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As more and more intelligent devices are put into the field of power system, the number of 
connected nodes in the power network is increasing exponentially. Under the background of smart 
grid cooperation across power areas and voltage levels, how to effectively process the massive 
data generated by smart grid has become a difficult problem to ensure the stable operation of 
power system. In the complex calculation process of power system, the operation time of complex 
calculation can not be shortened to the greatest extent, and the execution efficiency can not be 
improved. Therefore, this paper proposes a two-phase heuristic algorithm based on edge computing. 
In solving the virtual machine sequence problem, for the main partition and the coordination 
partition, the critical path algorithm is used to sort the virtual machines to minimize the computing 
time. For other sub-partitions, the minimum cut algorithm is used to reduce the traffic interaction of 
each sub-partition. In the second stage of the virtual machine placement process, an improved best fit 
algorithm is used to avoid poor placement of virtual machines across physical machine configurations, 
resulting in increased computing time. Through the experiment on the test system, it is proved that 
the calculation efficiency is improved when the coordinated partition calculation belongs to the target 
partition. Because the edge computing is closer to the data source, it can save more data transmission 
time than cloud computing. This paper provides an effective algorithm for power system distributed 
computing in virtual machine configuration in edge computing, which can effectively reduce the 
computing time of power system and improve the efficiency of system resource utilization.

With the development of Internet of Things (IoT) to Internet of Everything (IoE), more and more intelligent 
devices are put into the field of power system, resulting in an exponential increase in the number of connected 
nodes in the power network. At the same time, the contemporary smart grid requires to realize the cooperation 
across power areas and voltage levels, and monitor the real-time status of each node of the power grid. However, 
there are a large number of nodes in the power system. How to process the massive data generated by them at 
a high speed and effectively has become a new challenge to ensure the stable operation of the power  system1.

Massive data through cloud computing and a centralized computing method will bring a lot of transmission 
consumption and time delay  problems2. Different from the traditional centralized computing mode, the edge 
computing application is deployed in the base station close to the terminal. In this computing mode, the server 
response and reliability are higher than those of the centralized big data processing mode, which can effectively 
reduce the bandwidth pressure and overload caused by massive data  transmission3. Moreover, the intelligent 
devices in the edge network have abundant computing and storage resources, which can greatly reduce service 
delay and improve the quality of network service. However, the application of edge computing in the power 
system only stays in solving the preliminary calculation, and fails to organically combine the virtual machine 
configuration with the characteristics of the power  system4. Most of the existing studies do not consider the 
structural characteristics of the power system, and ignore the impact of different information interaction require-
ments among system nodes on Virtual Machine Placement (VMP), which makes it impossible to give full play 
to the sufficient parallel computing and high-speed interaction capabilities of edge base stations in the complex 
computing process of the power  system5.

For the research on virtual machine configuration,  literature6 proposes a new load balancing algorithm from 
the perspective of load balancing, which configures virtual machines reasonably based on the number and size 
of incoming tasks to maximize the utilization of computing resources. On this basis,  literature7 further clearly 
points out that the goal of virtual machine configuration is to minimize the waiting time and completion time of 
tasks. Inappropriate virtual machine configuration strategy will cause load imbalance between virtual machines, 

OPEN

Yunnan Electric Power Grid Company, Kunming 650011, Yunnan, China. *email: anxing483951@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-41108-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14634  | https://doi.org/10.1038/s41598-023-41108-2

www.nature.com/scientificreports/

resulting in an increase in the total time to complete tasks.  Literature8 and  literature9 propose resource optimiza-
tion allocation algorithms for the problem of manufacturing resource optimization allocation without demand 
preference in cloud manufacturing environment, considering manufacturing service demand and cloud platform 
operators.  Reference10 proposes a GraspCC-fed algorithm to configure the optimal number of resources for each 
workflow to improve workflow performance and save costs for cloud data center virtual machine clusters. The 
methods proposed in these references have certain limitations in virtual machine configuration, mainly includ-
ing the following aspects: Limitations of load balancing algorithms: The load balancing algorithm proposed in 
 reference6 can allocate virtual machine resources reasonably based on the number and size of tasks, thereby 
maximizing the utilization of computing resources. However, this algorithm may not meet the performance 
and efficiency requirements of virtual machine configuration, as it only focuses on load balancing and ignores 
other key indicators such as task waiting time and completion time.Limitations on virtual machine configuration 
goals:  Reference7 clearly states that the goal of virtual machine configuration is to minimize the waiting time 
and completion time of tasks. However, in practical applications, virtual machine configuration often requires 
consideration of more factors, such as resource utilization, energy conservation, and cost. Failure to fully con-
sider these factors may lead to limitations in the configuration strategy, thereby affecting overall computing 
performance and resource utilization efficiency. Method limited to specific environments:  Reference10 proposes 
a resource optimization configuration algorithm for manufacturing resources optimization in cloud manufactur-
ing environments, combining manufacturing service requirements and cloud platform operators. However, this 
method is suitable for specific manufacturing environments and cannot be directly applied to other fields, such 
as distributed computing in power systems. Therefore, we need to design and develop suitable virtual machine 
configuration algorithms tailored to the specific needs and characteristics of the power system. Similarly, effi-
cient computing power is also the goal of power system computing, so it is urgent to propose a virtual machine 
placement algorithm for power system distributed computing.

In this paper, considering the urgency of power system tasks, the tasks are divided into two categories: those 
that must be executed locally and those that can be migrated. On this basis, a time model is built to minimize 
the time consumption of task computation to clarify the objectives and constraints, and facilitate the subsequent 
evaluation of the effectiveness of the proposed algorithm. Then the attribution of the calculation amount of the 
coordinated partition of the interconnected power grid is divided by using the method of site selection in graph 
theory. The best regional power grid accommodating the coordinated partition is selected, so that the execution 
time of the task is improved. Finally, two kinds of most commonly used traditional virtual machine configura-
tion algorithms, descending best fit algorithm and hierarchical clustering algorithm, are analyzed, and combined 
with the characteristics of power system. A two-phase heuristic algorithm for parallel distributed computing 
in power system is proposed. Without considering the task migration, the decomposition and coordination 
algorithm is used to partition the regional power grid. The effect of the proposed algorithm is compared with 
the traditional descending best fit algorithm and hierarchical clustering algorithm in terms of computing time 
and energy consumption.

With the Exponential growth of the number of connected nodes in the smart grid, how to effectively process 
the massive data from smart devices has become an important issue. This paper focuses on solving this chal-
lenge and proposes an algorithm based on edge computing, which can improve the efficiency of power grid data 
calculation and resource utilization.

This paper proposes a two-stage heuristic algorithm combining the Critical path method algorithm and the 
Minimum cut algorithm. In the first stage, the Critical path method algorithm is used to sort the virtual machines 
to reduce the computing time. In the second stage, an improved best match algorithm is used for virtual machine 
placement to avoid improper physical machine configuration and further optimize calculation time.

The innovation of this paper is to introduce edge computing technology into power system distributed 
computing. Edge computing is more close to the data source, so it can reduce the data transmission time and 
improve the computing efficiency. The experiment on the test system proves the effectiveness and advantages of 
edge computing in power system data processing.

Related work
Undirected weighting theory. In the addressing problem, an undirected weighted non-complete graph 
G = (V ,E) , where V(G) = {v1, v2, . . . , vn} is the vertex set of G. vi ∈ V(i = 1, 2, . . . , n) is the vertex of G. 
E(G) = {e1, e2, . . . , en} is the edge set of G and eij ∈ E(i, j = 1, 2, . . . , n) is the edge from vertex vi to vertex vj11. 
The relevant definitions are given below.

1. Distance The shortest distance between vertex i and vertex j in the graph G is the distance from vertex i to 
vertex j in the graph, denoted by dij or d(i, j) ; the distance from the point f on the arc (r, s) to the vertex r of 
the arc is f d(r, s) , where 0 ≤ f ≤ 1 ; the shortest distance from the point f on the arc (r, s) to vertex i can be 
called the vertex-to-vertex distance, denoted by d(f (r, s), i)12.

2. Median point Let SVV(i) denote the sum of the distances from vertex i to all other points in graph G. Search-
ing for the vertex that minimizes SVV(i) in all i(i = 1, 2, . . . , n) is called the median point of graph G13.

Improved best fit algorithm. In order to meet the rationality of physical resource allocation, it is neces-
sary to set corresponding rules for virtual machines:

Rule 1 When a certain sequence is configured, the remaining space of the physical machine is filled by search-
ing its own sequence virtual machine in priority order.
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Rule 2 When the undirected graph G cannot be cut into two connected subgraphs, the virtual machines of 
other sequences are searched in reverse order, and the virtual machines with the least traffic correlation of other 
partitions are used as far as  possible14.

Rule 3 Multiple virtual machines in a connected subgraph are a continuous sequence of virtual machines 
in VMlist.

Rule 4 After obtaining PMlist and VMlist , the remaining space resource  PMm·spare of the physical machine first 
searches the virtual machine sequence VMm·spare of the connected subgraph as a whole. If VMm·spare < PMm·spare 
is met, the sequence is placed in the physical machine. If not, other virtual machine sequences are placed from 
small to large according to the  flow15.

After two stages of algorithm, the virtual machine configuration is completed. The first stage of the algorithm 
is to sort the virtual machines to obtain the virtual machine release sequence, which is essentially to prepare for 
the second stage of algorithm. Therefore, the algorithm is named Improved Best Fit (IBF)16.

Task execution time model and two-stage heuristic algorithm
Task execution time model. Figure 1 is a task topology model, which uses a directed graph G = (V ,A) to 
represent the relationship between several independent tasks.

Each vertex v ∈ V  in Fig. 1 represents each task. The directed arc auv ∈ A in the figure represents the data 
transferred between tasks (unit: bits). For example, aij represents that the data of aij will be transmitted to task j 
after task i is executed. Task j will not start execution until it receives the data transmitted after task i is  executed17.

The tasks in Fig. 1 can be divided into two types: the first type is the task that must be executed locally, such 
as tripping caused by overload, which needs to be handled in time, and is represented as a solid node; the other 
type is the task that can be migrated, which is represented as a hollow node.

In this paper, a binary quantity Juv ∈ {0, 1} is defined to represent the line order of execution between tasks:

The above formula indicates that if task u can be executed only after task u is executed (task u is called the 
predecessor task of task v). Then Juv = 1 , otherwise the value is 0. When a task has two or more predecessor 
tasks, the task can be completed only after all the predecessor tasks are  executed18.

The virtual machine configuration algorithm proposed in this paper is to optimize the computational effi-
ciency of the task, so it is necessary to establish a corresponding time model for the task time consumption. The 
execution time of a task is related to whether it is executed locally or migrated. Thus, this paper defines a binary 
quantity Iv ∈ {0, 1} as the decision quantity for whether a task is migrated or not.

The above equation indicates that if task v is executed locally, then Iv = 1 ; otherwise, Iv = 0 . Tasks that must 
be performed locally can only be done locally.

(1) When task v is executed locally, i.e., Iv = 1 , its elapsed time is:

In formula (3), av represents the amount of computation of task v (unit: CPU cycles), which is proportional 
to the size of the computed task; fl is the execution rate of the local CPU (unit: CPU cycles/s).

(1)Juv =

{

1, if task v is scheduled immediately after u
0, otherwise

(2)Iv =

{

1, if task v is executed at the local device
0, if task v is executed at the nonlocal device

(3)Tl
v = avf

−1
l

aij

1 2

j

f

i o

alj

a1f

ajf

a2i

aoi

ao2
ao1

Migration task

Must perform a local task

Figure 1.  Task topology model.
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(2) When task v is migrated, i.e., Iv = 0 , its execution time is:

In the formula (4), fc is the execution rate (unit: CPU cycles/s) of the CPU to which the task v is migrated.

(3) Data Transmission time

In the above formula, Rs and Rr respectively represent the channel rate of data upload and the channel rate of 
data download (unit: bits/s). Tlink is the link delay, which represents the time spent by a single data packet sent 
by a physical machine to reach another physical machine through the transmission of switches at all levels, and 
is related to the number of switches passing through and the link  status19. Among them, the transmission time 
of task migration is far greater than the execution time after migration.

(4) The task execution time in the case of considering task migration can be obtained:

In formula (6), the first term on the right side of the equation represents the execution time of all tasks, which 
can be divided into two cases: local execution and migration to other areas for execution; the second term on the 
right side of the equation represents the time consumed for data transmission. Where Juv is a multiplicative factor 
indicating that the computation of task v will not start until the predecessor task u is  completed20. In Eq. (7), N 
is the number of migration tasks; M is the number of tasks that must be executed locally; and I represents the 
execution position of each task.

System addressing example. The interconnected power grid in a certain area has 7 divisional power 
grids, and its network diagram is shown in Fig. 2. The vertex represents each partition; the vertex weight rep-
resents the number of power intelligent devices in each of the seven partition power grids; and the arc weight 
represents the bandwidth resource, namely, communication capability, between the seven power grid partitions.

(1) The shortest path length dij(i, j = 1, 2, . . . , 7) from each vertex vi to each other vertex vj in the above figure 
is obtained by using the Dijkstra algorithm, and the result is expressed as the following distance matrix D:

(4)Tc
v = avf

−1
c

(5)Tuv =

{

auvR
−1
s + Tlink , Iu = 1&Iv = 0

auvR
−1
r + Tlink , Iu = 0&Iv = 1

(6)T(I) =
∑

v∈V

[

lvT
l
v + (1− Iv)T

c
v

]

+
∑

(u,v)∈A

max
u∈V

Juv|Iu − Iv|Tuv

(7)s.t. I = [I1, I2, . . . , Iv , . . . , IN+M ]

(8)Iv ∈ {0, 1}

Figure 2.  Network diagram of interconnected power grid.
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(2) Obtain the weighted sum A of the shortest path lengths from each vertex to other vertices by using the 
weight SVV(i) = D × A (i = 1, 2, . . . , 7) of each vertex.

(3) Judge the vertex of max
i

{SVV(vi)} . Since the target partition is the point with the highest degree of electri-
cal coupling with each partition, the result of SVV(i)(i = 1, 2, . . . , 7) for each vertex is judged to select the 
vertex of max

i
{SVV(vi)} as the best placement  position21. Select point v1 , that is, assign the calculation task 

of the coordination partition to partition 1 for calculation.

Two-stage heuristic algorithm
A series of virtual machine sequences are obtained through the virtual machine sorting algorithm based on 
the critical path and the minimum cut. The next task is to study how to put these sequences into the physical 
machines with specific topology connections in the data center, as shown in Fig. 3.

When launching across physical machines or partitions, there are two situations that may cause virtual 
machines with close traffic relationships to be configured in different physical machines. One is cross-physical 
machine configuration, for example, when a physical machine configures virtual machine VM16 in sequence B, 
there is no space to configure VM17 , and VM17 can only be configured in an adjacent physical  machine22. The 
other is cross-virtual machine sequence configuration. It is assumed that when configuring the virtual machine 
of sequence A, the remaining space of a physical machine is not enough to accommodate any virtual machine of 
sequence A. At this time, it is necessary to search for virtual machines that can be accommodated in other parti-
tions. It is assumed that virtual machine VM16 is found and VM16 is forcibly configured in the physical  machine23.

Since the more the number of nodes in the partition is, the more the traffic is transmitted, and the total 
amount of traffic in each partition is proportional to the number of nodes in the partition. The sequence of 
each partition is sorted as a whole according to the node number of each partition to obtain A, B, C. sequence 
virtual  machine24.

Experimental test analysis
Experimental example. The experiment in this paper is to partition the regional power grid A1 and A2 
reasonably by using the decomposition and coordination algorithm, and then configure the virtual machine by 
using the two-stage heuristic algorithm to meet the needs of local regional task computing. In order to clearly 
compare the advantages and disadvantages of the algorithm proposed in this paper, the experiment in this paper 
does not consider the situation of task migration, that is, the local computing power is enough to complete the 

(9)D =













d11 d12 · · · d16 d17
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. . .
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Figure 3.  Virtual machine serial delivery.
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local computing task  requirements25. The partition conditions and partition information inside the regional 
power grids A1 and A2 are described as follows:

The regional power grid A1 is an IEEE 30-node system, and the region is divided according to the tightness 
of electrical coupling, as shown in Fig. 4.

After the regional power grid A1 is divided into three sub-partitions, the specific data information inside 
each sub-partition is summarized as shown in Table 1.

Analysis of experimental results. 

(1) Comparative analysis of algorithm performance

The position of the coordination partition A0 affects the operation speed of the whole system to some extent, 
and this paper calculates that the best placement position is in the partition A3 . In order to verify the effectiveness 
of the coordinated partition placed in the optimal partition in improving computational efficiency, comparative 
experiments were conducted using the methods in  reference6,7 as comparative methods, with computational 
time and acceleration ratio as indicators. Among them, the acceleration ratio refers to how much performance 
improvement has been achieved compared to the runtime under the benchmark situation after using a certain 
optimization or parallel computing method. The higher the acceleration ratio, the more significant the optimiza-
tion or parallel computing effect, and the more significant the performance improvement. Usually, the accelera-
tion ratio should be greater than 1, indicating that the method or calculation result is obtained faster. The specific 
experimental results are shown in Table 2.

According to Table 2, when the number of regional power grid partitions remains unchanged, the same con-
figuration algorithm is used to calculate tasks. Coordinate the different locations of zones in the regional power 
grid. The calculation time is also different. In the same regional power grid, when using different configuration 
algorithms to complete the same task calculation, the time required by this method is significantly less than the 
other two algorithms, and the acceleration ratio is much higher than the other methods. This is because the 
method in this article combines the characteristics of the system structure, and the system calculation coordina-
tion zone is located in the regional power grid with the highest degree of electrical coupling and strong computing 
power with other regions, which can optimize the system calculation efficiency. When the coordination partition 
is in the optimal partition, the bandwidth and computing power of the optimal partition can more effectively 
meet the needs of frequent information transmission and feedback of calculation results between partitions.

(2) Comparison between local computing and cloud computing.

Compared with centralized cloud computing, the most obvious difference of edge computing is that edge 
computing is closer to the data source side, which uses the local edge site with certain storage, computing and 
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Figure 4.  Regional power grid zoning.

Table 1.  Information of each zone of regional power grid.

Zones Number of generators Number of transformers Number of reactive compensation Number of nodes

Zone one 2 0 1 12

Zone two 3 1 2 10

Zone three 1 1 1 8

Coordinator zone 0 0 0 12
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communication capabilities to complete the calculation and processing of local data nearby. It avoids the trans-
mission of data to the cloud after centralized collection, and then returns the calculation results to the local. It 
can save more task computing  time26. In order to verify the effectiveness of this view, 100–400 tasks were set up. 
Local and remote computing were used to conduct experiments, and the task completion time was recorded and 
the results were plotted as shown in Fig. 5.

In Fig. 5, when the number of tasks is small, the difference between the task completion time of local comput-
ing and that of cloud computing is not significant. The task completion time of local computing is only about 
10.11% less than that of cloud computing, because when the number of tasks is small, there is enough bandwidth 
for data transmission to ensure the efficiency of task transmission. The advantage of local computing is less 
obvious. However, with the increasing number of tasks, bandwidth pressure appears. The transmission time of 
tasks increases significantly. The task completion time of local computing is significantly less than that of cloud 
computing, which is about 28.56%. When the number of tasks exceeds 400, the local computing time increases 
significantly. With the increase of the number of tasks, the advantage of local computing is no longer obvious. The 
advantage of cloud computing begins to appear. This is because the local computing capacity is limited. When 
the computing capacity of local devices is exceeded, task migration will also cause a lot of transmission delay. 
The advantage of stronger cloud computing capacity leads to shorter task computing time.

Throughput is another important indicator that reflects the performance of power system low delay resource 
scheduling model based on edge computing nodes. It refers to the amount of data successfully sent to other 
devices in the power system in unit time. The higher the throughput, the more reasonable the scheduling method. 
The throughput test results of different methods are shown in Fig. 6.

As shown in Fig. 6, the throughput of all three algorithms exceeds 0.5 Mbps, which can meet the basic sched-
uling needs of the power system. Among them, the throughput of the method in this article always remains 
around 0.9 Mbps, while the throughput performance of the other two methods is not stable enough. This indi-
cates that the method proposed in this paper has superiority in meeting basic power system scheduling needs. 
It can stably provide high throughput, ensuring efficient computation when processing large amounts of data. 
In contrast, the other two methods may be influenced by some factors, leading to fluctuations or instability in 
throughput, which may affect the efficiency and reliability of power system scheduling.

Table 2.  Performance comparison of different configuration algorithms for coordination partition ( A0 ) placed 
in different partition power grids.

Number of regional power 
grid divisions Configuration algorithm

A0 at  A1 A0 at  A2 A0 at  A3

Computation time Speed-up ratio Computation time Speed-up ratio Computation time Speed-up ratio

3

Reference6 methods 70.02 3.07 69.37 3.09 68.93 3.12

Reference7 methods 53.88 4.01 53.16 4.08 52.76 4.17

The method of this paper 48.19 4.42 47.69 4.47 47.01 4.50

4

Reference6 methods 62.73 3.39 62.23 3.45 61.29 3.51

Reference7 methods 48.17 4.46 47.71 4.52 46.88 4.59

The method of this paper 45.92 4.68 45.42 4.73 44.75 4.81

Local execution
Number of tasks

Ti
m

e /
s

100 200 300 4000

30

60

120

150

0

Cloud execution
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Figure 5.  Computation time consumption of local computing and cloud computing under different number of 
tasks.
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Conclusion
In this paper, according to the regional characteristics of interconnected power grids and the different degree 
of coupling between electricity, as well as the characteristics of edge computing platforms, a two-stage heuristic 
algorithm is proposed based on the traditional configuration algorithm, which is independent of the parallel 
algorithm of power system and can improve the computing efficiency of power system at the hardware level.

1. According to the urgency of the power system tasks, the tasks are divided into the tasks that must be executed 
locally and the tasks that can be migrated. Based on that, a time model is built to minimize the time con-
sumption of task calculation.

2. Two of the most commonly used traditional virtual machine configuration algorithms, descending best fit 
algorithm and hierarchical clustering algorithm, are analyzed. Combined with the characteristics of power 
system, a two-phase heuristic algorithm for power system parallel distributed computing is proposed.

3. Without considering the task migration, the decomposition and coordination algorithm isused to partition 
the regional power grid. The effect of the proposed algorithm is compared with the traditional descending 
best fit algorithm and hierarchical clustering algorithm in terms of computing time and energy consump-
tion. In addition to considering the influence of regionality and partition control characteristics on electrical 
operation, the number of partitions and the uniformity of the number of nodes between partitions will also 
affect electrical operation. If the number of partitions is too small, the speedup of electrical parallel operation 
will be small; if the number of partition nodes is too large, the iteration times of electrical parallel operation 
will be increased, and the results may not converge. Therefore, how to determine the number of partitions 
and the calculation scale is a key issue to be studied.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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