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Beyond tsunami fragility functions: 
experimental assessment 
for building damage estimation
Ruben Vescovo 1, Bruno Adriano 2, Erick Mas 2 & Shunichi Koshimura 2*

Tsunami fragility functions (TFF) are statistical models that relate a tsunami intensity measure to a 
given building damage state, expressed as cumulative probability. Advances in computational and 
data retrieval speeds, coupled with novel deep learning applications to disaster science, have shifted 
research focus away from statistical estimators. TFFs offer a “disaster signature” with comparative 
value, though these models are seldom applied to generate damage estimates. With applicability 
in mind, we challenge this notion and investigate a portion of TFF literature, selecting three TFFs 
and two application methodologies to generate a building damage estimation baseline. Further, we 
propose a simple machine learning method, trained on physical parameters inspired by, but expanded 
beyond, TFF intensity measures. We test these three methods on the 2011 Ishinomaki dataset after 
the Great East Japan Earthquake and Tsunami in both binary and multi-class cases. We explore: (1) the 
quality of building damage estimation using TFF application methods; (2) whether TFF can generalize 
to out-of-domain building damage datasets; (3) a novel machine learning approach to perform the 
same task. Our findings suggest that: both TFF methods and our model have the potential to achieve 
good binary results; TFF methods struggle with multiple classes and out-of-domain tasks, while our 
proposed method appears to generalize better.

Statistical methods, and machine learning informed by remotely sensed information, have taken center stage in 
recent works attempting to understand disaster-borne damage, its detection, and its estimation. Tsunami fragility 
functions are one such method, used in disaster  research1, to model building damage after a tsunami. Essentially, 
these regression models map a tsunami intensity measure (in the form of a demand parameter, such as inundation 
depth) to the probability of exceeding a discrete damage state. The intensity measure is often parameterized by 
an observable measure of the disaster. The parameter of choice has quintessentially been maximum inundation 
depth, as it is immediately measurable after the disaster. Derived quantities, usually obtained via hydrodynamic 
modelling, can be alternatively used and have been subject to  study1–3.

Though visually significant, it remains unclear how fragility functions can be applied pragmatically: can they 
be applied to new data in a predictive manner? Hence, can future damage inferences at the building scale be 
made using exiting fragility functions?

More recently, efforts in the field of building damage estimation have moved away from modelling damage as 
a function of a disaster intensity measure. Recent research favors innovations in the field of computer vision to 
perform change detection between pre and post event imagery such  as4,5. Crucially however, these novel meth-
ods forgo damage estimation, and instead leverage faster availability of post event satellite imagery to perform 
damage detection. This departure from a physical description of the damage, precludes the model from ever 
learning from context.

In this article, we explore the application of tsunami fragility functions as damage estimators. In the frame-
work of our experiments, we perform estimations for individual buildings as described in the literature. Noting 
TFF limitations and lessons learned from consulting the literature, we propose an additional framework, using 
machine learning, to perform the same task. We train our model based on intensity measures inspired by TFF 
studies, but with expanded dimensionality. We aim to contribute in the following capacity: (1) explore the dif-
ferences between TFF application methods; (2) verify in what capacity, previously untested, TFF applications are 
transferable building damage estimators; finally (3) we propose a novel framework to perform building damage 
estimation using machine learning classifiers.

OPEN

1Department of Civil and Environmental Engineering, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, 
Sendai 980-8572, Japan. 2International Research Institute of Disaster Science (IRIDeS), Tohoku University, Aoba 
468-1, Aramaki, Aoba-ku, Sendai 980-8572, Japan. *email: koshimura@irides.tohoku.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-41047-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14337  | https://doi.org/10.1038/s41598-023-41047-y

www.nature.com/scientificreports/

Our results suggest TFF application methods to building damage estimation struggle to generalize. However, 
our experiments with machine learning models show promising resilience and outperform TFF methods in 
multi-class out-of-domain scenarios. The structure of this paper is as follows: in the “Motive” section we explore 
the relevance and background of post disaster building damage estimation, hence identify research gaps. The 
“Results” section reports experimental outcomes following our proposed methodology and the benchmarks from 
the literature. We discuss our results which show that machine learning methods appear to generalize better to 
different domains and multiple classes.

We conclude by, once again, going over our main findings. Details regarding the dataset, feature extraction, 
and methodology are reported in “Methods” section.

Motive
Disasters undoubtedly present some of the greatest modern challenges to humanity. As the urbanized world 
grows, so do the effects of disasters on society, whether directly (from loss of lives) or by cascading effects (such 
as loss of land). More recently, profound socio-economic impacts of disasters have driven research into all aspects 
of preventive and management measures. Research output centered on tsunami disaster risk management has 
experienced incredible innovation in the last two decades. Herein, we explore the background of some of the 
most popular methods to quantify and assess post-event tsunami damage.

Tsunami fragility functions. Fragility functions are regression models that attempt to represent the rela-
tionship between a disaster intensity measure (IM) or engineering demand parameter (EDP) (the independent 
variable, modelled as a continuous random variable), and the structural response of buildings under the inten-
sity load, i.e., the damage state, DS (the dependent variable, modelled as a probability of exceedance). While 
most scientists agree on this initial formulation, the choice of IM/EDP, model, and approach have been the sub-
ject of academic  debate3. In the following sections, we explore some background focusing on TFFs as a whole, 
differences in formulation, applications, and limitations.

Background. Fragility functions have been widespread in earthquake  engineering6,7, as a convenient means of 
characterizing local earthquake impact, and were adapted to tsunami  damage1,2. Unlike seismic activity, measur-
ing tsunami intensity directly is problematic. The only practically measurable quantity is the maximum inun-
dation level, z, which is measured from inundation traces left on affected structures. Notably, this does not 
necessarily represent the water level at  failure8. Moreover, the search for an optimal combination of demand 
parameters has been the subject several  studies3,9,10.

At times even z, the single most featured EDP, may not be measurable at sufficient resolution (i.e., when 
experts are not available or RS data cannot be validated) and must be  interpolated8,10 or otherwise  estimated1, 11,12. 
The measured inundation depth is often used to validate numerical models that have adjustable resolution—these 
come with the added benefit of generating secondary hydrodynamic quantities that can be used as EDP (i.e., 
hydrodynamic force, velocity, momentum, unit-less factors, etc.)1,3,11–20 independently or in pairs, in order to 
generate “fragility surfaces”16,17. Building on these findings, Macabaug et al.20 investigate the quality of several 
EDP by ranking them based on their predictive error, using generalized additive models (GAMs). To address 
discrete and sparse data (such as building material and building age, etc.) authors have proposed several adapta-
tions: for instance, by splitting the damage data and aggregating it in terms of structural characteristics, authors 
have attempted to reduce latent  variability9,10,17,18,20–25. Topographic  features18,19,23,26, and physical  effects10,17,19,20 
(i.e., geomorphology, debris, building arrangements and shielding, etc.) have been similarly parameterized, 
especially in more recent publications featuring generalized linear models (GLMs). Indeed, the choice of sta-
tistical model, method of fit, and statistical correctness have been the object of debate: ordinary least squares 
(OLS) is the most popular  formulation1,2,8,11–15,18,19,21,22,25–30; it requires the data to be aggregated in some form. 
A linear function is then regressed to the aggregate mean of the sample. In most cases, this is the the proportion 
of buildings exceeding a discrete damage state in terms of a continuous EDP. GLMs (and GAMs) have been 
adopted in several  instances3,9,10,16,17,20,23,24,31 and allow the direct fit of a linear model to discrete, disaggregated 
data. Of great concern to the present study, several post disaster domains have been studies and modelled using 
fragility functions. It is these studies that initially warn against the general application of TFF models suggesting 
domain  dependence8,21,27. The literature covers both historical and contemporary events, from the inception of 
TFFs between  20052 and  20091, some prominent examples are: the 1993 Okushiri  Earthquake11, the 2004 Indian 
Ocean earthquake and  tsunami1,2,12,31, the 2009 Samoa earthquake and  tsunami10,13, the 2010 Chile  earthquake8, 
the 2011 Great East Japan earthquake (GEJE)3,9,14–24,26,27,29,32,33 which features extremely detailed survey and 
supporting  data34–36, and the 2018 Sulawesi earthquake and  tsunami30,31,37. Due to the lack of classifiable dam-
age data, analytic studies usually define building damage as a function of generalized structural properties (i.e., 
stress and strain)25,38, design standards, and precedent (such as a the impact of a previous disaster). TFFs have 
not been limited to buildings: indeed,  vegetation15,  road33,  vessel16, and service  pole37 damage has been framed 
in the same fashion. The TFF research corpus has been reviewed several times: we point to Tarbotton et al.39 
and Charvet et al.40 for the latest comprehensive reviews (up to the date of publishing). Behrens et al.41 provide 
a recent review and breakdown of research gaps in probabilistic tsunami hazard and risk studies, including 
tsunami fragility functions.

Machine learning. Examples of machine learning applications to disaster damage detection, in particular 
tsunami, leveraged classification algorithms and remote sensing change detection techniques. Generally they 
associate (supervised) or discover (unsupervised) labels to specific thresholds of change usually given an input 
of image patches containing a single building each. Before the advent of deep learning, a variety of algorithms 
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were proposed with varying efficacy, support vector  machines42 and ensembles  methods43 count among the 
more popular. Recently, advances in computer hardware allowed for deep artificial neural networks (ANN) to 
be trained in useful time enabling automatic feature extraction from remote sensing  imagery42. Remote sensing 
change detection currently comprises the state of the art when it comes to computer vision applications for natu-
ral disaster science. However, to our knowledge none of these methods employ intensity measures associated 
with tsunami dynamics, such as those used in fragility function studies. We postulate that, reliance on photo-
grammetry alone does not allow a model to learn anything from the physical processes that cause the damage. 
These models are naive in the sense that they learn what damage looks like, rather than why damage looks the 
way it does. As such they fall outside of the scope of the present study.

Research gaps. While reviewing gaps in physical vulnerability tsunami models (including fragility func-
tions), Behrens et al.41 indicate “[...] a lack of consensus on many aspects of physical fragility and vulnerability 
modeling”. Above we briefly explored the research corpus concerned with fragility functions. Herein, we sys-
tematically report research gaps concerning the application of tsunami fragility functions as building damage 
estimators. There are relatively few studies that attempt to apply tsunami fragility functions: Musa et al.44 build 
a real time tsunami computation routine that incorporates tsunami building damage on a zonal level using pre-
existing TFFs; Rehman and  Cho28 explore a case study using a similar method, albeit not in real time, wherein 
they apply TFFs generated from the 2011 GEJE data to Imwon Port, South Korea by simulating various tsunami 
scenarios. Adriano et al.45 and Moya et al.46 apply fragility functions to real disaster data to estimate damage. 
The first study proposes hypothetical scenarios hence results are not evaluated against a ground truth, while 
the second study only reports the building damage ratio for each class against the true ratio. Ultimately the evi-
dence suggests that; Tsunami fragility functions do not generalize: high resolution tsunami inundation is usually 
obtained by validating hydrodynamic simulations against measured  values1,20; the modelling requires a high 
resolution input (including elevation, spatial distribution, roughness, building arrangement, etc.) which is ulti-
mately synthesized and aggregated into measures of intensity. Reversing a fragility function does not resolve into 
the original data used high resolution data nor does it preserve the spatial distribution of the disaggregated data. 
While  studies1 have assumed that an estimate of building damage numbers can be obtained from a fragility func-
tion, they also warn against the generality of these  functions1,8. Considering the points raised above it is unlikely 
tsunami fragility functions can generalize to different domains for the purposes of building damage estimation. 
Survey data is relatively scarce: while there is an abundance of fragility functions, they often model the same 
events. Empirical studies are limited to events following the 2004 Indian Ocean  Tsunami41; post event surveys 
are risky, expensive, and require specialized personnel; many countries that experience tsunami disasters may 
not have the resources or personnel to conduct high quality damage surveys. A model that estimates building 
damage must be able to learn damage representations from a relatively small amount of data. Current machine 
learning methods are not damage estimators: Fragility functions establish a cause-effect relation between an 
intensity measure (of a disaster) and a building damage state; This implication is necessary to make estimations 
about future scenarios; current deep learning methods based on remote sensing imagery do not incorporate any 
measure of the disaster, hence cannot make estimates of future events.

Objectives. Many of the  works8,21,27 that include a comparative analysis, point to the differences between 
the newly built function and previous functions when characterizing the unique tsunami damage. That is, the 
damage as a function of the set of demand parameters is specific and is explained by the demand parameters 
intrinsically. Intuitively then, damage estimations produced by TFF application methods will produce different 
results depending on the TFF applied. This begets the following: how different are these results? Hence, how does 
one choose an appropriate TFF to apply? In light of the proliferation of TFF studies, particularly under the lens 
of climate change aggravated risk, we believe that exploring the application of these models will be beneficial to 
the disaster management community at large; beyond the capacity to describe a disaster in the context of other 
disasters. Considering the research gaps described in the previous section, we: 

1. test TFF application methods proposed in the literature and evaluate their performance using common 
classification metrics against a known dataset;

2. investigate different experimental scenarios applying TFF methods to produce building damage estimates;
3. test a machine learning model as a building damage estimator, training it to recognize damage patterns, and 

learning from demand parameters inspired by tsunami fragility functions. All our tests are performed on a 
subset of the well-studied 2011 Great East Japan Earthquake tsunami damage dataset (Fig. 1)34,35 to promote 
clarity in our experimental results.

Results
Setup. We conduct experiments on a subset of the 2011 Tohoku Earthquake and Tsunami MLIT  dataset34, 
specifically the Ishinomaki dataset (dataset 305 in the convention adopted by MLIT), but we prepare the Sendai 
plains dataset (320) and the Rikuzentakata dataset (212) the same way; the latter two datasets are used to train 
the machine learning model (Fig.  1). Three TFFs from the literature are tested: Koshimura et al.1, Suppasri 
et al.21, and Belliazzi et al.25. Because Koshimura et al.1 only maps two damage states, it is excluded from the 
multi-class experiments. We resample the damage states from the original MLIT 7 classes into binary and 3-class 
datasets using the following mappings: 

Mapping 1 : DSMLIT = {6, 5, 4, 3, 2, 1, 0} �→ DS∗ = {1, 1, 0, 0, 0, 0, 0} and
Mapping 2 : DSMLIT = {6, 5, 4, 3, 2, 1, 0} �→ DS∗ = {1, 1, 2, 2, 2, 3, 3}.
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Our rationale is given in “Data and experimental setup” subsection.
Results are benchmarked by reporting the F1-score, precision, and row-normalized the confusion matrices 

(Fig.  2). We test two TFF estimation methods from the literature and our proposed machine learning method: 

Method 1 : described by Adriano et al.45,
Method 2 : described by Moya et al.46, and
Method 3 : machine learning algorithm implementing a simple random forest classifier.

The details of each method are reported in sections: Methods 1, Methods 2, and Methods 3 and summarized 
in Fig. 5.

Binary experiments. Herein are reported the results from binary experiments; for uniformity, each experi-
ment is referenced in terms of the method (Method 1, Method 2, or Method 3) and the fragility function (when 
relevant) according to the following naming convention: Koshimura-2 (Banda Aceh)1, Suppasri-2 (Tohoku)21, 
and Belliazzi-2 (Analytic)25. Method 1 (Table 1; Fig. 2) outperforms Method 2 (Table 2; Fig. 2) in all cases. In 
terms of TFF Suppasri-2 shows the best performance (average F1-score of 0.809 adopting Method 1, Table 7), 
this is not surprising considering that the TFF designed by Suppasri et al.21 models the MLIT dataset, hence 
it contains the test data. We refer to such a setting as the “in-domain” (ID) test since the training distribution 
contains the test  distribution47; we refer to the TFFs proposed by Koshimura et al.1 and Belliazzi et al.25 as the 
“out-of-domain” (OOD) models; inherently, assume that the distributions of all three models are similar47. It is 
worth noting that even though Suppasri performs overall better, the average F1-scores for all binary cases are 
within ±0.05 (Table 7) of each other. On average, Koshimura-2 performs better than Belliazzi-2 on the test set; 
interestingly, in terms of individual class scores, Koshimura-2 matched Suppasri-2 when predicting DS0, while 
both are worse than Belliazzi-2 when it comes to DS1, Belliazzi-2 has the least inter-class variance out of all mod-
els (Table 7). Method 3 performs slightly worse on average, due to underestimating DS0 overall but outperforms 
other methods in DS1. Moreover, Method 3 has the smallest inter-class deviation (Table 7) and displays minimal 
randomness across runs (average of 0.5% , Table 3).

Spatially (Fig.  3), a few key differences between the methods become evident: Method 1 (Fig.  3; frames A–C) 
appears very strongly clustered, ostensibly due to the ordering imposed on it, which also removes any random-
ness; Comparing the best performer, Suppasri-2 (Fig.  3, Frame B) to the ground truth (Fig.  3, Frame H) the 
inland threshold between damage states is understated on the westward and overstated eastward of the estuary 
additionally much of the nuanced damage along the foreshore is not represented in the model. The most evident 

Figure 1.  Left: building damage inventory following the 2011 Great East Japan Earthquake and subsequent 
 tsunami34,35. Right: subsets of the dataset used in the present experiments; in blue: training data for the proposed 
ML approach; in red: testing data used for all experiments. Original maps generated using QGIS 3.28.2-Firenze 
(https:// qgis. org/ en/ site); backdrop generated in QGIS from the Public Domain SRTM digital elevation model 
(10.5066/F7PR7TFT).

https://qgis.org/en/site
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Figure 2.  Top, left to right: confusion matrices for binary experiments Method  145 for fragility functions 
developed by Koshimura et al.1, Suppasri et al.21, and Belliazzi et al.25; Method  246 for fragility functions 
developed by Koshimura et al.1, Suppasri et al.21, and Belliazzi et al.25; Method 3, binary damage estimation 
using our proposed method. Bottom, left to right: confusion matrices for multi-class experiments Method  145 
for fragility functions developed by Suppasri et al.21 and Belliazzi et al.25; Method  246 for fragility functions 
developed by Suppasri et al.21 and Belliazzi et al.25; Method 3, multi-class damage estimation using our proposed 
method. All plots were generated using Matplotlib 3.7.2 (https:// github. com/ matpl otlib/ matpl otlib).

Table 1.  Metrics of performance evaluation for each binary TFF using application Method  145.

Damage state

Koshimura-2 (Banda 
Aceh) Suppasri-2 (Tohoku) Belliazzi-2 (Analytic)

Precision F1-score Precision F1-score Precision F1-score

DS 0 0.777 0.850 0.817 0.850 0.892 0.799

DS 1 0.879 0.730 0.820 0.767 0.696 0.776

Table 2.  Metrics of performance evaluation for each binary TFF using application Method  246.

Damage state

Koshimura-2 (Banda 
Aceh) Suppasri-2 (Tohoku) Belliazzi-2 (Analytic)

Precision F1-score Precision F1-score Precision F1-score

DS 0 0.770 0.842 0.806 0.820 0.862 0.772

DS 1 0.860 0.715 0.803 0.751 0.669 0.746

Table 3.  Metrics of performance evaluation for binary random forest classifier and stability of metric over 30 
seeds for binary random forest classifier. µF1 and σF1 are respectively the mean and standard deviation of the F1
-score over 30 seeded runs.

Class Precision F1-score µF1 ± σF1

DS 0 0.912 0.790 0.796± 0.006

DS 1 0.687 0.782 0.786± 0.004

https://github.com/matplotlib/matplotlib
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feature of Method 2 (Fig. 3; frames D–F) is the spatial scattering due to the random component of this method 
which is not immediately evident from the metrics alone. Unlike the previous method, the boundary between 
damage states is much less defined, though it approximates the boundary drawn by the ground truth more than 
the previous method. As a result of the inherent randomness, the damage along the foreshore is much more 
nuanced, and closer to the ground truth on the east side. Moreover, due to the random scattering and contrary 
to reality, damage is much more sparse and less clustered. Method 3 (Fig.  3; frame G) like Method 1 draws a 
much cleaner boundary between damage states. Interestingly, it mistakenly identifies several clusters of damaged 
buildings significantly inland of the coast. However, it is much more faithful to the ground truth along the estuary 
and harbor preserving some of the nuanced damage in this area. Performance is worse along, and inland of, the 
east coast where much of the nuance along the foreshore is lost, similar to Method 1.

Multi-class experiments. Herein are reported the results for the multi-class experiments; as above, each 
experiment is referenced in terms of the method (Method 1, Method 2, or Method 3) and the fragility function 
(when relevant) according to the following naming convention: Suppasri-3 (Tohoku)21, and Belliazzi-3 (Ana-
lytic)25. As mentioned, Koshimura et al.1 is not applicable to multiple damage states and is therefore excluded.

Figure 3.  Results plotted spatially. Binary results above line: (A) Method  145, Koshimura-21; (B) Method 1, 
Suppasri-221; (C) Method 1, Belliazzi-225; (D) Method  246, Koshimura-2; (E) Method 2, Suppasri-2; (F) Method 
2, Belliazzi-2; (G) Random forest classifier; (H) Ground truth (binary). Multi class results below line: (I) Method 
 145, Suppasri-321; (J) Method 1, Belliazzi-325; (K) Random forest classifier; (L) Method  246, Suppasri-3; (M) 
Method 2, Belliazzi-3; (N) Ground truth (multi-class) Original maps generated using QGIS 3.28.2-Firenze 
(https:// qgis. org/ en/ site).

https://qgis.org/en/site
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In the multi class experiment, overall performance of fragility curves is markedly lower across all metrics 
(Table 7). This time Method 3 markedly outperforms the other two methods, mainly due to TFF methods’ poor 
significantly worse performance across DS2 and DS3. Class-wise, Method 1 and Method 2 still perform margin-
ally better than Method 3; this is not surprising since DS 1 remains unchanged between the binary and multi-class 
experiments. Across both Method 1 (Table 4) and Method 2 (Table 5 Suppasri-3 performs significantly lower 
than Belliazzi-3 in DS3, conversely Suppasri-3 outperforms Belliazzi-3 across DS2 almost doubling the F1-score 
in most cases. DS1 is slightly more uncertain with the best performer being Belliazzi-3 modelled by Method 1. 
Method 3 continues to have the least inter-class deviation (Table 7) while still offering a relatively stable estima-
tor as shown in Table 6. Looking at the confusion matrices (Fig.  2), and noting that the recall (i.e., the fraction 
of true positives and positive values) is given by the main diagonal, it appears that, in spite of the metric, DS2 
is the more problematic across all TFF methods for the multi class case, though the error mode differs between 
Suppasri-3 (Tohoku) and Belliazzi-3 (Analytic). More specifically, in Suppasri-3 (Tohoku) the largest error rate 

Table 4.  Metrics of performance evaluation for each multi-class TFF using application Method  145.

Damage state

Suppasri-3 (Tohoku) Belliezzi-3 (Analytic)

Precision F1-score Precision F1-score

DS 1 0.820 0.767 0.696 0.776

DS 2 0.622 0.657 0.673 0.385

DS 3 0.310 0.304 0.334 0.467

Table 5.  Metrics of performance evaluation for each multi-class TFF using application Method  246.

Damage state

Suppasri-3 (Tohoku) Belliezzi-3 (Analytic)

Precision F1-score Precision F1-score

DS 1 0.805 0.756 0.665 0.743

DS 2 0.628 0.651 0.607 0.342

DS 3 0.352 0.370 0.299 0.418

Table 6.  Metrics of performance evaluation for multi-class random forest classifier and stability of metric over 
30 seeds for multi-class random forest classifier. µF1 and σF1 are respectively the mean and standard deviation 
of the F1-score over 30 seeded runs.

Class Precision F1-score µF1 ± σF1

DS 1 0.885 0.758 0.750± 0.005

DS 2 0.638 0.608 0.612± 0.007

DS 3 0.378 0.518 0.521± 0.006

Table 7.  Average F1-scores for binary and multi class experiments.

Experiment Average F1-score

Koshimura-2 (Banda Aceh), Method 1 0.790± 0.060

Koshimura-2 (Banda Aceh), Method 2 0.779± 0.063

Suppasri-2 (Tohoku), Method 1 0.809± 0.041

Suppasri-2 (Tohoku), Method 2 0.795± 0.045

Belliazzi-2 (Analytic), Method 1 0.788± 0.011

Belliazzi-2 (Analytic), Method 2 0.759± 0.013

Random Forest Classifier (binary) 0.786± 0.003

Suppasri-3 (Tohoku), Method 1 0.576± 0.197

Suppasri-3 (Tohoku), Method 2 0.593± 0.163

Belliazzi-3 (Analytic), Method 1 0.543± 0.168

Belliazzi-3 (Analytic), Method 2 0.501± 0.174

Random Forest Classifier (multi-class) 0.628± 0.099
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is for type-I errors, i.e., a DS2 false positive error, while in applications of Belliazzi-3 (Analytic) the largest error 
rate is for type-II errors, i.e., a DS2 false negative error. In Method 3 it is not quite as clear, though the recall (true 
positive rate) across all classes remains above the false positive rate and false negative rate. It seems apparent that 
for TFF methods (Method 1 and Method 2) the middle class (DS2) remains particularly ambiguous, in terms of 
the inundation depth and distance from the coast alone. It is possible that increasing the dimensionality of the 
problem may allow for a linear classifier to separate the classes. Spatially, many of the trends displayed by the 
binary experiments are evident: Method 1 (Fig. 3, frames I,J) continues to lose a lot of nuance towards the coast 
while wrongly estimating the damage boundaries, particularly DC3, which seems to be limited to the North-
West in the ground truth (Fig.  3, frame N), is poorly estimated by either TFF. Method 2 (Fig.  3, frames J,M) 
maintain a lot of randomness, which is especially marked in Belliazzi-3 where DS2 is virtually inseparable from 
the other states, Suppasri-3 still shows a lot of uncertainty across DS2, but allows for the distinction of likely, 
albeit vague, boundaries. Method 3 (Fig.  3, frame K) still loses a lot of nuance along the foreshore, estimating 
virtually all samples as DS1, but approximates the DS1–DS2 boundary more closely than other experiments on 
the East side, while failing to do so on the far West side; a lot of the characteristic isolated clusters are present 
and scattered across the main DS2 body from both DS1 and DS3, which is mirrored in the false negative rate in 
the confusion matrices (Fig.  2). Method 3 overestimates DS3 by a large margin, however it better represents the 
north-south extent of the class, while encroaching significantly into DS2.

Discussion
We set out to test the application of tsunami fragility functions for tsunami damage estimation, their transfer-
ability, and test their limitations. Additionally, we propose a supervised classifier alternative using canonical TFF 
demand parameters in the feature matrix (complemented by several others) generated from the pre-disaster 
landscape. Herein, we discuss the implications of our findings. Binary, out-of-domain experiments generally 
performed within a 6.75% (Table 7) margin of each other (centered around 78.02%) on the metric. This suggests 
that some level of generalization is achieved by these methods. It is unlikely that the present results are representa-
tive of all TFF estimations and further testing is encouraged. We refer the reader to Mas et al.8 wherein 6 binary 
fragility functions are discussed; the study compares the various probabilities at certain threshold values. Our 
results exemplify the variability between a foreign TFF when compared to a “True” frame of reference, in this 
case the difference between Belliazzi’s25 or Koshimura’s1 (OOD) curves relative to the “more appropriate” TFF 
by Suppasri et al.21 (ID). Spatially, this variability presents itself as a “shift” between class interfaces; we postulate 
that testing further TFFs will generate damage maps where the damage interface is again shifted. Inherently, 
for any given domain affected by a tsunami, the “best” TFF will be the one that approximates the real damage 
interface the most. By contradiction, the ability to conduct such a comparison presupposes the availability of 
a local TFF. In the absence of this, the pertinence of a TFF will depend on the similarity between the training 
domain and the target  domain47, hence meaningful applications of these methods to future or potential domains 
will hinge on appropriate assessment of TFF suitability. It is interesting therefore, that Koshimura et al.1 performs 
surprisingly well in terms of the F1-score. Koshimura et al.1 report that the topography of the center of the city is 
low-lying with elevations, lower than 3 m above mean sea level (MSL). Further, most buildings in the tsunami-
affected area were low-rise wooden house, timber construction, and non-engineered reinforced concrete (RC). 
The tsunami was found to have penetrated 3–4 km inland throughout the city, with inundation up to 7–9 m 
along the western coast. Comparatively, Suppasri et al.48 report that tsunami heights along the Ishinomaki coasts 
were more than 10 m, while inundation depths in populated areas were more than 5 m. In Japan, wooden houses 
are preferred to reduce the earthquake impact due to the lighter frame. The authors identify inundation depth 
above 2 m MSL to be highly correlated to severe damage to these types of structure. From Fig. 4 we can observe 
that 50% of the Destroyed buildings occur approximately at z > 2 m in the TFF proposed by Suppasri et al.21 
and approximately at z > 3 m in the TFF proposed by Koshimura et al.1. The digital elevation models for each 
domain reveal that major portions of both settlements lie below 4 m (above the local vertical datum). From the 
satellite imagery we can additionally observe that a vast portion of structures lay within 3–4 km from the coast 
and almost entirely within the flood extent. The Fragility functions suggest that buildings in Banda Aceh may be 
slightly less susceptible to inundation, illustrated by the smaller initial gradient in Koshimura et al.1’s TFF. This 
is corroborated in Fig. 3 (Frames A,B), in which estimations using Koshimura-21 produce an interface closer to 
the coast, than what is produced by Suppasri-221. Notwithstanding, significant similarities in geomorphology, 
building material distribution, and building arrangement may explain the performance of Koshimura-21 on the 
metric (Tables 1, 2).

Method 3 on the other hand allows for additional dimensionality to be added to the problem; while it does 
not outperform the specific TFFs tested in this study, may allow better estimates if the training set is extended to 
different, well documented, domains. Additionally, it is important to consider potential use cases: for example, 
in disaster relief cases, the randomness outputted by Method 2 would be detrimental as it does not restrict the 
estimated damage extent. In the context of a routing problem for example, in which an agent must check all DS1 
buildings to provide  supplies51, the agent would have to cover significantly more ground when applying esti-
mates using Method 2 compared to the other 2 methods. The significant loss in performance in the multi-class 
experiments suggests that TFF are generally unreliable multi-class damage estimation; it is possible that further 
research, such as evaluating TFF derived from generalized linear models or developing entire new methods 
to apply these models could yield more reliable estimates. Especially ones that allow for more parameters to 
be considered. By the same token, further testing of machine learning methods with a larger set of learnable 
parameters may enable estimators that reliably generalize.
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Conclusion
In this study we perform tsunami building damage estimation in Ishinomaki City, Japan, after the 2011 Great 
East Japan Earthquake using physical parameters—our tests are evaluated against the post disaster survey ground 
 truth34. We compare three methodologies: two TFF application methods from the  literature45,46 and a machine 
learning model trained on out-of-domain physical parameters; Hence, we perform binary and multi-class experi-
ments. In the case of TFF applications, we select three tsunami fragility functions (two in the multi class tests) to 
check the variability between the application of in-domain TFFs versus out-of-domain TFFs. We verify that TFF 
application methods are able to produce building damage estimation with variable success. The performance 
of TFF estimates is contingent on both the method and the suitability of the TFF to the domain (due to latent 
variables obfuscated by the demand parameters, see previous section): of our attempted methods, Method 1 
is consistently superior to Method 2 on both the metric and spatially for all cases. The best performing TFF is 
unsurprisingly the in-domain  case21, though out-of-domain TFFs in the interval 78.02± 6.65% for the binary 
case. In addition to testing TFF application methods, we propose an novel re-interpretation of damage estima-
tion based on physical parameters. We draw inspiration from TFF demand parameters and propose a machine 
learning framework: Method 3 produces comparable results to TFF methods in the binary tests but has improved 
performance in the multi-class case suggesting greater flexibility. With this study, we contribute novel methods 
to generate tsunami damage estimations at the building scale to inform disaster risk managers of potential risk 
areas during and after tsunamis. Our method is applicable to simulated inundation scenarios, such as those 
envisioned by probabilistic tsunami hazard assessments, hence could provide greater detail in disaster planning 
and preparedness tasks. In future we plan to investigate alternative methods to apply TFFs to damage estima-
tion problems at the building scale. Moreover, it is our hope that the proposed methodology will inspire further 
studies to investigate machine learning methods that learn and generalize better to different domains.

Methods
Data and experimental setup. We conduct experiments on a subset of the 2011 Tohoku Earthquake and 
Tsunami MLIT  dataset34, specifically the Ishinomaki dataset (codifies as dataset 305) but we prepare the Sendai 
plains dataset (320) and the Rikuzentakata dataset (212) the same way; the latter two datasets are used to train 
the machine learning model.

Physical parameters. Out of the box, the dataset includes several of the features needed: building material Cbld , 
inundation above ground level zground , topographic elevation w.r.t. the datum hdatum , and the damage state (label/
dependent variable) DS. The remaining features were computed spatially: the building density ρbld is taken as the 
two dimensional kernel density estimation between building centroids, for the purposes of this experiment we 
used a constant radius (500 m) KDE calculated using QGIS. The distance from the coast dcoast and the distance 
from sheltered waters dwater are taken as the euclidean distance between the building centroid and the respective 

Figure 4.  From left to right: comparison between binary TFFs employed in the present experiments expressing 
the probability of buildings being destroyed P(DS1 | z) when z ∈ [0, 10] generated using Matplotlib 3.7.2 
(https:// github. com/ matpl otlib/ matpl otlib); aerial imagery after the 2011 Great East Japan Tsunami and DEM 
of Ishinomaki (Created by processing Geospatial Information Authority of Japan tiles—elevation  tiles49); aerial 
imagery after the 2004 Indian Ocean Tsunami and DEM of Banda  Aceh50 (elevation models clipped at 1, 2, and 
3 m above MSL). Original maps generated using QGIS 3.28.2-Firenze (https:// qgis. org/ en/ site).

https://github.com/matplotlib/matplotlib
https://qgis.org/en/site
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coastline. dcoast is drawn to include coastal protection measures such as seawalls, groynes, breakwaters, and does 
not track inland via rivers or ports. dwater instead tracks the absolute land–water interface including sheltered 
waters, rivers, and ports. The distinction was drawn to investigate the relative impact of coastal protection struc-
tures. A summary of the physical parameters is provided in Table 8. It is important to note that damage sustained 
by any given building, as a result of a tsunami generated by a megathrust earthquake, is generally subjected to 
loads generated by the earthquake itself, in addition to those imposed by the tsunami. Seismically derived loads 
can include, but are not limited to, strong ground motion, soil liquefaction, collapse or surrounding environ-
ment (built and natural), etc; the seismic activity that is principally the cause of earthquake loads (and generation 
of the tsunami itself) is dependent on geological processes in the lithosphere, such as slope stability, tectonic 
subduction, asperity along the fault, etc. It is acknowledged that building damage is directly influenced by these 
factors and processes and tsunami intensity measures (engineering demand parameters, and several physical 
parameters that are used in the present study) are generally consequent upon these factors. Geological and 
seismic characteristics are used to set the initial condition of the hydrodynamic modelling that generates the 
intensity measures—hence, they are intrinsic to the inundation depth and further demand parameters. Direct 
effects of seismic and geological characteristics are ultimately not included in the machine learning training; 
there are a few reasons for this decision: (1) initial tests using seismic characteristics yielded inferior results to 
the ones reported above; this is perhaps due to the spatial coarseness that ultimately results in sparse data. (2) 
They are not directly included in the original modelling of the empirical fragility functions tested in this study.

Damage states. The damage state DS is graded in 7 ranks, from least to most damage: “no damage”: DS0, 
“partial damage”: DS1, “50% damage”: DS2, “50–70% damage”: DS3, “1st level destroyed and flooding above”: 
DS4, “completely destroyed”: DS5, “washed away”: DS6. While these classifications are meaningful in a struc-
tural engineering context, they might not reflect entirely on the EDP’s. Moreover, only TFFs based on the GEJE 
damage are built on 7 damage states; hence, it is necessary to simplify the classification so that it is comparable. 
The following mappings are used to translate the original MLIT classification into the target classes for each 
experimental setup (see next section): 

Mapping 1 : DSMLIT = {6, 5, 4, 3, 2, 1, 0} �→ DS∗ = {1, 1, 0, 0, 0, 0, 0} and
Mapping 2 : DSMLIT = {6, 5, 4, 3, 2, 1, 0} �→ DS∗ = {1, 1, 2, 2, 2, 3, 3} .

Succinctly, DS6 and DS5 are combined in Mapping 1 as Koshimura et al.1 and Belliazzi et al.25 do not distinguish 
between completely destroyed and washed away. We extend this convention to Mapping 2 for consistency. The 
other groupings in Mapping 2 were decided by testing all other possible 3-class groupings that complied with 
the previous condition, and selecting the mapping that overall performed best on the metric.

Experimental setup. The experimental setup consists of a set of binary experiments and a set of multi-class 
experiments were two TFF application methods are tested for each set. Because Koshimura et al.1 only maps 
two damage states, it is excluded from the multi-class experiments. Three TFFs from the literature are tested: 
Koshimura et al.1, Suppasri et al.21, and Belliazzi et al.25. Moreover, we propose and test an alternative to TFF 
applications using a simple machine learning classifier (random forest) and perform the same estimation tasks 
(one binary, one multi class) by expanding the demand parameter matrix to include additional dimensionality. 

Table 8.  Features used to train the random forest classifier. Feature extraction and derivation is elaborated in 
the “Physical parameters” section.

Variable Description

DS Rank value representing relative degree of damage (Label)

Cbld Building material classification

hdatum Vertical elevation of building above datum

zground Depth of inundation w.r.t. ground

ρbld Kernel density estimation of buildings with uniform radius

dcoast Euclidean distance from coast including coastal protection structures

dwater Euclidean distance from closest body of water
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We benchmark our results by reporting the F1-score, Precision, and row normalized the confusion matrices 
(Fig.  2). We test two TFF estimation methods from the literature and our proposed machine learning method: 

Method 1 : described by Adriano et al.45,
Method 2 : described by Moya et al.46, and
Method 3 : machine learning algorithm implementing a simple random forest classifier.

Tsunami fragility function applications for damage mapping. Fragility functions express the prob-
ability that a building under a specific load, parameterized as an intensity measure or demand parameter, will 
achieve a specific damage state. OLS tsunami fragility functions are generally fit to the cumulative distribution 
function (CDF) of a statistical model belonging to the exponential family: most often the normal (Eq. 1) or log-
normal (Eq. 2) distributions. These can be expressed symbolically as:

Hence we define:

Where FX(x)i,DS is the cumulative distribution function for ln(X) ∼ N(µi,DS , σ
2
i,DS) , � is the CDF of the standard 

nor ma l  d is t r ibut ion  N(0, 1) and  erfc  i s  t he  complement ar y  Gauss  er ror  f unc t ion 
erfc z = 1− erf z = 1− 2√

π

∫ z
0
e−t2 dt . While µi,DS and σ 2

i,DS are the mean and variance of the distribution for 
building class i and damage state DS. The random variable X represents the demand parameter, in this case we 
adopt the inundation depth z.

Method 1. The method proposed by Adriano et al.45 (Fig. 5, Top) requires the data to be sorted in ascending 
order by a parameter different from the main demand parameter z, in this case we choose the distance from the 
coast dcoast . An interval of inundation depths is chosen to subdivide the data (in our case 0.5 m). The data is split 
into subgroups such that each subgroup contains all data that is within the interval, i.e., all data points that have 
inundation depths 0m ≤ z < 1m are in one subgroup, points that have inundation depths 1m ≤ z < 2m are 
in another, et cetera. For each subgroup, the mean depth µz is calculated. Given the set of target damage states, 
such as DS : {0, 1} and a set of TFF, FX,DS(x) , that maps z  → P(DS = ds) we generate P(DS = ds | x = µz) for 
ds ∈ DS to obtain the proportion of buildings in the interval that belong to each damage  state1. The damage state 
is assigned based on the ordering of the secondary parameter (as before, this is defined as the distance from the 
coast dcoast ) by making an assumption about the nature of the ordering relative to the damage state: explicitly, it 
is assumed that buildings closer to the coast dcoast are more likely to be damaged by a tsunami.

Method 2. The method proposed by Moya et al.46 (Fig. 5, middle) establishes that the probability of a build-
ing subject to a demand parameter to achieve damage state P(DS ≥ ds | X = x) is given by Eq. (4):

Consequently, for each building subject to z we calculate the vector of probabilities P = [P0, P1, . . . ,Pi] , noting 
that |P| = 1 . We generate a uniformly distributed random number Y ∼ U[0,1] and check Y ≤ P element-wise. 
Each point is assigned the least possible damage state out of the all damage states that satisfy the inequality.

Method 3. We propose a feature-extracted simple machine learning classifier (Fig.  5, bottom) alternative to 
the TFF estimation methods to: (1) create a baseline, (2) verify whether damage estimation can be approached 
using engineering quantities, and (3) benchmark the performance of TFF estimation methods. As explained 
briefly in “Results”, the feature matrix for the machine model is populated with well studies quantities in the TFF 
literature and additional quantities synthesized from remote sensing and survey data. The motivation to develop 
two different horizontal distances stems from wanting to characterize tsunami surge travelling deeper inland via 
water channels as highlighted in tsunami engineering  literature52. Building density ρbld is calculated using kernel 
density estimation with an arbitrary radius of 500 m for each building. Features are individually centered and 
scaled by the interquartile range to avoid outlier bias. The labels are reclassified into 2 (binary, Mapping 1) and 3 
(multi-class, Mapping 2) classes in order to obtain estimates comparable to those produced by the TFF methods. 
In this instance we use entropy to measure the purity of our nodes, while other hyperparameters are reported in 
Table 9. The model is trained on the Sendai city and Rikuzentakata subsets of the MLIT data and tested on the 
unseen Ishinomaki data set, hence we only test the out-of-domain case for both binary and multi class scenarios.

(1)FX,i,DS(x) =�

[

x − µi,DS

σi,DS

]

=
1

2

[

1+ erf

(

x − µi,DS

σi,DS

√
2

)]

(2)FX,i,DS(x) =�

[

ln x − µi,DS

σi,DS

]

=
1

2
erfc

[

−
ln x − µi,DS

σi,DS

√
2

]

(3)Pi,DS(DS = ds | X = x) = FX,i,DS(x | µi,DS , σi,DS)

(4)P(DS ≥ ds | X = x) =

{

1− FX,ds(x) : ds = 0

FX,ds(x)− FX,ds+1(x) : 1 ≤ ds < i
FX,i(x) : ds = i
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Figure 5.  Top: visualization of framework proposed by Adriano et al.45. Middle: visualization of framework 
proposed by Moya et al.46. Bottom: visualization of framework proposed in the present study. Original figure 
generated using Adobe Illustrator 27.7, Excalidraw 0.15.0 (https:// github. com/ excal idraw/ excal idraw), and 
Matplotlib 3.7.2 (https:// github. com/ matpl otlib/ matpl otlib.

Table 9.  Random forest hyperparameters for a feature matrix of size m× n.

Hyperparameter Value

Number of estimators (trees) 1000

Maximum tree depth 30

Minimum samples in leaf 1

Minimum number of samples to split impure nodes 2

Maximum number of features used in each split
√
n

Maximum number of data points per bootstrap m

https://github.com/excalidraw/excalidraw
https://github.com/matplotlib/matplotlib
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Data availability
Data informing the present findings is available on reasonable request. Further, building damage data for the 
2011 Great East Japan Earthquake is also publicly avaiable at http:// fukkou. csis.u- tokyo. ac. jp/ datas et/ list_ all and 
https:// www. mlit. go. jp/ toshi/ toshi- hukkou- arkai bu. html.
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