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Genome‑wide study of longitudinal 
brain imaging measures of multiple 
sclerosis progression across six 
clinical trials
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Yunfeng Huang 1, Chengran Yang 1, Emily E. Hughes 1, Eric Marshall 1, Ann Herman 2, 
Sally John 1, Heiko Runz 1, Xiaoming Jia 2, Tushar Bhangale 2,4 & Paola G. Bronson 1,4

While the genetics of MS risk susceptibility are well-described, and recent progress has been made 
on the genetics of disease severity, the genetics of disease progression remain elusive. We therefore 
investigated the genetic determinants of MS progression on longitudinal brain MRI: change in brain 
volume (BV) and change in T2 lesion volume (T2LV), reflecting progressive tissue loss and increasing 
disease burden, respectively. We performed genome-wide association studies of change in BV 
(N = 3401) and change in T2LV (N = 3513) across six randomized clinical trials from Biogen and Roche/
Genentech: ADVANCE, ASCEND, DECIDE, OPERA I & II, and ORATORIO. Analyses were adjusted 
for randomized treatment arm, age, sex, and ancestry. Results were pooled in a meta-analysis, and 
were evaluated for enrichment of MS risk variants. Variant colocalization and cell-specific expression 
analyses were performed using published cohorts. The strongest peaks were in PTPRD (rs77321193-
C/A, p = 3.9 × 10–7) for BV change, and NEDD4L (rs11398377-GC/G, p = 9.3 × 10–8) for T2LV change. 
Evidence of colocalization was observed for NEDD4L, and both genes showed increased expression 
in neuronal and/or glial populations. No association between MS risk variants and MRI outcomes was 
observed. In this unique, precompetitive industry partnership, we report putative regions of interest 
in the neurodevelopmental gene PTPRD, and the ubiquitin ligase gene NEDD4L. These findings are 
distinct from known MS risk genetics, indicating an added role for genetic progression analyses and 
informing drug discovery.

Multiple sclerosis (MS) is an immune-mediated disorder of the central nervous system (CNS) characterized by 
clinical relapses with associated acute focal brain inflammation, and progressive worsening of disability with 
accompanying neurodegeneration. Disease outcomes are highly variable in persons with MS (PwMS)1 and injury 
contributing to disease occurs across the disease course, whether in the presence or absence of relapses2. While 
current MS disease-modifying therapies (DMTs) effectively suppress acute disease activity, development of novel 
treatments that effectively reduce disability progression remains an unmet need.

There is a strong genetic component for MS risk, with > 200 confirmed genome-wide significant variants 
which, along with variants in the extended major histocompatibility complex (MHC) region, account for approxi-
mately 38.2% of the overall heritability of MS3. These loci primarily affect the immune system, supporting the 
autoimmune hypothesis of MS pathogenesis and the use of available immune-modulating DMTs. Recently, a large 
MS study highlighted the importance of CNS resilience for severity4, and furthermore, did not observe overlap 
between severity and susceptibility loci. However, little is known about the genetics of MS progression, which 
may also differ from genetics of MS susceptibility. The paucity of progression genetics knowledge could possibly 
be due to the lack of meaningful longitudinal data at scale. Previous studies have used cross-sectional imaging 
traits and non-linear MS disability and severity scores to investigate MS severity5–8. Additionally, measuring MS 
disease progression using clinical outcomes is challenging. The Expanded Disability Severity Score (EDSS) is 
commonly used to measure worsening, but only partially captures underlying insidious injury9. Similarly, clinical 
relapses in the early stages of MS do not predict long-term outcomes in natural history studies10.
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Therefore, we leveraged longitudinal imaging data from a unique dataset of randomized controlled trials 
(RCTs) conducted by Biogen and Roche/Genentech in a precompetitive partnership to examine the genetics of 
MS progression. We investigated genetic correlates of two longitudinal, quantitative brain MRI outcomes: change 
in brain volume (BV), and change in T2 lesion volume (T2LV). BV change measures the overall impact of MS 
injury, including demyelination and neurodegeneration11. The rate of brain atrophy over time is a quantitative 
measure that correlates with worsening clinical disability12,13. T2LV increases with accumulating injury and 
early measures of T2LV may be predictive of long-term disability14,15. A deeper understanding of the genetic 
factors that impact the rate of MS progression could reveal novel candidate targets and biomarkers relevant to 
MS progressive biology.

Materials and methods
Standard protocol approvals, registrations, and patient consents.  We performed GWAS 
of BV change (N = 3401) and T2LV change (N = 3513) across six RCTs: ADVANCE  (trial registry num-
ber:  NCT00906399), ASCEND  (trial registry number:  NCT01416181), DECIDE  (trial registry num-
ber:  NCT01064401), OPERA I & II  (trial registry number:  NCT01247324, NCT01412333), and ORATO-
RIO (trial registry number: NCT01194570) (eTables 1, 2). All participants provided written informed consent 
that covered the scope of this research. Ethical approval was provided as per the original RCTs. This work adheres 
to the Declaration of Helsinki.

Image acquisition and trait estimation.  T1-weighted, proton density-weighted and T2-weighted brain 
MRIs were collected in accordance with standardized imaging protocols for each trial. All trials used the same 
centralized MRI reading center (NeuroRx, Montreal, Canada).

BV change was measured between week 24 and the last time point available for each participant using the 
automated SIENA (Structural Image Evaluation, using Normalization, of Atrophy) method16. We used week 24 
instead of baseline to account for potential rapid volume changes related to resolution of acute inflammation 
following treatment initiation (also known as pseudoatrophy)12. For placebo arm patients in ADVANCE, BV 
change was calculated from baseline to week 48 (when participants switched to active treatment).

To calculate T2LV, T2 lesions were segmented using a fully-automated method, followed by visual verification 
and adjustments, if needed. T2LV change was then estimated as the change in total T2LV between baseline and 
last time point available for each participant. For the placebo arm in ADVANCE, we used week 48 instead of the 
last time point to be consistent with the BV change estimation.

Within each RCT, changes in BV and T2LV were annualized to account for varying lengths of follow-up time 
between the trials. This was accomplished by dividing each individual change by the number of years between 
the first and last time point used in estimation. Annualized traits were transformed using rank-based inverse 
normal transformation to mitigate departures from normality (eFigures 1, 2).

Genetic data generation and quality control (QC).  ADVANCE, ASCEND and DECIDE (Biogen tri-
als).  DNA was extracted from blood and genotyped with the Affymetrix UK Biobank Axiom array by Thermo 
Fisher Scientific (Santa Clara, CA) in two batches: ASCEND and DECIDE (2017), and ADVANCE (2018). QC 
(PLINK v1.9) and imputation (Michigan Imputation server) was run on the batches separately (hg19). We ex-
cluded single nucleotide polymorphisms (SNPs) with missingness > 1%, minor allele frequency (MAF) < 0.01, 
and Hardy–Weinberg equilibrium (HWE) p < 1 × 10–50. As these are case-only cohorts, we applied a less stringent 
HWE threshold to avoid the inadvertent exclusion of disease-associated variants. We excluded samples with 
missingness > 2%, sex discrepancies (females: F < 0.2, males: F > 0.8), excess heterozygosity (> 6 standard devia-
tions from the mean), and relatedness. Independent SNPs (PLINK option --indep-pairwise 50 5 0.5) were used 
to estimate sex, heterozygosity, relatedness, and ancestry.

Identity by descent (IBD) analysis was used to identify related individuals. Pairs of individuals with k0 > 0.4 
were considered related, and one member from each pair was selected randomly for exclusion. We estimated 
ancestry separately in each RCT, and used principal component analysis (PCA; SmartPCA, Eigensoft v7.2.1) to 
identify outliers and calculate PCs. We excluded individuals who were 6 standard deviations from the top 10 
PCs with a maximum of 10 outlier removal iterations (default). We estimated Tracy-Widom (TW)17 statistics 
to determine the number of PCs to include as covariates, which were defined as PCs with TW p < 0.05 that 
accounted for ≥ 1% of variance (calculated by subtracting the largest eigenvalue with p ≥ 0.05, from the sum of 
the eigenvalues with p < 0.05, and then estimating relative contributing variance).

Genotypes were imputed to 1000G phase3v5 (phasing: ShapeIT v2.r790). After imputation, we excluded SNPs 
with R2 < 0.30, MAF < 0.01 or in the pseudo-autosomal region of chromosome X. SNPs and samples at each QC 
step are tabulated in eTable 3.

OPERA I, OPERA II, and ORATORIO (Roche trials).  DNA was extracted from blood and whole-genome 
sequenced (WGS, mean read depth 30x) (TruSeq Nano library prep, Illumina HiSeq) to generate 150 bp paired-
end reads (Illumina, Inc [Foster City, CA]). Burrows-Wheeler Aligner (BWA) was used to map reads (hg38). 
Resulting alignments (bam files) were analyzed using GATK for base quality score recalibration (BQSR), indel 
realignment, duplicate removal, SNP/INDEL discovery and joint genotyping across samples according to GATK 
Best Practices18. Sites that did not pass GATK variant quality score recalibration (VQSR) filter were removed. 
Genotypes with quality score (GQ) < 20 were set to missing, followed by removal of sites with missing rate > 10%. 
To further improve the coverage of common variants, genotype imputation was performed using a haplotype 
reference panel of 55,929 individuals constructed using 27,166 individuals from Haplotype Reference Consor-
tium, 2548 samples from 1000 Genomes project and 26,215 samples sequenced at Genentech. Imputation was 
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performed using Beagle version 5.2 and sites with imputation score < 0.3 or HWE p < 5 × 1–10 or MAF < 1% were 
removed.

Ancestry was estimated using ADMIXTURE (supervised mode; reference 1000G phase3). Samples with 
European ancestry coefficient < 0.7 were excluded. Analyses for heterozygosity outlier detection, relatedness 
(IBD, where pairs of individuals with k0 < 0.4 were considered related), TW statistic, and PCA were performed 
similarly to Biogen.

GWAS statistical analysis.  We used linear regression models to test the association between SNPs with 
BV change and T2LV change (additive model), controlling for randomized treatment arm, age, sex, and genetic 
ancestry (3 PCs in ADVANCE and DECIDE, 4 PCs in ASCEND, and 11 PCs in OPERA I & II and ORATO-
RIO). Biogen analyses were performed using imputed dosages (PLINK v2.0 option --glm --maf 0.01). Genentech 
analyses were performed using WGS (PLINK v1.9 option --linear --maf 0.01). Summary statistics from Roche 
RCTs were mapped from hg38 to hg19 using liftOver in Hail.

Summary statistics from RCTs were meta-analyzed using a fixed-effects model (PLINK v1.9). Regional plots 
were generated with LocusZoom v1.4 (1000G phase3 EUR).

To increase power beyond single variant analysis, we used MAGMA19 to evaluate associations on the gene 
level using the meta-analyzed summary statistics. We used the most recent version of MAGMA (1.10) with the 
reference data provided by the authors of MAGMA, which was generated from Phase 3 of the 1000 Genomes 
Project. We used a Bonferroni correction to determine the significance threshold (0.05/17,837 genes = 2.6 × 10–6).

Colocalization analysis.  To better understand which genes that our top hits for BV change and T2LV 
change may impact, we performed colocalization (adapted from coloc package) with human expression data 
from 48 GTEx tissues (https://​gtexp​ortal.​org/) and the Database of Immune Cell eQTLs (https://​dice-​datab​ase.​
org/). We also examined evidence for shared causal variants between selected MS risk loci and our top hits 
(p < 1 × 10–6). For each analysis, we included all SNPs within a 250 kb window (500 kb region) of the query study 
SNP (static default prior probabilities: p1 = p2 = 1 × 10–4; p12 = 1 × 10–5).

CNS cell‑type specific expression.  To visualize single-nucleus gene expression of putative genes identi-
fied through GWAS meta-analysis by CNS cell type, we used CellxGene VIP (https://​cellx​genev​ip-​ms.​bxgen​
omics.​com/). This is based on brain tissue from 12 MS patients20.

Comparison with MS risk SNPs.  We examined all autosomal MS risk GWAS loci3, including peak vari-
ants in the MHC, for potential association with change in BV and T2LV. We selected available overlapping vari-
ants from WGS and genotype data, and report association statistics for variants whose effects on BV change and 
T2LV change were consistent across the six RCTs (heterogeneity I2 < 40). Additionally, we generated a polygenic 
risk score (PRS) using the non-MHC variants and weights from the IMSGC MS risk discovery GWAS, and tested 
the score for association with change in T2LV and change in BV3.

Results
GWAS meta-analysis included N = 3401 participants for BV change and N = 3513 participants for T2LV change 
from RCTs in relapsing remitting MS (RRMS) [ADVANCE (N = 540; 505, for BV and T2LV change data, respec-
tively), DECIDE (N = 821; 886), OPERA I (N = 581; 581), OPERA II (N = 577; 577)], secondary progressive MS 
(SPMS) (ASCEND; N = 353; 435), and primary progressive MS (PPMS) (ORATORIO, N = 529; 529) (Table 1). 
Participants were mainly female (51–74%), mean age was higher in the PMS RCTs (45–47 vs 36–38 in RRMS), 
and mean study duration was ~ 1.8 years. In total, we meta-analyzed 10,382,375 and 10,608,740 SNPs for associa-
tion with BV change and T2LV change, respectively. The genomic inflation factor did not show evidence of bias 
from ancestry in either GWAS (λBV = 1.008, λT2LV = 1.019) (eFigure 3).

The most significant association with BV change was an intronic SNP in PTPRD (top SNP: rs77321193-C/A, 
p = 5.3 × 10–7), which showed no evidence for heterogeneity across the trials (heterogeneity I2 = 0, heterogeneity 
p = 0.96) (Fig. 1A, Table 2). The minor allele (C; MAF = 0.18) of rs77321193 was associated with a greater reduc-
tion in BV over time. Multiple SNPs in this region showed association with BV change with similar effect sizes 
and no evidence for heterogeneity in the meta-analysis (eTable 4, Figs. 2A, 3A). We did not observe colocalization 
between the PTPRD peak and expression of PTPRD in the datasets we evaluated. However, analysis of cell-type 
specific gene expression in MS brain (Fig. 4) revealed that PTPRD was expressed in neurons, oligodendrocytes 
and oligodendrocyte precursor cells. The gene-based tests did not reveal significant association with PTPRD 
(p = 0.066), or other genes (top hit: TSPAN8, p = 8.08 × 10–5) (eTable 5).

The strongest association with T2LV change was in a regulatory region near NEDD4L (top SNP: rs11398377-
GC/G, p = 9.5 × 10–8), which was consistent across the trials (heterogeneity I2 = 51, heterogeneity p = 0.07) (Fig. 1B, 
Table 3). The C deletion in rs11398377 (MAF = 0.16) was associated with greater T2LV accumulation over time. 
Several SNPs in this region associated with T2LV change had similar effect sizes and did not show significant 
heterogeneity in the meta-analysis (eTable 6, Figs. 2B, 3B). Interestingly, we found evidence for colocalization 
between the T2LV change peak (rs11398377) and NEDD4L expression in whole blood (colocalization pp4 = 0.78), 
suggestive of a common causal variant between the traits. Moreover, analysis of cell-specific gene expression 
in the MS brain showed that NEDD4L is expressed mainly in neurons, including inter-neurons and excitatory 
neurons (Fig. 4). Gene-based tests did not show significant associations with change in T2LV (top hit: WDR34, 
p = 2.0 × 10–5), however NEDD4L was among the top hits (p = 6.94 × 10–5) (eTable 7).

Comparison with the known MS risk GWAS3 SNPs (197 non-MHC and autosomal; 161 and 162 SNPs met 
our inclusion criteria for comparison with BV change and T2LV change meta-analyses results, respectively) did 

https://gtexportal.org/
https://dice-database.org/
https://dice-database.org/
https://cellxgenevip-ms.bxgenomics.com/
https://cellxgenevip-ms.bxgenomics.com/
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not show evidence of overlap with BV change nor T2LV change GWAS hits (eTables 8, 9). We did not observe 
any significant associations (p < 1 × 10–6) between MS susceptibility loci with BV change or T2LV change, and 
found no overlap with MS risk loci in the MHC region3. Conversely, neither the BV change peak in PTPRD nor 
the T2LV change peak in NEDD4L were associated with MS risk3, and no putative BV change or T2LV change 
peaks (p < 1 × 10–6) colocalized with MS risk. Additionally, the MS risk PRS was not significantly associated with 
change in BV (p = 0.54) nor with change in T2LV (p = 0.89).

Discussion
To our knowledge, this is the first GWAS meta-analysis of longitudinal MRI measures across multiple RCTs to 
investigate the genetics of MS progression. We achieved this by leveraging a precompetitive industry partner-
ship aimed at utilizing well-characterized MS cohorts to interrogate the genetics of disease progression in MS.

The top BV change SNP occurs in an intron of PTPRD, a protein tyrosine phosphatase receptor involved in 
cellular signaling, growth and differentiation21. Previous studies of cross-sectional BV and Multiple Sclerosis 
Severity Score (MSSS) have also reported sub-significant associations with variants in the PTPRD region inde-
pendent from our BV change peak (cross sectional BV top SNP: top SNP: rs1953594, adjusted trend − logP = 4.3; 
MSSS top SNP: rs10977017, p = 1.02 × 10–5)5,6. Additionally, variants mapped to PTPRD are associated with two 
sleep disorders that are enriched in PwMS: restless leg syndrome (top SNP rs1836229)22,23 and insomnia (top SNP 
rs10761240)24,25. While we did not observe evidence for colocalization between the top BV change association 
and PTPRD expression, it is possible that this study is insufficiently powered to detect colocalization, or that the 
locus impacts mechanisms that are time-dependent, cell lineage-specific, or independent of PTPRD expression.

The top T2LV association is an indel SNP that lies in the regulatory region upstream of NEDD4L. NEDD4L 
(neural precursor cell expressed developmentally down-regulated 4-like) plays a role in axon guidance, neurite 
growth, synaptic transmission, and pain sensitivity26,27. The NEDD4L peak showed evidence for colocalization 
with expression of NEDD4L in blood (GTEx). The minor allele of this top SNP (rs11398377*C- deletion) was 
associated with greater T2LV accumulation and increased gene expression, indicating that downregulation of the 
gene may have therapeutic potential. Missense SNPs in NEDD4L cause abnormal fetal neurodevelopment and 
brain malformations such as periventricular nodular heterotopia28. NEDD4L encodes an E3 ubiquitin-protein 
ligase that regulates several membrane channels and transporters including epithelial (ENaC)29 and voltage-gated 
(NaV)30 sodium channels. Both ENaCs and NaVs have been implicated in demyelination and MS pathophysiol-
ogy, and research is ongoing to investigate the role of sodium channel blockers in preventing axonal damage31,32. 
This link is supported by use of the channel blocker dalfampridine for improvement of walking in PwMS33.

While BV and T2LV change traits may be correlated15 (eTable 10), they reflect complementary measures of 
MS progressive biology—BV reduction represents a global measure of brain tissue loss, while T2LV increase 
reflects immune-mediated injury in the CNS white matter. Both PTPRD and NEDD4L are strongly expressed in 
the CNS, particularly in neurons. PTPRD is also abundant in oligodendrocytes and oligodendrocyte precursor 

Table 1.   Sample characteristics for study population. BV, brain volume; PPMS, primary progressive multiple 
sclerosis; RRMS, relapsing remitting multiple sclerosis; SD, standard deviation; SPMS, secondary progressive 
multiple sclerosis; T2LV, T2 lesion volume. a Biweekly: 178, monthly: 169. b Biweekly: 178, monthly: 176.

Biogen Genentech/Roche

Trial ADVANCE ASCEND DECIDE OPERA1 OPERA2 ORATORIO

MS stage RRMS SPMS RRMS RRMS RRMS PPMS

Active arm Pegylated IFNβ Natalizumab Daclizumab Ocrelizumab Ocrelizumab Ocrelizumab

Control arm Placebo Placebo IFNβ IFNβ IFNβ Placebo

Change in brain volume GWAS

 Study duration in years, mean 1.2 1.4 1.7 1.3 1.3 1.5

 Active arm, N 347a 175 423 297 284 354

 Control arm, N 193 178 398 284 293 175

 Total, N 540 353 821 581 577 529

 Baseline characteristics

  Age in years, mean (SD) 37 (9.7) 47 (7.6) 36 (9.5) 38 (9.1) 38 (9.1) 45 (7.7)

  Female, % 73 62 66 66 64 51

  Normalized BV in cm3, mean (SD) 1580 (94) 1426 (82) 1502 (89) 1492 (86) 1494 (92) 1460 (85)

Change in T2 lesion volume GWAS

 Study duration in years, mean 1.6 1.8 1.8 1.7 1.7 2.0

 Active arm, N 354b 214 454 297 284 354

 Control arm, N 151 221 432 284 293 175

 Total, N 505 435 886 581 577 529

 Baseline characteristics

  Age in years, mean (SD) 37 (9.7) 47 (7.5) 36 (9.3) 38 (9.1) 38 (9.1) 45 (7.7)

  Female, % 74 62 66 66 64 51

  T2LV in cm3, mean (SD) 10.1 (11.7) 17.4 (17.3) 9.4 (11.1) 9.9 (12.3) 10.9 (14.1) 11.6 (13.7)
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cells. Oligodendrocytes play an important role in MS because they myelinate neurons. NEDD4L is a paralog of 
NEDD4, which promotes ubiquitination and degradation of RAPGEF2, one of the few putative MS risk genes 
with enhanced single cell expression in CNS cells34,35.

The IMSGC recently published a large study of MS severity using the age-related MS severity score (ARMSS), 
and reported association in the DYSF–ZNF638 locus4. Additionally, a smaller study (N = 1813 individuals) 
examining median longitudinal ARMSS (l-ARMSS) and longitudinal MSSS (l-MSSS) did not find significant 

Figure 1.   Genome-wide association plots from meta-analysis of change in brain volume (BV) and T2 lesion 
volume (T2LV) GWAS studies. Manhattan plots with negative log10 P-values on y-axis, and chromosome 
position (hg19) on x-axis. Each point corresponds to a single SNP analyzed in the GWAS: (A) BV change 
(N = 3401); (B) T2LV change (N = 3513). Horizontal purple line indicates genome-wide significance threshold 
(p = 5 × 10–8). Peak SNPs labeled with closest gene(s). BV, brain volume; GWAS, genome-wide association study; 
NEDD4L, neural precursor cell-expressed developmentally down-regulated 4-like; PTPRD, protein tyrosine 
phosphatase receptor type D; SNP, single nucleotide polymorphism; T2LV, T2 lesion volume.
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association36. The IMSGC DYSF–ZNF638 locus index variant (rs10191329) was not associated with change in 
BV (beta = − 0.004, p = 0.91) nor change in T2LV in our analysis (beta = 0.07, p = 0.04). This may be due to the 
greater power in the IMSGC analysis, but it is also possible that the variables we analyzed capture different aspects 
of the MS disease course. We chose to focus on objective imaging measures rather than clinical measures such 
as EDSS (on which the ARMSS variable is based) due to certain limitations in these measures. For instance, the 
EDSS score is numerical and nonlinear (ranging from 0 to 10) and is largely based on mobility, making it a poor 
proxy for progression.

Similar to the IMSGC MS severity study, we did not find overlap between MS risk loci and our peaks, nor did 
we observe association with an MS PRS4. This suggests that mechanisms driving MS susceptibility may differ 
from those modulating outcomes influencing disease progression. A prior study in ~ 500 MS patients found that 
the strongest genetic risk factor for MS (HLA- DRB1*15:01) was associated with reduction in brain parenchymal 
volume and higher T2 lesion load37, however these findings were not replicated in our study.

We acknowledge the following limitations in our study. All but two of our RCTs (ASCEND, ORATORIO) 
examined RRMS participants, and it is possible that the biological mechanisms underlying MS progression 
differ between early-stage and late-stage MS38. Moreover, the clinical trial participants may not be representa-
tive of the general MS population owing to strict inclusion and exclusion criteria used in participant selec-
tion of RCTs. Neither peak identified in this study reached genome-wide significance (p < 5 × 10–8) or a stricter 
threshold of p < 2.5 × 10–8 to account for multiple testing. Though powered to detect moderate associations with 
common SNPs, our ability to detect genome-wide associations would be improved with a larger sample size. 
Additional, well-characterized cohorts are needed for independent replication. Longitudinal MRI data was avail-
able for < 2 years, however this reflects a small proportion of the average MS patient’s disease course, and longer 
follow-up would provide more accurate outcomes on BV and T2LV changes. Several of the trials had additional 
longitudinal data available from open label extension studies, however including these data would have intro-
duced complexities such as variable lengths of follow-up, and differential handling of placebo and treatment arms 
when accounting for pseudoatrophy at treatment initiation. We therefore limited our analyses to data from the 
placebo-controlled period. While we endeavored to account for pseudoatrophy by re-baselining at 24 weeks, it 
is possible this did not fully capture all pseudoatrophy. We chose to re-baseline using week 24 measures to have 
a reasonable duration of MRI follow-up for GWAS.

This work highlights the utility of using clinical trial data for genetic analyses. RCTs have assigned treat-
ment arms and systematic imaging collection, and genetic analyses of RCTs are uniquely positioned to leverage 
objective, quantitative measurements to advance our understanding of MS disease course. Furthermore, the 
MRI analysis methods used to quantify atrophy and T2LV were standardized within studies, and to the extent 
possible, across the studies used in the meta-analysis, because all studies utilized the same centralized MRI read-
ing center (NeuroRx). Finally, our findings complement existing risk studies by identifying additional genetic 
factors related to different aspects of the disease.

In conclusion, this study identified two novel putative loci (PTPRD, NEDD4L) that may impact MS disease 
progression. Investigation in additional cohorts are warranted to validate these findings.

Table 2.   Peak SNPs from meta-analysis of change in brain volume (BV) GWAS study. A1, Allele 1 (effect 
allele); A2, Allele 2; BV, brain volume; GWAS, genome-wide association study; PTPRD, protein tyrosine 
phosphatase receptor type; SNP, single nucleotide polymorphism. Fixed-effect meta-analysis results with 
p < 1 × 10–6 and low heterogeneity (Cochrane’s Q p-value > 0.05 for all SNPs). a Allele frequency in the 1000G 
phase3 European cohort.

SNP CHR BP A1/A2 A1 Frequencya Beta (SE) P-value Nearest gene Context

rs10491610 9 9537211 T/G 0.18 − 0.18 (0.04) 5.43 × 10–7

PTPRD

Intronic

rs17772815 9 9540766 C/G 0.18 − 0.18 (0.04) 6.57 × 10–7 Intronic

rs77321193 9 9547291 C/A 0.18 − 0.18 (0.04) 5.33 × 10–7 Intronic

rs736043 9 9553360 C/T 0.18 − 0.18 (0.04) 6.39 × 10–7 Intronic

rs76647005 9 9558543 C/T 0.18 − 0.18 (0.04) 5.93 × 10–7 Intronic

rs77127788 9 9561124 A/G 0.18 − 0.18 (0.04) 6.04 × 10–7 Intronic

rs6477402 9 9562254 C/T 0.18 − 0.18 (0.04) 8.89 × 10–7 Intronic

rs137996531 10 71059147 A/G 0.04 0.46 (0.09) 7.90 × 10–7 HK1 Intronic
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Figure 2.   Regional association plots of peak SNPs from meta-analysis of change in brain volume (BV) and T2 lesion volume 
(T2LV) GWAS studies. Regional association plots with negative log10 P-values on primary y-axis, genetic recombination rate 
on secondary y-axis, and chromosome position (hg19) on x-axis. Each point corresponds to a single SNP analyzed in the 
GWAS. The correlation between the peak SNP (or proxy SNP) and the other SNPs in the region is reflected by the linkage 
disequilibrium (r2) estimate, depicted in blue for least correlation (r2 < 0.2) to red for most correlation (r2 > 0.8). The plots were 
created using LocusZoom (http://​locus​zoom.​sph.​umich.​edu/), and depict the association of: (A) BV change with intronic SNP 
rs77321193 in PTPRD on chromosome 9; (B) T2LV change with regulatory SNP rs11398377 near NEDD4L on chromosome 
18. Proxy SNP rs9955426 was used for plot B because rs11398377 was not present in the reference panel (1000G EUR). 
1000G EUR, 1000 Genomes European; BV, brain volume; GWAS, genome-wide association study; NEDD4L, neural precursor 
cell-expressed developmentally down-regulated 4-like; PTPRD, protein tyrosine phosphatase receptor type D; SNP, single 
nucleotide polymorphism; T2LV, T2 lesion volume.

http://locuszoom.sph.umich.edu/
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Figure 3.   Forest plots of peak SNPs from meta-analysis of change in brain volume (BV) and T2 lesion volume 
(T2LV) GWAS studies. Forest plots depicting trial-wise (black squares) and meta-analyzed (summary in 
blue diamond) association of: (A) peak variant rs77321193 on chromosome 9 with BV change (effect allele: 
C, heterogeneity I2 < 0.01, p = 0.95); (B) Proxy SNP (for peak variant) rs9955426 on chromosome 18 with 
T2LV change (effect allele: C, heterogeneity I2 = 46, p = 0.10). Effect sizes are reported as Beta ± SE on x-axis, 
sample sizes are reported as N along with trial names, and strength of associations are reported as P-values 
(P). Direction of association is indicated on color scale at the bottom of each plot. BV, brain volume; GWAS, 
genome-wide association study; NEDD4L, neural precursor cell-expressed developmentally down-regulated 
4-like; PTPRD, protein tyrosine phosphatase receptor type D; SNP, single nucleotide polymorphism; T2LV, T2 
lesion volume.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14313  | https://doi.org/10.1038/s41598-023-41099-0

www.nature.com/scientificreports/

Figure 4.   Dot plot of CNS cell-type specific expression of PTPRD, NEDD4L in MS brain tissue. CNS, 
central nervous system; EN, excitatory neuron; IN, inter-neuron; L2-3, upper layer cortical projection; L4, 
layer 4 cortical projection; L5-6, deep layer cortical projection; MIX, mixed; MS, multiple sclerosis; OL, 
oligodendrocyte; OPC, oligodendrocyte progenitor cell; PYR, pyramidal cell; PVALB, parvalbumin; SST, 
somatostatin; SV2C, synaptic vesicle glycoprotein 2C; VIP, vasoactive intestinal peptide.
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Data availability
Individual level data is not available due to the use of clinical trial data. Summary statistics may be available upon 
request. Requests may be sent to Stephanie Loomis, stephanie.loomis@biogen.com.
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