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Quantifying agonistic interactions 
between group‑housed animals 
to derive social hierarchies using 
computer vision: a case study 
with commercially group‑housed 
rabbits
Nusret Ipek 1*, Liesbeth G. W. Van Damme 2,3, Frank A. M. Tuyttens 2,3 & Jan Verwaeren 1

In recent years, computer vision has contributed significantly to the study of farm animal behavior. 
In complex environments such as commercial farms, however, the automated detection of social 
behavior and specific interactions between animals can be improved. The present study addresses 
the automated detection of agonistic interactions between caged animals in a complex environment, 
relying solely on computer vision. An automated pipeline including group-level temporal action 
segmentation, object detection, object tracking and rule-based action classification for the detection 
of agonistic interactions was developed and extensively validated at a level unique in the field. 
Comparing with observations made by human observers, our pipeline reaches 77% precision and 85% 
recall using a 5-min tolerance interval for the detection of agonistic interactions. Results obtained 
using this pipeline allow to construct time-dependent socio-matrices of a group of animals and 
derive metrics on the dominance hierarchy in a semi-automated manner. Group-housed breeding 
rabbits (does) with their litters in commercial farms are the main use-case in this work, but the idea is 
probably also applicable to other social farm animals.

The study of behavior, especially specific social behaviors, has always been laborious and time-consuming. The 
emergence of new monitoring technologies has not significantly changed this: animal behavior is still studied 
using human observation and interpretation of social interactions between animals. For group-housed animals 
living in pens, the limited size of the pens facilitates the observation process but continuous behavior monitoring 
presents challenges. Dedicated scan sampling or focal sampling designs are regularly used to reduce the workload 
but these reduce the temporal resolution of the observations and can introduce bias and create sampling vari-
ability, potentially impairing the validity of the study1. Automated monitoring systems can help to overcome the 
aforementioned shortcomings, and the use of video recording analyzed by computer vision algorithms has often 
been suggested as a cost-efficient and non-invasive technology2. This technology can be used to study animal 
behavior at a research scale and can be scaled up to study behavior on farm. Computer vision has a potential 
advantage of eliminating the subjectivity of a human observer3. These benefits have led to the development of 
a plethora of computer vision models for detecting a variety of behaviors for the most agriculturally relevant 
species4–6. Despite the widespread occurrence of hierarchy formation, few studies have used computer vision to 
study this process. In the present study the automated detection of (dyadic) relationships between farm animals 
in complex environments was measured using computer vision, with a focus on the detection of agonistic inter-
actions. We show that modern computer vision allows for automated detection of agonistic interactions (such as 
fights or chasing events) between animals. To the best of our knowledge, this is the first mention of detection and 
aggregation of all these interactions over a prolonged period of time with the aim of deciphering the dominance 
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hierarchies of commercially group-housed animals. The proposed approach has been extensively validated with 
observations made by human observers at several levels. Our approach allows continuous automated monitoring 
of the dominance structure of a group of animals, offering a way to gain insight into the dynamics of hierarchy 
formation with unprecedented temporal detail. As a case study, we use commercially group-housed rabbits, but 
the proposed approach can probably be extended to other species as well.

Computer vision is gaining popularity for livestock monitoring and management. Current applications 
include early detection of diseases, detection of lameness, estimation of weight and even social behavior moni-
toring of animals2,7. Recent advances in the field of computer vision, particularly the use of deep learning, have 
boosted the robustness of vision-based monitoring systems in complex environments8,9. The vast majority of 
these applications focus on non-interactive behaviors such as drinking, hanging and rearing10,11. Detection of 
agonistic interactions and the identification of individual animals creates a number of computer vision chal-
lenges. First and foremost, all of the recent work on animal behavior detection relies on data-hungry deep 
neural networks that rely on an enormous amount of training material. The detection of agonistic interactions 
is but one example of the more general problem of action detection in video. End-to-end trainable models 
such as channel-separated convolutional networks12 represent an elegant solution. However, for training, such 
models require a large number of manually annotated video clips containing one agonistic interaction each, 
but such a set of video clips is not publicly available. Given the effort required to collect such data in sufficient 
quantities, it is unlikely that enough publicly available data will be available soon. However, data collection for 
more simple, individual behaviors is often easier. As an example, for pigs, distinguishing between four differ-
ent postures (standing, lying on the stomach, lying on the side, and exploring) can be done quite accurately by 
solving an image classification problem obtaining 92.45% accuracy13. In that case, training material is rather 
easy to collect, and typically consists of a few hundred hand-labeled frames containing one animal each in a 
static lying or standing position. Detection of agonistic interactions requires much more data, however14. We 
solved this problem using a hybrid approach. First, we developed a dedicated tracker that tracks the animals 
during fighting/fleeing events. Second, the dominant and submissive animal (according to that interaction) are 
distinguished based on the detected movement patterns. The tracking of the individual animals is inherently 
linked to the detection and identification of the animals over time, adding a temporal dimension to the spatial 
analysis. Numerous established methodologies are available for multiple object tracking, from Kalman filters15 
to deep learning-based algorithms16. Here we used problem-specific engineered trackers. Based on the limited 
and fixed number of animals in the cage, the movement patterns of each individual could be extracted robustly 
and used as input for a rule-based action classifier.

The use-case in this paper focuses on lactating group-housed rabbits. Their agonistic interactions were quanti-
fied and used to test the automated pipeline in a commercial group-housing system. The study uses 20 pens, in 
each pen 4 unacquainted lactating does and their litters are mixed and group-housed for period of 10 days. Over 
time they developed social relationships, including dominance hierarchies. Studying these hierarchies and their 
dynamics is interesting from a fundamental animal behavior perspective, as this system could be used to test 
behavioral theories on the formation of social hierarchies among captive animals. Understanding the formation 
of social structures can be important for reducing aggression in group housing, with benefits for animal welfare 
and management. Although the social dynamics of group-housed does are not fully understood, a dominance 
hierarchy often appears to spontaneously emerge during the first days after the does and their litters enter 
the group pen17. This period is characterized by an increased frequency of agonistic interactions between the 
does (i.e., a general increase in the level of unrest in a pen), after which the frequency of interactions generally 
diminishes, indicating the establishment of a stable hierarchy18. Although these patterns are often observed and 
generally known, few ‘quantitative’ data or research methodologies are available for studying the dynamics of 
the frequency of these interactions (even at the pen level) and for testing hypotheses. Studies that rely on manual 
observation to measure the dominance hierarchy in rabbits mostly characterize the dyadic relationships using an 
ethogram. In this work, we primarily focus on the automated detection of the behaviors of chasing, fleeing and 
provocation of physical contact between does (possibly followed by a chasing/fleeing event) using video record-
ings. Agonistic interactions of this type are automatically detected using computer vision. Upon detection, the 
dominant and the subordinate animal within that interaction are automatically determined.

The main contribution of this work is the development and validation of a pure computer vision based 
pipeline for studying dominance hierarchies in group-housed animals. The problem was addressed in various 
stages. The first is tracking (and identification) of individual animals during highly active periods and extraction 
of movement patterns during these periods. Second, a rule-based system is presented that allows classifying the 
(dyadic) agonistic interactions between animals based on that movement pattern. By registering the temporal 
pattern of these dyadic interactions over a prolonged period of time, social dynamics can be monitored. Third, 
the inferred agonistic interactions (based on automated pipeline) are thoroughly compared and validated with 
observations made by a human observer, often considered a ‘silver standard’ in behavior research. Last, the 
detected interactions are used to visualize the evolution of the dominance hierarchy over time.

The remainder of this paper is organized as follows: results section shows experimental results, including 
an extensive validation of the procedure combined with discussion. Methods, introduces the pipeline used to 
automatically derive (an assessment of) the dominance hierarchy from raw video recordings. Within methods 
section, the data used to develop this pipeline is also described. Last, the most important insights and recom-
mendations for future research are presented.

Results and discussion
The following subsections present an extensive evaluation of the performance of the automated behavior detec-
tion pipeline and show how automated video analysis can be used to unravel social hierarchies.
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Group‑level action segmentation.  Figure 1 shows the evolution of the total activity (number of active 
seconds per hour) as a function of time for five groups obtained with the action detection procedure describe in 
Methods section. Without dilating on the (ethological) theories behind, this figure shows the generally known 
diurnal pattern of activity peaks around the transitions from light to darkness. Moreover, concurrent with this 
diurnal pattern is an overall trend of (exponentially) decreasing activity during the first few days after grouping. 
Also, some inter-group variability can be observed. Indeed, during peak activity when the lights are switched 
off, the active time of groups 12 and 13 is almost twice as large as the active time of the remaining groups during 
the first two days of the experiment, suggesting elevated levels of unrest in these groups. The increased levels 
of aggression after grouping19, the diurnal patterns20 and inter-group variability21 are known to occur in group-
housed does and are a topic of research in particular in the context of animal welfare. Figure 1 illustrates that our 
processing pipeline can quantify these temporal patterns.

It should be noted that this activity detector is sensitive to all types of movement and not only to activity 
related to agonistic behavior. Because it was developed as a temporal filter that would reduce the computational 
resources required for the following steps, it has a very high recall. No formal performance analysis was done to 
verify the recall but a general inspection suggests that no agonistic behavior involving significant movement is 
missed. To verify the precision, however, the 548 annotated clips for validation are used. Among those clips, 484 
were found to include at least one example of agonistic behavior, resulting in an overall precision of 0.815. Also, 
when the timestamps of the action clips are used to plot the true (1) and false (0) positives as a function of the 
time of day, no time dependence of the precision was observed (Fig. 2A). This result indicates that the dynamics 
and trends of the agonistic actions involving chasing/fleeing behavior can be reliably assessed by inspecting the 
Savitzky-Golay smoothed plots. By multiplying them by a factor of 0.815, an estimate of the active time spent 
on agonistic interactions can be obtained.

Figure 1.   Visualization of the amount of activity at group-level as a function of time starting from the moment 
of grouping. The y-axis shows the Savitzky–Golay smoothed number of active seconds per hour, observed for 
five group pens obtained using the procedure described in the methods section. Shaded intervals refer to the 
light off times and negative values that arose as the result of smoothing procedure were ceiled to zero).

Figure 2.   (A) Precision of the action segmentation as a function of time of day. Each marker represents one 
action clip and is assigned a value of 1 if at least one action was found in that clip by the human annotator and a 
value of 0 if not found. (B) Normalized David scores for each pen(lines)/animal(points), red markers point the 
mean normalized David score for the rank across all cages and the dashed black line represents the least squares 
regression line of rank averages.
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Doe detection and (re‑)identification.  Given a detected bounding box bboxi and a ground-truth 
bounding box bboxj , the intersection over union (IOU) is defined as:

When considering only bounding boxes with IOU of at least 0.5, the mean average precision (mAP) and recall 
were 0.924 and 0.733, respectively, after fine-tuning the detection model. Given the complex background, occlu-
sions due to cage structure, and motion blur, the model accuracy was considered satisfactory and not optimized 
further. Moreover, the (re-)identification validation of the network achieved a test accuracy of 0.925 and loss 
of 0.1807.

Quantification of agonistic interactions.  Application of the procedures to video to select for action 
(segmentation), tracking and rule-based agonistic behavior detection acquired from all 20 groups resulted in 
the automated detection of 5480 agonistic interactions, where each detected interaction consists of: (1) the pre-
dicted time at which it was initiated, (2) the duration of the interaction, (3) the dominant animal, and (iv) the 
submissive animal according to that interaction. The results were compared with the expert-labeled described 
in Methods section below. Expert labels are only available for the first 24 h of 12 groups, so only the 1871 events 
detected in the first 24 h are used. Due to the discrepancies between the human annotator and the automated 
system, a one-to-one correspondence between expert annotations and automatically detected interactions can-
not be easily obtained. Therefore, to check the correspondence between the automated and the manual proce-
dure, precision and recall were computed using time windows (see Table 1). The recall for a δt minute interval is 
computed as the ratio of the expert-observed interactions for which an interaction of the same type is observed 
at most δt minutes sooner or later than the total number of expert observed interactions. This means that an 
observed interaction at time t where a first animal A dominates a second animal B (where the additional level 
of detail provided by the human-annotated who distinguishes between chasing, fleeing, etc. is not used) con-
tributes to the numerator of the recall if in t ± δt the same interaction, i.e., A dominating B, is observed by the 
automated detector. The same principle applies to the precision, which expresses the ratio of the automatically 
detected interactions of a given type for which also an action of the same type was observed by the expert within 
a δt minute interval to the total number of automatically detected interactions.

The results in Table 1 demonstrate that the proposed pipeline on average has 0.68 precision and 0.71 recall in 
1-min intervals. Within 5-min intervals, these values rise to 0.77 and 0.85, respectively. Specifically, it means that 
77% of the automatically detected agonistic behaviors are also observed by the expert within a 5-min interval. 
Similarly, 85% of the annotated events by experts were recovered when searching in a time-range of 5 min around 
the automatically obtained detections. These results indicate a rather close correspondence between a human 
annotator and the automated interaction detection system. It should be noted that these tolerances are needed 
as a perfect temporal alignment between the human annotator and the automated system can not be expected. 
There are several reasons for that. For instance, the moment at which an aggressive interaction is initiated is 
often not unambiguously observable (it depends on the subjectivity of the human annotator and even when 
re-annotating for some interactions there can be quite some re-annotation variability especially when the level 
of action gradually builds up). Moreover, it is often debatable if an observed interaction is ‘new’ or rather the 
continuation of a previous interaction. Because of such reasons, one should consider the human annotations as 
a silver standard as opposed to a gold standard. It should be noted that extending the time window expands the 

IOU(bboxi , bboxj) =
Area of Overlap (bboxi , bboxj)

Area of Union (bboxi , bboxj)

Table 1.   Precision and recall (%) of automated behaviour detection algorithm compared against the 
annotations by animal experts.

Group #

Interval

1 Min 5 Min

Precision Recall Precision Recall

1 0.5984 0.6869 0.6557 0.8086

8 0.6777 0.8209 0.8264 0.9269

9 0.6250 0.7577 0.7000 0.8782

10 0.6827 0.5892 0.8125 0.8468

12 0.7263 0.8019 0.7989 0.9189

17 0.6625 0.5912 0.7375 0.7390

18 0.7500 0.8507 0.8125 0.9030

19 0.6906 0.6221 0.7735 0.7689

20 0.6045 0.6439 0.8022 0.8744

21 0.8352 0.6667 0.8462 0.8009

22 0.7570 0.8382 0.8785 0.9129

23 0.5392 0.6667 0.6275 0.8402

Mean 0.6791 0.7113 0.7726 0.8516
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search area for agonistic interactions identified by human experts, thereby increasing the likelihood of consensus 
between automated detections and expert annotations.

To gain insight into the type of errors made by the automated procedure, a random sample of 25 action clips 
was analyzed in detail. In this sample, 52 agonistic interactions were detected by the automated system. The 
trajectories that were found with the multiple object tracker were overlaid on the action clips to assess if the 
tracking algorithm and the succeeding interaction detector were indeed tracking the animals involved in the 
interaction and identifying them correctly. As a result, four detected interactions were found to be false positives 
in that sense that no agonistic interaction could be visually observed between the reported animals at that time 
and 1 id swap occurred where initiator and receiver were swapped. Last, three agonistic interactions could be 
visually observed that were not detected. Relatively spoken, 7.69% of the detected actions were false positives, 
1.92% contains an id swap and 5.77% of the true agonistic interactions is missed.

Social hierarchies and their dynamics.  Figure 3A shows the evolution of the randomized Elo ratings as 
a function of time for one representative group (additional plots for other groups can be found in Appendix and 
relying on the automatically observed time dependent sociomatrix S(t). These plots show that rather quickly after 
grouping, one animal obtains a randomized Elo rating that is notably larger than the Elo ratings of the remaining 
animals, suggesting a hierarchical structure in which one animal dominates the remaining animals but without a 
distinct hierarchy among the remaining animals. Not dilating into ethological theories for this observation, this 
hierarchical structure is frequently observed among group-housed does22. The automated procedure successfully 
captures these structures and visualizes their dynamics. Moreover, validation with the human annotator revealed 
that the ranking of the dominant animals based on randomized Elo ratings was captured precisely, meaning that 
the dominant animal was always found correctly. Table 1 provides metrics at the behavior level on how well the 
automated pipeline performs. On the dominance level, randomized Elo ratings were computed using both the 
human observations (Elo ratings based on the human annotations were considered as the ground truth) and the 
automated pipeline. The resulting Elo ratings (4 ratings per cage) can be found in Appendix (Supplementary 

Figure 3.   (A) Randomized Elo ratings of a group (#13) of 4 does (markings are indicated in the legend) over 
time representing the evolution of the hierarchy in a pen that is representative for this study. The randomized 
Elo ratings were computed using Equation 3 with 1000 permutations. (B) Simulation of the evolution of the 
expected randomized Elo ratings over time. The interaction probability matrix is used to simulate the rank 
scores (dotted lines: randomized Elo ratings) and the confidence intervals (shaded areas: 95% confidence 
intervals based on 1000 simulations). The rank refers to the rank of the animals in a hierarchy within their 
group.
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Table 1). The Pearson correlation coefficient between both types of Elo ratings was 0.901, showing a close resem-
blance between the human observer and the automated system.

In all 20 groups, it was observed that the Elo ratings of all does converge and that at equilibrium one doe had 
a notably larger Elo rating than the remaining three does. The dynamics were also very similar when considering 
the evolution of the Elo ratings as a function of the number of interactions. As a result, it is useful to consider 
the average evolution of the Elo ratings as a function of the number of interactions. This evolution is shown in 
Fig. 3B. To obtain this figure, we computed the 4× 4 interaction probability matrix P in which the element Pi,j 
is the probability that a randomly selected interaction (from all interactions that were automatically detected 
in the experiment) is an interaction in which the animal with rank i (where the rank is determined on the final 
randomize Elo ratings per group) dominates the animal with rank j. This matrix is:

By repeatedly sampling interactions according to the probabilities in P, the (expected) evolution of the rand-
omized Elo ratings can be obtained (that provably converges to the average randomized Elo ratings at the end 
of the grouping experiment). Figure 3B was obtained based on 1000 repetitions and shows the average and 95% 
confidence intervals obtained using these simulations. This figure shows that the average randomized Elo ratings 
converge rather quickly but has a rather large uncertainty due to the of the interactions encoded in P. Identifica-
tion of the dominant animal in the group with a high degree of certainty based on the randomized Elo ratings 
requires observation of a significant number of interactions. For instance, 64 observed interactions are needed 
to guarantee with a certainty of 97.1% that the dominant animal will be ranked first.

As a last illustration of how automated interaction detection can support the study of animal hierarchies, 
Fig. 2B shows the normalized David scores computed for each animal involved in this study based on all observed 
interactions, as well as the least squares regression line of the ranks on the normalized David scores. The vast 
amount of data generated by the automated interaction detection procedure enables study of not only estimates 
of the normalized David scores but also of the distribution of these scores and potentially also observation of 
deviant groups. For instance, in Fig. 2B, it can be seen that in one of the groups the normalized David scores of 
the first and second ranked animal is nearly the same, suggesting an unresolved competition for dominance. 
Closer inspection of the action clips, however, leads to the conclusion that one of the does found a strategy to 
escape its attacker by jumping onto a platform (a type of enrichment in the pens). As a result, the rule based 
system sometimes confused the dominant animal with the subordinate one.

Practical use of the pipeline.  It should be noted that the video data used in this study was originally col-
lected for investigating the effect of group-housing on aggression, exclusively using human observation. There-
fore, the original experiment focused on the broader context of assessing and improving animal welfare23 rather 
than the development of a computer vision pipeline. However, when using this pipeline on a routine basis, it 
can be optimized to reduce the computational demands and storage requirements. For instance, the group-level 
action segmentation step can be run on the fly to reduce storage requirements. Moreover, the analysis could be 
haltered after the hierarchy has been formed. However, these aspects were out of scope for this study. Also, a full 
analysis of the economical added value and its trade-off with animal welfare concerns is out of scope. However, 
in such applications the computational requirements are non-negligible. Therefore, we give an overview of the 
computation times and requirements in Appendix.

Methods
Ethics statement.  All protocols and procedures were approved by the Ethics Committee for the Use of 
Animals in Research (EC 2021/389) of Flanders Research Institute for Agriculture, Fisheries and Food (ILVO). 
All international, national and/or institutional guidelines for care and use of animals were followed. The authors 
declare that the animal results of the study are reported in accordance with ARRIVE guidelines (https://arrive-
guidelines.org).

Data.  The video recordings used in this work were made at a commercial rabbit farm in Flanders (Belgium) 
as part of a larger project investigating the effect of management practices on reproductive performance, welfare 
and behavior of group-housed farm rabbits23. Breeding does were first housed in single-litter cages open at the 
top with a surface area of about 50×100 cm and an elevated platform of 50x30 cm. Four unacquainted does with 
their 22 day old kits switched from single-litter housing to group housing (achieved by removing the wire walls 
between four adjacent single-litter cages) for a total period of 10 days. Group pens were equipped with 2 feeders 
and 4 water nipples. A light schedule of 12L:12D was programmed. Does were marked with spray paint for visual 
identification; the same four markers were used in all group pens. Paint was reapplied when the markings started 
to fade (on average, one re-marking is applied per animal). The individuals were marked as ‘circle’, ‘line’, ‘tail’ 
and ‘neck’. A camera was mounted above the pen, offering a birds-eye view of the pen. The camera angle often 
included the side fences and the floor between the group pens but these were excluded from analysis. Cropping 
the image resulted in an exclusive focus on a single group pen (Fig. 4A).

Twenty nearly identical group pens were imaged in parallel from 10/08/2021 at noon (time of grouping) until 
20/08/2021 in the morning. Only between 13/08/2021 at 23:00 and 16/08/2021 at 08:00 all cameras stopped 
recording due to a technical problem. Therefore, the total recording length is 8 days while the experiment spanned 
over 10 days. For group pen identification, the unique camera number (1-25) is used throughout the paper; 5 of 

P =







0 0.1465 0.1690 0.1653
0.0557 0 0.0703 0.0808
0.0505 0.0571 0 0.0608
0.0467 0.0476 0.0496 0






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the cameras were redundant as the experiment included 20 group pens. During the experiment, data on all group 
pens was collected repeatedly to check for skin injuries, weigh the rabbits and reapply individual markings. Under 
low-light conditions (night time for the animals) the camera switched to a night-vision mode using infrared 
(IR) illumination. The (re-)identification of individual animals during night-vision mode was impossible for a 
human observer due to glare. All actions detected by computer vision during the dark periods were therefore 
excluded from the analysis. Although group-level action segmentation and doe detection are possible in the dark, 
identification of the animals involved is not possible. Therefore, we only use daytime interactions and when we 
refer to interactions, we mean daytime interactions. Our analysis thus assumes that daytime interactions are 
representative for nighttime interactions. Additional details on the experimental design that are less relevant for 
the current work, yet recommended by the ARRIVE guidelines, are available in Appendix.

In total, 3520 h of uncorrupted video were recorded at a frame rate of 25 frames per second (fps). The video 
recordings were collected in MP4 file format using the H264-MPEG-4-AVC codec. The native resolution of vid-
eos before cropping (see Fig. 4A) was 720 × 480 pixels and all videos were saved on an hourly basis. Corrupted 
video files (empty or incomplete recordings) were eliminated from the analysis. Specifications of camera setup, 
storage facilities, computation time and hardware can be found in Appendix.

A pipeline for agonistic action detection.  Rather than a single computer vision algorithm, the detec-
tion of agonistic behaviors and the identification of the animals involved in the interaction rely on an automated 
processing pipeline. This pipeline, visualized in Fig. 5 focuses on the detection of agonistic behaviors that involve 
a sudden movement of at least one of the does (chasing/fleeing or physical contact followed by fleeing) and 
consists of three main steps: 

1.	 Action segmentation at the pen level. In this first step, a video is temporally segmented into action clips based 
on the presence/absence of movement of at least one doe. A new action clip starts when at least one doe starts 
moving and ends when all does return to a stationary state. The intermediate ’stationary’ clips are discarded. 
The length and frequency of these action clips as a function of time already supports a preliminary analysis 
of the dynamics of the agonistic interactions at the pen level.

2.	 Action detection at the individual level. The action clips are further processed separately. Per action clip, the 
does involved are tracked and identified (based on their marking). For each animal involved, its trajectory 
(the coordinates of its center of mass as a function of time) are extracted.

Figure 4.   (A) A frame of four does and their litters housed in a group pen. Before processing, the area indicated 
by the black box is cropped from the video. The orange boxes highlight the locations of the four marked does in 
the cage. These markings (circle, line, tail and neck indicate the type of marker used identify the doe) were used 
for re-identification, (B) An example of an annotated frame. Each doe is delineated by a bounding box and three 
key-points (red: nose tip, orange: shoulder and green: tail implant) used for training the object detectors and 
pose estimation models.

Figure 5.   Visualization of the agonistic action detection pipeline (See Supplementary Figure 1 in Appendix for 
a more detailed algorithmic flow chart).
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3.	 Action classification. The trajectories are processed by a number of hand-crafted rules to assess whether the 
movement patterns indicate that an agonistic interaction was present. If present, the dominant and submis-
sive animals are identified.

The final result is a list of time-stamped agonistic interactions combined with an identification of which animal 
is behaving dominantly versus submissively within each interaction. This list is used as the basis for computing 
the dynamics of the dominance hierarchy within each group pen. The steps of this pipeline are detailed below 
and an algorithmic flow chart is available in the Appendix (Supplementary Figure 1). Details on the hardware 
specification, storage requirements and computation times for the steps in this pipeline can be found in Appendix.

Action segmentation at the group level.  The group pens allow the does and their kits to move freely 
within an area larger than single litter cages. During most hours of the experiment, does appear to remain 
stationary, punctuated by episodes of unrest which typically involve agonistic interactions such as aggression, 
chasing and fleeing. Those episodes usually involve significantly higher movement in the pens. As a result, video-
based monitoring of the overall movement at the pen level makes it possible to discriminate between clips in 
which all does remain stationary and clips in which at least one doe moves intensively (‘action clips’). Only 
action clips are retained for analysis. Dense optical flow estimation was used to determine an action clip. Opti-
cal flow computation consists of finding the apparent motion of the objects in a scene as a result of the relative 
motion between the observer (top-view camera) and subjects (does). Assuming that the brightness of the mov-
ing objects does not change significantly in consecutive frames, dense optical flow finds a displacement field that 
maps one frame to a consecutive frame. By using the first frame of a consecutive pair of frames as a reference, 
each pixel is associated with a displacement vector consisting of the horizontal and vertical shift needed to map 
it to the corresponding pixel in the second frame of the pair. The method of Farnebäck24 was used for comput-
ing this displacement field. Developed with compensation for high-frequency vibrations in mind, this methods 
allows to compensate for the vibration due to shaking of the pens, which happens very frequently when animals 
(even in neighboring pens) bump into the side of the pen.

Prior to flow field estimation, the frame rate was downsampled to 1 frame per second and each frame was 
transformed to grayscale. Using the OpenCV (OpenCV-python v4.5.5.62) implementation of the Farnebäck 
method for dense optical flow, the displacement field was calculated with the following optimized parameter 
settings: pyramid scale = 0.5, number of levels = 3, window size = 15, number of iterations = 3, pixel neighbor-
hood for polynomial expansion = 5, the standard deviation for polynomial expansion = 1.225. Subsequently, the 
magnitude of the displacement vectors is computed as an estimator of the local motion. The average magnitude 
over the entire displacement field is used as a measure of total motion.

A univariate time series of the magnitude of movement in a cage as a function of time is obtained by applying 
the process described above to the video recordings of that pen. The time series starts at grouping and ends after 
10 days of group housing with a resolution of 1 measurement per second. This time series is post-processed to 
distinguish between fast (running) movement of at least one of the does (indicative of an agonistic action) and 
more subtle movements by the does or the kits or very brief bursts of movement that are not related to agonistic 
behavior (both are considered as noise in the time series). Moreover, agonistic behaviors sometimes contain short 
(< 60 seconds) gaps between actions, which can be either a continuation of the event or discrete events following 
each other. The most important components of the post-processing are described below; for a complete descrip-
tion see Appendix. Noise is removed by suppressing all magnitudes below 1 (meaning that all frames where the 
average displacement is smaller than 1 pixel are set to zero). Subsequently, a rolling median filter with a window 
size of 7 seconds is used, followed by a mean filter with a window size of 15 seconds to smoothen the signal. To 
compensate the smoothing of the edges at the start and end of an action moment, a procedure similar to a 1D 
dilation filter is applied. To fill temporary drops in the magnitude (due to short interruptions) high-magnitude 
intervals less than 60 seconds apart are merged by replacing the magnitudes in between with the median of the 
neighboring intervals. The average intensity of the resulting intervals was finally used to determine if it is retained 
as an action interval (average magnitude >1.2). The result of this process is a binary time series of action intervals 
and corresponding action clips. A sample is shown in Fig. 6A. This procedure is applied to all 20 group pens. The 
obtained action clips (and their timestamps) are used in the next step of the pipeline.

To visualize the long-term trends in the frequency of action, the binary time series is further aggregated at 
the hourly level by computing the total number of seconds of action per hour. To improve interpretability, the 
resulting signal was smoothed using a Savitzky-Golay filter26 implemented in SciPy (v1.7.3)27 with window size 
of 11 and polynomial order of 3 before plotting.

Action detection: doe (keypoint) detection.  Further processing of the action clips is needed to auto-
matically identify the dominant and submissive animal according to the behavior observed in each clip. Such 
identification was based on the movement patterns of the animals involved. To extract these movement patterns, 
does are detected, (re-)identified and tracked throughout an action clip. In this section, the detection procedure 
is described; the (re-)identification and tracking procedures are described in the sections that follow.

The presence of dozens of kits, variations in lighting conditions and camera focus, and small variations in 
cage architecture all complicate the development of a robust detector for does. As deep learning based object 
detectors excel in accuracy and robustness, especially in complex environments, we chose them for this study. 
To train the object detector, 300 frames were selected randomly from all videos. Additionally, 167 more frames 
were hand-picked from the action clips (during light hours) and added to the data, resulting in 467 training 
images containing 1695 detectable does (with 4 does present in each frame, this means that 90.7% of the does 
are detectable by the human annotator). Additionally, 25 frames (with 95 human-detectable does) selected for 
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Figure 6.   (A) Raw signal resulting from the optical flow algorithm and the filtered signal (used for segmenting 
the video) obtained after applying pen level action segmentation as described in Algorithm 1. The resulting 
intervals are used to characterize the group-level agonistic activity and are clipped for further analysis (Group 1, 
Day 1, 18 h), (B) Visualization of the customized neural network architecture consisting of a ResNeXt backbone 
followed by three fully connected layers (numbers indicate the hidden size of each layer) with ReLu activation 
and a dropout layer with a 0.6 dropout rate between the second and third fully connected layer. A softmax layer 
is used to obtain the final probabilities. (C) Evolution of the (filtered) animal-level velocity (expressed as the 
number of pixels per frame) during one action clip of one group. The numbers (and horizontal lines) indicate 
movements that are considered as event groups.
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model validation/tuning and 25 with 91 human-detectable does for testing. All images were annotated using 
COCO Annotator (v0.11.1)28. For each doe, a bounding box and three keypoints were annotated (tip of the nose, 
shoulder and base of the tail). An example of an annotated frame is presented in Fig. 4B. The Decectron 2 (v0.6)29 
together with pretrained Keypoint R-CNN network X-101-32x8d-FPN was used. This particular network uses 
Mask R-CNN and a Feature Pyramid Network in combination with ResNetXt (101 layers) as a backbone30,31. 
Although the pretraining of the keypoint detector is mainly done using a dataset of images of humans with 
keypoint annotations, our results show that this network can easily be fine-tuned for our use case via transfer 
learning. During fine-tuning, the base learning rate is set to 5e−4 and WarmupCosineLR is used as the learning 
rate scheduler. The maximum iterations parameter is set to 5000.

During the agonistic behaviors of chasing and fleeing, the presence of motion blur and the stretching of the 
animals complicates the detection. However, detection of agonistic behaviors is based on reliable detection of 
the animals in these moments. For this reason, both training and test sets were constructed to contain moving 
animals. Despite the high precision of the keypoints in general, the keypoints are found to be unstable when 
quick movements occur. We observed that the mean average precision (mAP) on the key points32 was only 0.8175 
during the interactions (validation set of 20 does) compared to an overall mAP of 0.9701 (validation set of 95 
does). The fine-tuned object detector is used to process each action clip (at the original frame rate of 25fps). 
In total, over 10 million frames were analyzed. Predicted bounding box and keypoint coordinates are stored in 
JSON files. For each predicted bounding box, the confidence put out by the neural network is stored as well.

Action detection: doe (re‑)identification.  Using the markings described in data subsection, the does 
were identifiable. Markings were quite variable between pens and also varied over time due to paint wearing off 
and being reapplied. Therefore, (re-)identification of the detected rabbits is generalizable only if the identifica-
tion model can embrace these variations. For this a deep learning-based multi-class classification model was 
used. To collect training examples of each marking, the bounding boxes predicted by the doe detector were used 
to crop the does from the frames. In total, 1560 cropped does were selected and assigned to one of four classes 
based on their markings. Train and test data were randomly selected using a 9/1 split.

The crops were resized to (224, 224) pixels and pixel intensities were normalized using the mean and standard 
deviation calculated from the ImageNet dataset33. Random flipping was used as a data augmentation procedure. 
An implementation of ReSNeXt model with 50 layers, 32 grouped convolutions and 4 dimensions per group34,35 
in the PyTorch framework was used as an architecture. Pretrained weights (after pretraining on the ImageNet 
dataset) were fine-tuned using the training data. Moreover, the fully connected layer of the ReSNeXt model is 
replaced with the sequential architecture shown in Fig. 6B, which gradually reduces the dimensionality of the 
feature space. In the last layer, a softmax function is applied to get probabilities of identification.

The categorical cross-entropy loss is used as a loss function, which is minimized using the Adam optimizer. 
In a careful hyperparameter optimization process, the optimal learning rate was found to be 1e−4 . The model 
trained 50 epochs and the restored checkpoint with the lowest validation loss was used as a final model. The 
fine-tuned model was applied to each detected doe using the methodology in the previous section. For each 
detected doe, this model outputs a probability estimate for each of the four markings. These estimated prob-
abilities are appended to the JSON file containing the location of the bounding boxes and the keypoints and are 
used for further processing.

Action detection: tracking caged animals.  To analyze the movement patterns, the animals need to be 
tracked over time. In the ideal case where the doe detector and the identification model are flawless, tracking is 
trivial. However, an analysis of the performance of these models reveals that tracking is not so simple. Mostly due 
to partial occlusion (e.g., by a fence or another animal) or the posture of the animals, markings are not visible 
in some frames. Moreover, the detector sometimes confuses a group of tightly packed kits for a doe or misses a 
doe when surrounded by many kits. Even for a human observer, locating the four does proves to be challenging 
in some frames. As a result, more sophisticated multiple-object tracking (MOT) algorithms need to be used. 
Popular examples of such trackers are SORT, which is also used in DeepLabCut36 for tracking animals in video, 
or trackers that compute similarities between detected objects to associate bounding boxes, a principle that is 
also used in SLEAP37 for multiple-animal pose tracking. Despite their popularity, the results obtained with initial 
experiments with these trackers were not satisfactory, mostly due to the following reasons: (1) the doe detectors 
are more error-prone than the applications in which these trackers are traditionally used; (2) doe movements 
change abruptly and, most importantly, (3) these general-purpose trackers do not take into account that the 
same (in our case four) animals are always present in each frame. For example, consider a setting in which three 
out of four animals can be identified with high reliability. Although the identity of the remaining animal can be 
easily derived, the general purpose trackers do not exploit that logic because they were developed for a scenario 
where objects can enter and leave the scene.

As a result, a dedicated multiple-object tracker was implemented. The high-level structure of this tracker 
is rather simple (see below for description). For more details, we refer to our extensively documented GitHub 
repository (https://​github.​com/​nusre​tipek/​hiera​rchy_​of_​rabbi​ts). Our MOT consists of 7 steps that are executed 
sequentially: (1) Four empty tracks (one for each doe, i.e., circle, tail, line, and neck) are initialized and all bound-
ing boxes in which the animal can be identified based on its marking with a confidence of at least 0.98 are added 
to the corresponding track. (2) A spatio-temporal filter is applied to the (partial) tracks from the former step, 
which removes temporally or spatially isolated bounding boxes (due to the frame rate of 25fps, it assumed that 
a correctly identified doe in a given frame should also be identifiable in the preceding and following two frames 
at a nearby position which high confidence). Bounding boxes that do not meet these criteria are removed from 
the tracks. (3) In frames in which three out of four does are identifiable, the remaining bounding box (if present) 

https://github.com/nusretipek/hierarchy_of_rabbits
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is automatically assigned to the remaining track. Combining the former steps already assigns about half of the 
bounding boxes to a track. We refer to these boxes as anchor boxes. (4) Gaps (a sequence of frames in which no 
high-confidence bounding box for a track is found) in the tracks are filled by greedily linking the bounding boxes 
in the frames that constitute the gap using nearest centroid linking. This generates four candidate tracklets to 
complete the track of the doe under consideration. The average confidence of each candidate tracklet (arithmetic 
mean of the confidences for that doe of the constituting bounding boxes) is computed. If the average confidence 
of one of the candidate tracklets is significantly larger than that of the remaining candidates, that tracklet is 
used to complete the gap. (5) In the (very rare) case that a bounding box is assigned to more than one track, it is 
removed from all tracks but the one with the largest confidence. (6) Gaps that still remain are filled by linearly 
interpolating the centroids of the anchor boxes at the beginning and end of the gap and the interpolated values 
are flagged as being computer-generated and this less reliable. (7) The sequence of centroids that constitute a 
track are spatiotemporally smoothed (spatiotemorally outlying centroids are removed and replaced with linear 
interpolation, and a rolling average filter is used to account for positional variation due to small positional errors 
of the bounding boxes).

The tracking procedure is applied to each action clip and the centroids are stored for further processing.

Action classification: automatic behavior detection.  To detect the presence of agonistic behavior in 
the set of tracks derived from the action clips, one of the following approaches can be taken. First, a data-driven 
approach involves machine learning algorithms that learn how to map the tracks to a behavior by using an exten-
sive amount of expert-labeled data. A second approach relies on hand-crafted rules to classify the tracks. Despite 
the potential of the former approach, sufficient expert-labeled data was not available for use here. The rule-based 
approach was therefore used to build an action classifier. As a starting point, we considered interaction types 
between a pair of does labeled as agonistic: (1) aggressive behavior, (2) fleeing behavior and (3) chasing behavior. 
These three agonistic interaction types can be schematically described fairly easily by considering the absolute 
velocities of the two animals involved and the distance between them as a function of time. Figure 7 shows the 
evolution of absolute velocity of initiator and receiver together with distance between them as a function of time 
in an idealized settings. In Fig. 7A, animals are initially stationary and in close proximity. A trigger such as a bit-
ing event causes the other animal to flee, thus increasing velocity of the receiver and its distance to the initiator. 
Fleeing behavior is an example where the initiating doe approaches the other doe (reducing the distance) and 
when the animals are in close proximity, the initiator becomes stationary and the receiver moves away from the 
initiator (Fig. 7B). Finally, chasing behavior is characterized by rather constant, but elevated velocities of two ani-
mals in close proximity for some time after which the distance increases again (Fig. 7C). These patterns form the 
basis for a set of rules that allow detection of agonistic interactions involving a high level of activity, i.e., chasing, 
fleeing and provocative physical contact between does. Importantly, less explosive agonistic interactions such 
as threatening, slowly approaching, freezing and other sub-categories of agonistic behaviors are not considered 
in this paper. An example of such a rule from the observed trajectories A and B of two rabbits is (see GitHub 
repository for the complete list);

It is important to note that agonistic interactions tend to be temporally clustered. For instance, when the ini-
tiator animal bites a receiving doe that subsequently flees, it is not uncommon that within a short time-span a 
similar interaction, for instance a chasing interaction, occurs. In this case, the latter action should be considered 
as a continuation of the former, rather than a separate action; this is known as a ‘behavior bout’. Additionally, a 
continuous action such as chasing or multiple aggressive behaviors in a short interval create risks for duplicate 
classification. Moreover, the typical circling behavior of does is enhanced in a confined environment. To address 
these issues, we temporally cluster all the observed movements. More precisely, action clips are segmented based 
on the presence/absence of movement of at least one animal. Consecutive frames in which at least one animal 
is moving, ultimately form one segment (see Fig. 6C for an illustration).

If Chebyshev distance (A,B)t=t0 ≤ 50 and

absolute velocity (A)t=t0−10,...,t0 ≤ 5 and

absolute velocity (B)t=t0,...,t0+10 ≥ 5

Then

Agonistic action ( Initiator = A, Receiver = B)

Figure 7.   Conceptual plots on how distances and absolute velocities between interacting does vary in function 
of time for three types of idealized agonistic interactions.
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One event group is the union of the generated tracks of the animals that move within one segment. Within one 
event group at most one interaction between each pair of animals is reported (assuming that other interactions 
are merely repetitions or a continuation of the same action) and it is assumed that no cycles occur where, for 
instance, the doe with the circle marking chases the doe with a tail marking which then again chases the doe with 
a circle marking. This happens when one animal initiates an action with a second one and, due to that action, a 
third animal starts moving as well. In this case, we broke the cycles by removing the interactions chronologically 
backwards in time until there are no cycles, forming a directed acyclic graph (DAG).

The above rule-based system was applied to all trajectories, resulting in a series of time-stamped interactions 
per cage. The obtained interactions are converted into a time-dependent sociomatrix S(t):

where for any i, j element of {1, . . . , 4} , si,j(t) represents the number of detected interactions between animals i 
and j with a time-stamp smaller than time t; and in which the ith animal dominated the jth animal.

Analysis of dominance hierarchies.  Several methods for hierarchy quantification can be found in lit-
erature. A dyadic agonistic interaction matrix, which can be created automatically by our pipeline, is often the 
basis for such an analysis. Prominent examples include the direction consistency index (DCI), Landau’s h and its 
improved version ( h′ ) which are often used as linearity indices, circular triads and steepness and (randomized) 
Elo ratings38–41. The values for these indices can be derived from sociomatrices. Importantly, as our automated 
pipeline is capable of producing an accurate time-dependent variant S(t) of this sociomatrix, the derived indices 
also become time-dependent and therefore allow for study of the dynamics of hierarchy formation. In this work, 
we use the randomized Elo ratings41 per animal to quantify the position of an animal in the hierarchy. The rand-
omized Elo rating at time t for each animal can be derived from S(t) as follows: (1) let n(t) be the total number of 
interactions in S(t); (2) generate a random sequence of n(t) interactions such that the number of times that the 
ith animal dominates the jth animal is equal to si,j(t) ; (3) Set the initial Elo ratings R1, . . . ,R4 of the four animals 
equal to 1000; (4) iterate through the generated sequence of interactions and for each interaction do the follow-
ing (let i and j be the animals involved in the current iteration and let i be the dominant animals according to 
this interaction): compute

update Ri and Rj

and store the final value; (5) repeat steps 2–4 a large number of times (in this paper 1000 repetitions were used); 
and (6) compute the average of all repetitions.

By applying this procedure to each S(t), a time-dependent randomized Elo rating is obtained. This scheme is 
applied to compute the time-dependent randomized Elo rating for each group. To improve the reproducibility 
of this work, this procedure was implemented in a (new) Python package HierarchiaPy (https://​pypi.​org/​proje​
ct/​Hiera​rchia​Py) along with several other popular dominance metrics.

Expert annotations.  To validate the accuracy and precision of the automated behavior detection pipeline, 
a subset of the video monitoring data were annotated by a human annotator. To obtain these annotations, 548 
action clips were extracted by applying the cage-level optical flow-based action segmentor to the first 24h of 
video of each of 12 groups. A trained annotator then annotated them using the Noldus Observer XT1442. Ago-
nistic interactions were scored continuously for all does in the group pens. The used ethogram contained the fol-
lowing agonistic behaviors: attacking (quick movement towards another doe, neck stretched out, ears flattened, 
physical contact is made), threatening (quick movement towards another doe, ears flattened but no physical con-
tact is made), fighting (two does get into a fight by gripping each other with their teeth and/or scratching with 
the hind claws), circling (two does are locked by gripping each other with their teeth, a circular movement may 
occur), counter attack (doe reacts by attacking a doe that first attacked), fleeing, and chasing. For each behavior, 
the initiating and receiving doe were registered. In total, 6,344 agonistic interactions (divided over 12 groups) 
were observed by the annotator, allowing a rigorous comparison. It is important to note here that that the degree 
of detail of the expert annotations differs from that of the automated system. Regarding model validation, two 
aspects are particularly important. (1) Attacking/threatening behavior is often followed by fleeing of the submis-
sive doe. The human annotator notes these as two consecutive events whereas the rule based system recognizes 
this as one event in which the attacker is classified as dominant in relation to the fleeing animal. (2) The human 
annotator often indicates short interruptions in an attacking, chasing or fleeing behavior by registering several 
events instead of one, whereas the rule-based system recognizes this as one behavior. Even though a formal 
analysis is not available, merging such behaviors could profoundly reduce the number of detected behaviors.

The former annotation campaign generated data that can be used to validate the automated pipeline. Moreo-
ver, to gain insight into the modes of failure of our pipeline, for a random selection of 25 action clips, a human 
annotator additionally cross-matched the detected actions using the pipeline with the raw video material. Three 
types of potential mistakes were distinguished: (1) false negatives, meaning that a true agonistic interaction was 

(1)S(t) =







s1,1(t) · · · s1,4(t)
...

. . .
...

s4,1(t) · · · s4,4(t)






,

(2)Ei =
1

1+ 10(Rj−Ri)/400

(3)Ri ← Ri + 100(1− Ei) , Rj ← Rj − 100Ei ,

https://pypi.org/project/HierarchiaPy
https://pypi.org/project/HierarchiaPy
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not detected; (2) false positives, meaning that a non-active moment was falsely identified as an agonistic interac-
tion; (3) id-swaps, meaning than an action was detected but the animals involved were misidentified.

Conclusion
Computer vision based automatic monitoring technologies provide opportunities to study social interactions 
between animals in real-life settings. The availability of continuous recording data makes it possible to auto-
matically recognize a set of agonistic behaviors among identified animals. We present and validate an agonistic 
interaction detection pipeline that enables study of hierarchy formation. Most computer vision applications that 
support study animal behavior focus on individual behaviors or rely on artificial experimental setups involving 
only a limited number of animals under laboratory conditions. The present study shows for the first time that 
this technology can also be used to study interactions in complex environments. Dominance analysis is based on 
a large number of studies of dyadic interaction data, but fewer studies address the temporal aspect (evolution of 
the hierarchy). The proposed automated behavior identification pipeline not only complements a labor-intensive 
and subjective process of annotation and makes it easy to obtain temporal insights. One limitation of the current 
approach is that it involves a significant amount of engineering to construct and fine-tune the entire pipeline. 
Moreover, due to its heavy reliance on movement patterns, more subtle signs of agonistic behavior cannot be 
identified by this approach.

Data availability
A sample of raw videos, data generated and/or analysed during the current study are available in the Ago-
nistic Rabbit Action Detection/Classification repository, https://​zenodo.​org/​record/​72480​29 (DOI: 10.5281/
zenodo.7248029). Specifically, we provide continuous 6 h of raw video from Group 1, segmented action clips 
from those 6 h, object detector and (re-)identification network model weights, COCO-format annotated bound-
ing box and keypoints (with their images) and automatically detected agonistic actions from Group 1 (6 h). Full 
dataset of raw videos analysed during the current study are not publicly available due large amount of data but 
are available from the corresponding author on reasonable request.
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