 + bHi)

(6)gt = tanh(WXg ∗ Xt +WHg ∗Ht−1 + bh−g )

(7)Ct =(ft ⊙ Ct−1)+ (it ⊙ gt)

(8)Ot =σ(WXo ∗ Xt +WHo ∗Ht−1 +WCo ⊙ Ct + bh−o)

(9)Ht =ot ⊙ tanh(ct)

Table 1.   Characteristics of the U3D-Net classifiers.

3D inception 3D Dense-ResNet 3D ResNet LRCN ConvLSTM

Batch size 30 30 30 30 30

Number of epochs 100 100 100 100 100

Learning rate 0.0003 0.0028 0.002 0.0029 0.004

Optimizer Adam Adam Adam Adam Adam
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In Fig. 9 we compared the area under the Receiver Operating Characteristic (ROC) curves to assess each 
model’s performance in separating the presence and absence of SVP.

Discussion
In this study, we have developed a model based on a recurrent residual U-Net that utilizes an attention mecha-
nism to autonomously and objectively classify SVPs as present or absent in fundus videos. To the best of our 
knowledge, this is the first study to use a deep neural network for SVP assessment, and as a result, our findings 
set the first benchmark for SVP assessment using such an approach. While there have been previous attempts to 
use computer-aided analysis for quantifying SVP amplitudes23,47,48, they are resource-intensive and require post-
video capture analysis. Our solution overcomes these shortfalls by providing an approach called U3D-Net that 
can readily analyze fundus videos and provide a binary classification of SVP status (i.e., present or absent). As 
SVPs are particularly visible in the optic disc area, the ablation of the U3D-Net model (i.e., optic disc localizer) 
significantly decreased the performance of the overall model. This is due to the fact that the network considered 
the entire region of the fundus images without any specific focus on the optic disc, where physiological SVPs are 
known to occur. We proposed a deep learning model based on U-Net to detect the optic discs, and the images of 
the segmented optic discs were then fed to another time-series deep learning model to classify SVPs on fundus 
videos. In order to select the best model with the highest performance for the classification task, we trained dif-
ferent time series models including the 3D Inception, 3D Dense-ResNet, 3D ResNet, LRCN, and ConvLSTM. By 
comparing these models’ performances (Table 3), the 3D Inception model outperformed the others, achieving 
a sensitivity of 90 ± 8% in classifying SVPs.

This is comparable to a recent clinical study46 that reported a sensitivity of 84.7% and 76.8% for two expert 
clinicians that had subjectively classified SVPs as present or absent. Our model achieved a specificity of 82 ± 
9%, and, once again, this is comparable to the aforementioned study in which the same expert clinicians scored 
89.2% and 68.6% for specificity, respectively. Finally, the accuracy of our model was 84 ± 5% in comparison to 
73.1% and 86.7% accuracy achieved by expert clinicians in the same study. Collectively, despite the relatively 
low sample size used to train and evaluate our model, we have demonstrated that it is possible to develop a deep 

Figure 8.   Segmentation maps created by the optic disc localizer versus the ground truth ones.

Table 2.   Comparison of the proposed model with existing models for optic disc localization using the 
DRIONS-DB dataset.

Methods Dice IOU Prediction time(s) Hardware settings

Mannis et al.40 0.97 0.94 0.65 NVIDIA TITAN-X GPU

Ramani et al.41 0.82 0.89 1.41 Intel(R) Core(TM), 1.70 GHz

Morales et al.42 0.90 0.84 – –

Sevatoplsky et al.43 0.94 0.89 0.13 NVIDIA GRID (Kepler GK104)

Walter et al.44 0.68 0.62 – –

U-Net 0.94 0.88 0.11 NVIDIA Tesla K80

Attention U-Net 0.94 0.89 0.19 NVIDIA Tesla K80

U3D-Net Localizer 0.95 0.91 0.03 NVIDIA Tesla K80
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learning framework that can achieve a sensitivity, specificity, and accuracy comparable to that of expert clinicians 
with further room for improvement if a larger sample size is used.

SVP analysis can provide significant clinical insight into the hemodynamic status of the optic nerve head. 
Due to its anatomical location, SVPs observed in the central retinal vein are a direct result of the hemodynamic 
interaction between the intraocular and intracranial pressure49. Accordingly, SVP analysis can reveal blood flow 
dysfunction due to ocular or neurological conditions50. Traditionally, SVPs have been assessed by an ophthal-
mologist in the clinic using a 78D or 90D ophthalmic lens. However, the major limitation of such an approach is 
that it subjectively assesses SVP, and subtle vein pulsations can easily be missed. This is evident through previ-
ous studies that have reported a varying degree of SVP presence in normal and glaucoma patients8. However, 
studies that have used computer-aided analysis of retinal videos have demonstrated that SVPs are identifiable in 
almost 100% of the population and that it’s the pulse amplitudes that can vary between nonexistent (i.e., < 15% 
diameter expansion) to clinical evidence (i.e., > 50% diameter expansion)23,46. Our study has a few limitations. 
First, we have used a relatively small sample size to train and evaluate our deep learning model. Despite this, our 
model performance is comparable to that of expert clinician grading. Second, we have used subjective grading 
as our ground truth. While an exact SVP amplitude produced by a computer-aided image analysis program 
could have been used in our study, we purposely decided to use subjective grading as our ground truth mainly 
for two reasons:

•	 Subjective assessment is an established method in the clinic and thus our findings can directly be translated 
into a clinical setting.

•	 Compare our findings to an available subjective study.

Table 3.   General performances and comparison of proposed classifier models with the existing research.

Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F1 Score (%) NPV (%)
Mean ROC 
(%)

3D Inception

Fold1 78 93 93 85 85 77 96

Fold2 99 87 76 91 86 99 98

Fold3 91 77 68 82 78 94 95

Fold4 88 88 88 88 88 88 96

Fold5 99 66 55 76 71 99 99

Ave. 90 ± 8 82 ± 9 76 ± 13 84 ± 5 81 ± 6 91 ± 8 96.2

3D Dense-ResNet

Fold1 64 50 76 60 69 35 53

Fold2 58 70 82 61 68 41 69

Fold3 62 61 58 61 60 64 71

Fold4 88 87 88 88 88 87 95

Fold5 99 68 52 76 69 99 98

Ave. 74 ± 16 67 ± 12 71 ± 13 69 ± 11 70 ± 9 65 ± 24 77.2

3D ResNet

Fold1 57 50 95 57 71 6 76

Fold2 36 66 75 44 48 27 56

Fold3 65 40 86 61 74 16 52

Fold4 67 50 86 64 76 25 62

Fold5 48 99 99 50 65 5 64

Ave. 54 ± 11 61 ± 20 88 ± 8 55 ± 7 66 ± 10 15 ± 9 62

LRCN

Fold1 73 85 78 80 75 80 88

Fold2 69 81 88 73 78 56 93

Fold3 91 99 99 94 95 84 99

Fold4 95 99 99 97 97 93 99

Fold5 73 87 95 76 82 50 84

Ave. 80 ± 10 90 ± 7 91 ± 7 83 ± 9 85 ± 8 72 ± 16 92.6

ConvLSTM

Fold1 72 76 76 74 74 72 84

Fold2 69 99 99 79 82 61 87

Fold3 69 90 94 76 80 58 92

Fold4 88 75 80 82 84 85 88

Fold5 95 99 99 97 97 91 99

Ave. 78 ± 10 87 ± 10 89 ± 9 81 ± 8 83 ± 7 73 ± 12 90

Laurent et al.
(Two observers)46

Observer1 84 89 90 86 – 82 –

Observer2 76 68 75 73 – 70 –
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Finally, we have used a binary classification for SVP analysis. While a multi-tier grading of SVPs can inform 
enhanced clinical decision-making, binary classification of SVPs can lay the foundation for future work in this 
area, all whilst providing evidence on the overall hemodynamic status of the optic nerve head.

Conclusion
In conclusion, we have developed a deep learning model, named U3D-Net, to objectively analyze retinal fundus 
videos and readily provide an autonomous classification for SVP presence or absence. Our highest performance 
model achieved a sensitivity, specificity, and accuracy of 90 ± 8%, 82 ± 9%, and 84 ± 5% in classifying SVPs. This 
serves as an initial benchmark for similar studies that may be carried out in the future. With a significant increase 
in imaging technologies, our model can be integrated into portable fundus ophthalmoscopes and be used to scan 
for SVP presence. However, further studies with a larger and heterogeneous sample size as well as multi-class 
labeling are needed to fully exploit the clinical benefits of autonomous SVP classification.

Data availability
The retinal video dataset generated and/or analysed during the current study is not publicly available due to 
limitations imposed on the study’s ethics approval but is available from the corresponding author on reasonable 
request and following an ethics approval process.

Figure 9.   The receiver operating characteristic (ROC) curves for all the different classifiers.
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