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Adaptive physics‑informed neural 
operator for coarse‑grained 
non‑equilibrium flows
Ivan Zanardi , Simone Venturi  & Marco Panesi *

This work proposes a new machine learning (ML)-based paradigm aiming to enhance the 
computational efficiency of non-equilibrium reacting flow simulations while ensuring compliance 
with the underlying physics. The framework combines dimensionality reduction and neural operators 
through a hierarchical and adaptive deep learning strategy to learn the solution of multi-scale coarse-
grained governing equations for chemical kinetics. The proposed surrogate’s architecture is structured 
as a tree, with leaf nodes representing separate neural operator blocks where physics is embedded 
in the form of multiple soft and hard constraints. The hierarchical attribute has two advantages: (i) It 
allows the simplification of the training phase via transfer learning, starting from the slowest temporal 
scales; (ii) It accelerates the prediction step by enabling adaptivity as the surrogate’s evaluation is 
limited to the necessary leaf nodes based on the local degree of non-equilibrium of the gas. The model 
is applied to the study of chemical kinetics relevant for application to hypersonic flight, and it is tested 
here on pure oxygen gas mixtures. In 0-D scenarios, the proposed ML framework can adaptively 
predict the dynamics of almost thirty species with a maximum relative error of 4.5% for a wide range 
of initial conditions. Furthermore, when employed in 1-D shock simulations, the approach shows 
accuracy ranging from 1% to 4.5% and a speedup of one order of magnitude compared to conventional 
implicit schemes employed in an operator-splitting integration framework. Given the results 
presented in the paper, this work lays the foundation for constructing an efficient ML-based surrogate 
coupled with reactive Navier-Stokes solvers for accurately characterizing non-equilibrium phenomena 
in multi-dimensional computational fluid dynamics simulations.

Accurate modeling of non-equilibrium reacting flows is critical in many engineering and science disciplines, 
e.g., designing hypersonic vehicles for space exploration1,2 or material processing and manufacturing with low-
temperature plasmas3,4. The need for describing and understanding these flows has led to the development of 
increasingly large and sophisticated mathematical models5–8, describing multiple physical phenomena character-
ized by a broad spectrum of spatio-temporal scales.

The most physically consistent approach to model non-equilibrium flows relies on the direct numerical solu-
tion of the master equation5,6,9–13, whereby all the relevant spatial and temporal scales resulting from chemical 
and radiative processes are accounted for. Indeed, the availability of quantum state-to-state (StS) chemistry 
models based on ab initio theories14–18 enables unprecedented levels of physical accuracy5–8, crucial for modeling 
flows typified by a significant degree of non-equilibrium. However, the exponentially large number of degrees of 
freedom (i.e., molecules’ and atoms’ energy levels) and the numerical restrictions (stiffness) associated with the 
derived system of equations make these models impracticable in large-scale multi-dimensional computational 
fluid dynamics (CFD) problems. To overcome these difficulties, crude “engineering” non-equilibrium models19,20, 
referred to as multi-temperature (MT) models, have been developed over the years, often assembled without any 
rigorous derivation from fundamental kinetic equations nor consideration for physical principles and constraints. 
Given their interpolative nature, these cannot be used to perform predictions outside their development range.

This work targets the numerical challenges in solving such computationally intense systems of equations by 
surrogating the thermochemical processes characterizing non-equilibrium phenomena that conventional tech-
niques cannot address. Surrogate and reduced-order models21–26 can be designed and constructed by employing 
various techniques, such as projection-based methods27–33, data-fit interpolation and regression34, and machine 
learning (ML)-based models35,36. A recent application of surrogates for hypersonics has been published by 
Ozbenli et al.37, who trained a feed-forward neural network (FNN) to learn a given set of the master equations’ 
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solution functions for a specific non-equilibrium model38. Their ML framework showed a great computational 
speed-up compared to numerical integrators, with generalization performances left unclear. Similarly, Cam-
poli et al.39 explored different ML algorithms to regress the source terms of the ODEs system modeling the 
thermochemical relaxation processes. A coupling between a conventional integrator and the ML regressor was 
attempted, and speed-up performances were analyzed. They also tried to infer the solution of Euler’s equations 
for a single one-dimensional reacting shock flow scenario by leveraging a deep neural network (DNN). Scherding 
and coworkers40 developed a lower-dimensional surrogate to compute the thermochemical properties of the gas 
mixture to be used in place of any high-dimensional look-up non-equilibrium thermodynamic library. However, 
despite the considerable speed-up performances and encouraging perspective, they did it only for steady-state 
solutions, targeting specific flow conditions and considering only chemical and not thermal non-equilibrium. 
The above-mentioned frameworks lack generalization performances and do not impose physical constraints 
during the surrogate construction, making them less suitable for CFD simulations. Instead, the present study 
aims to provide a prototyping tool that can replace the master equations with a surrogate that preserves the 
original’s essential properties and physical constraints while being orders of magnitude faster and able to cover 
an extensive range of physical conditions. The present work augments the framework introduced by Zanardi 
et al.41, and it introduces a new machine learning-based method for solving non-equilibrium flows by combining: 

	 i.	 Coarse-graining, i.e., a reduced order modeling (ROM) technique that extracts meaningful physics from 
the master equations10,42–45, in general, by leveraging unsupervised learning adaptation to seek the optimal 
grouping configuration46. The so-derived reduced system of equations models the dynamics of groups of 
states, addressing the high-dimensionality problem characterizing the StS models.

	 ii.	 Neural operators, i.e., a ML-based surrogate that approximates the integral solution operator of a family 
of partial differential equations (PDEs) to bypass conventional numerical integration47.

Coarse‑graining.  Constructing a surrogate for high-fidelity quantum-state-specific chemistry models to 
describe non-equilibrium phenomena is not a simple task as they rely on the solution of an overwhelmingly large 
number of differential equations (order of 105)5. More importantly, the mathematical closure of these equations 
requires the determination of a sizeable kinetic database that often cannot be computed owing to many processes 
(order of 1016 ) to be considered. Therefore, performing first a physics-preserving dimensionality reduction is of 
paramount importance. To this end, nonlinear manifold learning techniques such as autoencoders48, diffusion 
maps49, or kernel PCA50 could be employed. Recently, Oommen et al.51 proposed learning high-dimensional 
complex dynamics by combining neural operators and autoencoders. Their application first reduced the prob-
lem’s dimensionality by training a convolutional autoencoder and then learned the low-dimensional dynamics 
lying in the latent space using a deep neural operator. However, although powerful in applications requiring 
dimensionality reduction, autoencoders lack physical interpretability and introduce spurious correlations, not 
necessarily guaranteeing a discrete separation of temporal scales. To overcome these limitations, our approach 
relies on a class of physics-based reduced-order coarse-grained (CG) models52–54. In chemical kinetics, coarse-
grained modeling has extensively been used to describe non-equilibrium phenomena of atomic and molecular 
species45,46,55–58. The central idea in the proposed CG model is to combine the solution of the coarse-grained 
dynamics with the partial equilibration of the underlying microscopic structure. The concept of partial equilib-
rium suggests applying the maximum entropy principles (MEP) to reconstruct the unresolved scales or physics. 
This choice is of paramount importance, as it ensures the physical consistency of the model by enforcing the 
principle of detailed balance and ensuring the positivity and boundness of the distribution function.

Neural operators.  The second basis of the proposed methodology aims to address the stiffness associated 
with thermochemical processes, characterized by a broad spectrum of temporal scales, ranging from the flow 
time scales to time scales that are orders of magnitude smaller. This work uses DNNs to infer the generalized 
solution of the governing equations to bypass the conventional numerical integration. In literature, a series of 
new ML-based paradigms for speeding up the numerical simulation of partial differential equations59–65 have 
been proposed over the past few years. In particular, this work leverages the family of neural operators47,66–70, 
DNN-based surrogates designed to learn or discover solution operators defined by the mapping between inputs 
of a dynamical system, such as initial or boundary conditions (ICs/BCs), and its state. We employ a parametric-
based approach to operator learning, introduced first by Chen et al.71 and then recently extended by Lu et al.72 In 
their work, Lu and coworkers introduced DeepONet, a novel network architecture that effectively approximates 
the solution operator of linear and nonlinear parametric PDEs. DeepONets have found applications in various 
fields of physics73,74, including hypersonics with the work of Mao et al.75, who approximated the fluid flow evo-
lution and concentration profiles downstream of a normal shock with a DeepONet-based surrogate. Although 
Mao et al.’s work is significant for the scientific community, it relies on a simple physical model that cannot 
correctly represent the non-equilibrium distribution of internal energy states, which is crucial for the current 
study. Additionally, their approach lacks physics constraints during the design and training phase of the model, 
such as physics-informed (PI) machine learning methodologies employed in this work, commonly known as 
PINNs76–81. These techniques impose constraints by penalizing deviations from governing equations, enhancing 
the model’s generalization performance. This new class of machine learning models, called physics-informed 
deep neural operator (PI-DeepONet)82–85, which combines physics-informed techniques with the DeepONet 
architecture, was initially introduced by Wang et al.82 and successfully applied to construct surrogate solution 
operators for various partial differential equations (PDEs), demonstrating excellent results.
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Proposed approach.  The combined use of coarse-graining and neural operators is of primary importance. 
On the one hand, the mere application of neural operators does not resolve the high-dimensionality problem, as 
it is not straightforward to design and train an efficient surrogate for thousands of coupled differential equations. 
On the other hand, dimensionality reduction does not solve the issues with integration, as small steps are still 
needed to stably integrate the reduced system of equations. For these reasons, the proposed framework (Fig. 1) 
is characterized by a novel physics-inspired architecture based on a hierarchy of DeepONets used to learn the 
solution operator for multiple coarse-grained configurations to resolve different scales of the phenomena con-
sidered. The CG surrogate herein proposed, referred to as CG-DeepONet throughout the rest of the paper, is 
constructed by training each scale sequentially and employing transfer learning between them. In this sense, our 
framework is in line with recent operator learning techniques for multi-scale systems86–91. Among the latest ones, 
Liu et al.86 proposed a promising hierarchical time-stepper approach for solving the system dynamics. In their 
approach, they trained multiple neural networks to capture different timescales of the physical phenomenon by 
varying the integration step. We also recall the work of Migus et al.87, who designed a multi-scale architecture 
based on multi-pole graph neural operators (MGNO) by embedding multi-resolution iterative methods92. Liu 
and coworkers88 drew inspiration from hierarchical matrix methods to develop their multi-scale hierarchical 
transformer. Furthermore, Liu and Cai89 integrated multi-scale deep neural networks (MscaleDNNs)93 within 
the DeepONet architecture. These innovative approaches open up new possibilities for more accurate and effi-
cient modeling of multi-scale complex systems, and the paradigm proposed in this work builds upon these 
advancements. Indeed, our framework allows the development of a parsimonious and autonomous tool that can 
quickly deliver the optimal thermochemical representation of the gas given initial conditions and time instant 
by adaptively choosing the most efficient and physically accurate grouping resolution. The need for adaptation 
is a direct consequence of different physical scenarios arising in multidimensional numerical simulations, rang-
ing from equilibrium or near-equilibrium to strong non-equilibrium conditions. A controller-acting surrogate, 
identified as Neq-DeepONet in the remainder of this paper, is responsible for the model adaption to the local 
flow conditions. In this sense, our framework can be viewed as a multi-fidelity composition of DeepONets and 
shares analogies with some recent works on the topic94–96. However, the novelty of our approach stems from the 
definition of such a composition based on the maximum-entropy coarse-grained modeling, which is consistent 
with the underlying physics.

Physics‑informed attributes of the surrogate.  In this paragraphs, we highlight the physics-informed 
features of the proposed approach, which take the form of either soft or hard constraints imposed on the 
surrogate: 

	 i.	 Dimensionality reduction in the state space. In addition to the dimensionality reduction in the space of 
the initial conditions automatically carried out by the DeepONet based on the scenarios provided during 
training97, a physics-based reduction is performed in the state space (i.e., in the space of the discrete energy 
states) by grouping states that are likely to be found in local equilibrium46,57. Only briefly introduced above, 
such a coarse-graining approach will be detailed in Section “Physical modeling”.

	 ii.	 Physics-consistent architecture components. A Boltzmann transformation layer is built into the surrogate 
to enforce the equilibrium distributions between states in the same group, as explained in Section “Neural 
operators”.

Figure 1.   Schematics of the proposed approach. Combining coarse-graining (a) and hierarchical DeepONets 
(b). (a) Reduced order modeling technique based on clustering the species’ quantum energy states (schematized 
as black dots and as functions of vibrational, ǫv , and rotational energy, ǫJ ) into macroscopic bins. In the figure, 
three different levels of hierarchical clustering are shown. (b) Tree visualization of the hierarchical deep learning 
framework, where the leaf nodes correspond to separate DeepONets (one for each macroscopic bin), which take 
as inputs the initial conditions, ic, and time, t.
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	 iii.	 Interpretable prior distributions for the network parameters. As discussed in Section “Neural operators”, 
the addition of Boltzmann layers allows the imposition of prior distributions for the network parameters 
that, when propagated to the state populations (e.g., mass fractions), produce equilibrium distributions 
between distinct groups of states. Therefore, such priors can provide physically consistent solutions even 
for un-trained surrogates.

	 iv.	 Physics-informed loss function. The framework employs a physics-informed loss as a soft constraint, which 
biases the surrogate predictions towards physically consistent solutions. In particular, the employed hybrid 
strategy, described in Section “Neural operators”, combines data from high-fidelity simulations (or experi-
ments) to anchor the solution to frequent or reproducible real-world scenarios and the residual of the 
governing laws to ensure generalizability to different unseen physical conditions.

	 v.	 Hierarchical architecture and transfer learning. The training strategy involves sequential fine-tuning transfer 
learning between different temporal scales, explained in Section “Neural operators”. On the one hand, 
this approach allows for partially preserving the learned physics. On the other hand, it enables surrogate 
adaptation and knowledge transfer from one temporal scale to another, speeding up the training process 
of the entire network.

	 vi.	 Physics-driven online pruning at the prediction phase. As detailed in Section “Training strategy”, an addi-
tional (controller-acting) surrogate learns the dynamics of a physically-relevant non-equilibrium control 
variable, determining the minimum resolution level required to accurately describe the system dynamics 
while avoiding explicitly computing unnecessary fine scales. During the prediction phase, this additional 
surrogate is responsible for selecting which component of the overall architecture needs to be queried.

The paper is structured as follows. First, in Section “Physical modeling”, the basic framework and derivation of the 
thermochemical non-equilibrium model are provided, along with the details of the one-dimensional numerical 
experiment conducted in this work. Next, in Sections “Neural operators” and “Training strategy”, the proposed 
ML framework and the developed adaptive technique are described, respectively. In the “Results” section, the 
accuracy and performance of the surrogate with and without adaptive inference are illustrated and discussed in 
detail for both 0-D and 1-D test case scenarios. Finally, in the “Conclusions” section, final remarks are presented 
along with possibilities for future work. Additional information can be found in the Supplementary Information 
for interested readers.

Methods
Physical modeling.  Modeling of chemically reacting flows relies on the solution of Navier-Stokes equations 
complemented by additional conservation equations accounting for changes in the chemical composition and 
non-equilibrium relaxation of the energy modes. This extra set of equations often represents a computational 
burden that makes reacting non-equilibrium flows hard to solve. An extensive discussion on non-equilibrium 
modeling can be found in reference45.

The most general way to express the extra set of governing equations is

where ρi and ei indicate the mass density and the internal energy of the i-th pseudo-species (i.e., a particular 
species’ internal degree of freedom treated as a state variable). Additionally, m denotes the moment order (0, 1, 
2, etc.), �m

i  the reactive source terms, D/Dt the Lagrangian derivative, and J m
i  the dissipative/diffusion terms. 

Depending on the assumptions made in the definition of the chemical species indicated by i, three different 
models can be identified: 

	 i.	 If i refers to a particular energy state, ǫi (i.e., rovibronic i = (el, v, J) ), the approach is called state-to-state 
(StS) master equations5,6. In this case, m is set to 0.

	 ii.	 If ρi indicates the density of a group of states, the approach is named coarse-grained (CG) modeling or 
coarse-grained master equations (CGME)42,45,46,57,58,98–100. In this case, the conservation equations for mass, 
momentum, and energy are complemented by additional equations (i.e., m = 0 and/or m = 1 ) to model 
chemical composition and internal energy modes.

	 iii.	 In the case of binning one group per internal energy mode, which is a particular case of (ii), we have the 
multi-temperature (MT) models101.

Figure 2 compares the levels of physical accuracy and resolution among the three models mentioned above for 
O 2+ O kinetics, the only system considered in this work. A substantial loss of physical information can be noticed 
moving from the internal energy states distribution obtained with the StS model to the one defined by Park’s 
two-temperature model101, which is a particular case of the MT models, where all the states are collapsed along 
a straight line. Differently, the CGME approach better captures the StS distribution by modeling the dynamics of 
multiple clusters of states (27 in Fig. 2, namely the CGME27 model). In this work, only the coarse-grained master 
equations approach will be employed to construct our surrogate, which is tested in both 0-D and 1-D scenarios.

Coarse‑grained modeling.  The numerical solution of the master equations, whereby the dynamics of each inter-
nal energy state is captured via the direct solution of the corresponding mass conservation equations, is often 
impractically expensive. Moreover, it is usually not required since the internal energy distribution is generally a 
composition of partial equilibria rather than a complete non-equilibrium state46. The concept of local or partial 
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equilibrium suggests the application of the principle of maximum entropy to reconstruct the unresolved scales 
of physics10,44,45. The construction of a coarse-grained model is accomplished by adopting a two-step procedure 
which goes as follows103: 

	 i.	 Group energy states into NG macroscopic bins according to a specific strategy;
	 ii.	 Prescribe a bin-wise distribution function to represent the population within each group together with a 

series of moment constraints.

This work employs a log-linear form for the bin-wise distribution function, which results in a thermalized local 
Boltzmann distribution within individual bins, defined as follows

where the bin-specific coefficients αP and βP are expressed in function of the macroscopic group constraints (i.e., 
number density, energy, etc.). The total population and energies of the different bins are the set of unknowns for 
the reduced-order system. The governing equations for these macroscopic constraints can be derived by taking 
successive moments of the StS master equations, using (ǫi)m for m = 0, 1, . . . as weights (see Supplementary 
Sect. S.1.2 for more details).

While more accurate strategies have been developed during the past few years46,57, the model-reduction 
approach employed in this work is the rovibrational energy-based grouping technique99,100, which lumps together 
energy states with similar internal energy regardless of their rotational and vibrational quantum numbers.

Zero‑dimensional chemical reactor.  We wish to investigate the behavior of oxygen molecules in their electronic 
ground state undergoing dissociation when subjected to sudden heating in an ideal chemical reactor. We make 
the following assumptions: 

	 i.	 The 0-D reactor is plunged into a thermal bath maintained at constant temperature T.
	 ii.	 The translational energy mode of the atoms and molecules is assumed to follow a Maxwell-Boltzmann 

distribution at the temperature T of the thermal bath.
	 iii.	 At the beginning of the numerical experiment, the population of the rovibrational energy levels is assumed 

to follow a Boltzmann distribution at the internal temperature Tint0.
	 iv.	 The volume of the chemical reactor is kept constant during the experiment, and the thermodynamic 

system is closed (no mass exchange with the surrounding environment).
	 v.	 Only αP in Eq. (2) is modeled for each bin P, while βP = 1/(kBTP) is kept constant during the 0-D simula-

tion, with kB being the Boltzmann’s constant and TP = T.

Therefore, Eq. (1) reduces to

(2)F i
P(ǫi) : log

(
gi

ni

)
= αP + βPǫi ,

Figure 2.   Normalized quasi-steady state (QSS) rovibrational states distribution for different models. The level 
of physical accuracy can vary significantly depending on the choice of the thermochemical model. The orange 
dots are determined by low-fidelity Park’s two-temperature model102, e.g., a particular MT model, the blue ones 
by the 27-groups CG grouping strategy, and the grey ones by the high-fidelity StS modeling. Initial conditions 
used for the 0-D simulation: P

0
= 3 000 Pa , XO0

= 0.2 , Tint0 = 1000 K , T = 10 000 K.
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where fi refers to the corresponding Maxwell-Boltzmann equilibrium value of specie i at temperature Tint0.
Since the goal is to learn the integral solution operator of the rovibrational CG master equations to be able 

to deliver accurate predictions in multidimensional CFD simulations characterized by a wide range of physical 
scenarios, we aim to generalize over the space of initial conditions (ICs) and time domain. The ICs are generated 
by defining the initial pressure P0 , the initial molar fraction of atomic oxygen XO0 , the translational temperature 
T, and the initial internal temperature Tint0 for which a Boltzmann distribution is prescribed for the O 2 bins. 
In this work, the domain in which the initial conditions have been sampled is defined in table 1 as minimum-
maximum pair values. For all the possible sampling scenarios, T is greater than Tint0 , which implies that thermal 
excitation and dissociation processes are the dominant phenomena occurring in the reactor.

Regarding the time domain, we train the model over an interval of [0,10−2 ] s, covering most excitation and 
dissociation processes for the non-equilibrium problem under investigation.

One‑dimensional numerical experiment.  Following the approach used by Zanardi et al.104, a one-dimensional 
shock case scenario is employed to test the ML-based framework proposed in this work. The governing equa-
tions for the dynamics of inviscid, one-dimensional gas flows are given by the Euler equations:

where t represents time and x represents space. It is worth noting that Eq. (1) is the Lagrangian version of Eq. (4), 
including an additional diffusive term. The vectors U , F , and S represent the conservative variables, inviscid fluxes, 
and source terms, respectively. They are defined as follows:

where the total energy and enthalpy per unit-mass are E = e + u2/2 and H = E + p/ρ , respectively. The ther-
modynamics of the system is explained in detail in the Supplementary Sect. S.1.1, and the variables e, u, p, and 
ρ have their usual meanings in the context of gas dynamics. The source term �0

i  represents the mass production 
term, which is the same one as defined in Eq. (3) and described in detail in the Supplementary Sect. S.1.2.

The flow governing equations (4) are discretized in space using the finite volume method, with inviscid fluxes 
evaluated using van Leer’s flux vector splitting in conjunction with the second-order upwind-biased MUSCL 
reconstruction procedure105,106. The time integration method is based on the operator-splitting technique pro-
posed by Strang107. This method integrates the transport operator, T(U) = ∂F/∂x , and the reaction operator, 
R(U) = S , sequentially in a symmetric fashion:

where �t is the time step. The splitting formulation is second-order accurate, strongly stable, and symplectic for 
non-linear equations. Its convergence and stability properties have been extensively studied for reacting flow 
simulations108–111. The use of an operator-splitting approach facilitates the straightforward insertion of the con-
structed neural operator into the framework described by Eqs. (8) to (11). Instead of using an implicit scheme 
to integrate the stiff reaction step described by Eq. (9), a simple evaluation of the trained surrogate is performed 

(3)
dρi

dt
= �

0
i (ρi ,T)
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,
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Table 1.   Space of initial conditions. Minimum-maximum pair values for each IC variable.

P
0
 [Pa] XO0

Tint0 [K] T [K]

Min 1 000 0 1 000 8 000

Max 10 000 0.95 8 000 15 000
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to evolve the solution in time. The surrogate takes the solution from the first flux integration step as input and 
provides the evolved gas state resulting from the reaction operator to the last step of the splitting scheme.

The main configuration details of the one-dimensional shock case scenario used herein are given below.

–	 Initial and boundary conditions. Table 2 presents the piece-wise initial conditions. On the left side, freestream 
conditions corresponding to a hot gas at T = 3000 K and u = 3000 m/s are imposed. This choice is made 
because, at this temperature, the equilibrium state of the gas results in a reasonable amount of dissociated 
oxygen. It is important to note that this condition is not a requirement of the method itself but rather a con-
sequence of only modeling the O 2+ O kinetics without considering the O 2+O2 system, where molecular 
oxygen alone is sufficient to activate the thermochemical processes. On the right side, the initial solution is 
set equal to the post-shock equilibrium state. A supersonic inflow boundary condition (BC) is imposed on 
the left side, where all characteristics are incoming, by prescribing all flow variables. A subsonic outflow BC 
is imposed on the right side with a specified pressure value.

–	 Time and space grid. The one-dimensional domain length is set to L = 0.1 m, and the spatial discretization 
uses a space step of �x = 4× 10−4 m, resulting in a total of 250 cells. The integration is performed until the 
shock profile is fully developed, using a total of 500 iterations with a constant time step of �t = 1.33× 10−7 
s determined by the freestream velocity while maintaining a maximum CFL number of 1 to ensure numerical 
stability.

To ensure that the left and right equilibrium conditions are fully guaranteed and avoid any error accumulation 
due to even minor discrepancies in the surrogate’s predictions, the inference is performed only for those cells 
experiencing non-local thermodynamic equilibrium (NLTE) effects, meaning for gas thermochemical states dif-
ferent from the ones shown in table 2. However, to fairly compare the numerical integrator’s and the surrogate’s 
performance, the inference is performed for the whole 1-D domain, and the predictions for those cells in the 
same conditions as in table 2 are simply disregarded.

To ensure physical consistency, the surrogate must learn the integral solution of the zero-dimensional formu-
lation of Eq. (4), specifically Eq. (9), which describes an adiabatic thermodynamic system without energy or mass 
exchange. Consequently, the isothermal assumption made in the 0-D analysis does not apply to this particular 
test. To accurately represent the adiabatic case, an additional DeepONet is required on top of the surrogate 
described in the next section. This additional DeepONet is employed to model the translational temperature T, 
enabling a more comprehensive and accurate representation of the complex thermochemical dynamics in the 1-D 
domain. Therefore, a distinct surrogate is constructed specifically for this simulation, with detailed information 
on data generation and network construction provided in the Supplementary Sect. S.3.1.

Neural operators.  DeepONet.  Building upon the original formulation of the DeepONet by Lu et  al.72, 
whereby the solution operator G maps an input function u and the continuous coordinates y of G(u) to a real sca-
lar value, this work extends the DeepONet framework to accommodate the high-dimensional nature of the mas-
ter equations, thus obtaining an output vector G(u)(y) ∈ R

D , where D is the number of the output variables41,67. 
As illustrated in Fig. S1 in the Supplementary Information, the DeepONet architecture is characterized by two 
different deep neural networks: the “branch net” and the “trunk net”. The modified version is characterized by 
multiple branches, one for each output variable, which takes u as input and returns a feature embedding α ∈ R

p 
as output. Instead, the trunk net takes the continuous coordinates y as inputs and outputs another feature em-
bedding φ ∈ R

p . This block is shared between different branches67,97, gaining computational efficiency. In the 
framework of operator learning for ODEs, u represents the space of initial conditions, whereas y is the time 
variable. To obtain a continuous and differentiable representation of the output functions of the DeepONet, the 
outputs of each branch and the trunk networks are merged via dot product as follows:

One can notice that Eq. (12) reminds the proper orthogonal decomposition (POD) formulation112, as high-
lighted by Lu et al.67, and more generally Eq. (12) can be related to the singular value decomposition (SVD) fac-
torization, as explained by Venturi and Casey97. From this perspective, the trunk net learns the p most important 
modes of the dynamical system, φ , while the branch net learns the coefficients α of the expansion. Under this 
perspective, the shared-trunk version of the DeepONet works reasonably well only when the dynamics of the 
modeled variables are similar to each other such that they can share the same basis φ97.

(12)Ĝ(i)
(u)(y) =

p∑

k=1

α
(i)
k (u)φk(y) for i = 1, . . . ,D .

Table 2.   Initial conditions for one-dimensional shock case scenario.

x [m] u [m/s] p [Pa] XO T [K]

Freestream ≤ 0.04 3 000 2 940 0.12 3 000

Post-shock (LTE) > 0.04 492 29 598 0.39 4 245
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Multi‑scale hierarchical coarse‑grained model.  Similar to what is done in adaptive mesh refinement (AMR) 
techniques used in CFD, the accuracy of the CG model can be improved by increasing the number of groups but 
at a higher computational cost. The improvement in accuracy is explained by the larger range of scales (or kinetic 
processes) that can be resolved. Indeed, taking as an example the rovibrational energy-based grouping strategy 
employed in this work, if we recursively split the energy space of the internal states by following a cascade in the 
groups, all the micro-groups inside the corresponding macro-group quickly reach the same equilibrium value, 
showing a fast dynamical behavior. Consistently, we leveraged the multi-scale nature of the physical problem to 
construct a physics-inspired ML-based surrogate (see Supplementary Sect. S.2.2 for all the details) by sequen-
tially learning the different timescales of the thermochemical phenomena occurring inside a 0-D reactor.

–	 Timescale 1. Chemical dissociation of O 2 molecules (irrespective of their internal excitation) and creation 
of O atoms are the slowest processes that can be learned. As shown in Fig. 3a, the outputs of the DeepONet 
employed for this first timescale, denominated as CG-DeepONet(1,1) (i.e., the surrogate’s component in charge 
of predicting the group number one in the scale number one), are simply the mass fractions of O and O 2 . 
So, we are assuming that all the internal states can be clustered in one unique group, but we do not solve for 
the rovibrational-translation energy transfer phenomena. As concerns the physical input of the model, u 
represents the initial conditions of the reactor, which is characterized by translational temperature, T, reac-
tor density, ρ , and initial mass fraction of O 2 , while the independent variable, y , of the operator G(u) is the 
time, t: 

 In (13) and Fig. 3a, a series of two or three superscripts have been used, where the first one corresponds to 
the timescale investigated, the second the DeepONet index, and the last one the O 2 group. They will help to 

(13)

u =
[
T , ρ, YO20

]
∈ R

3

y = t ∈ R
1

Ĝ(u)(y) =
[
ŶO|u(t), Ŷ

(1,1,1)
O2

|u(t)
]

∈ R
2

.

Figure 3.   Hierarchical surrogate for multi-scale coarse-grained dynamics. (a) Schematics of the network 
architecture for 1-group CG master equations (CGME1). (b) Schematics of the network architecture for 
3-groups CG master equations with the additional EquilSoftmax layer. (c) Schematics of the complete 
hierarchical network architecture. (d) O 2 rovibrational distribution for 1-group (CGME1), 3-groups (CGME3), 
9-groups (CGME9), and 27-groups (CGME27) coarse-grained grouping.
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identify the different variables and DeepONets used for each timescale. The Softmax function in Fig. 3a is 
applied to the dot product outputs after these being linearly transformed. It guarantees the mass fractions to 
be positive values and the mass to be conserved.

–	 Timescale 1-2. In the following timescale, we start modeling the energy exchange processes for O 2 . To do so, 
the internal states are clustered into three groups (CGME3) which is equivalent to uniformly splitting the 
energy space covered by the unique group from the previous timescale (CGME1) into three parts, as shown 
in Fig. 3d. To learn the dynamics of this new system, the information learned from the previous timescale is 
leveraged by adopting transfer learning for the calibrated weights of CG-DeepONet(1,1) . The new DeepONet is 
designed to learn the 3-group normalized distribution. The mass fractions of the three bins are then obtained 
by multiplying the modeled distribution by the total mass fractions of O 2 predicted by CG-DeepONet(1,1) , 
as shown in Fig. 3b, ensuring the conservation of mass across the two scales. In terms of architecture, two 
are the difference between Timescale 1 and Timescale 2. The first is related to the inputs, u , of the branch net, 
which considers the initial mass fractions of all the three groups, YO20

 . Since Timescale 1 takes as an input 
the total mass fraction of O 2 as described in (13), the three values are summed to get the correct input for 
CG-DeepONet(1,1) . The second aspect concerns the replacement of the Softmax layer with the EquilSoftmax 
one. The latter can be considered as an extension of the former, and it has the following formulation: 

 where Qi(T) is the internal partition function of group i. Therefore, if x(2,1,i) = 0 ∀ i, all the groups are in 
equilibrium at the translational temperature T. In the case of isothermal reactors, T is provided as one of 
the inputs u . Conversely, for adiabatic systems like the 1-D test case scenario considered in this work, T is 
predicted by a separate DeepONet. This additional transformation layer, referred to as the Boltzmann layer 
in the introductory section, enforces local equilibrium distributions between states in the same group by 
construction. Moreover, it positively impacts the regularization of the network by providing a physically 
consistent prior distribution to anchor the network parameters, specifically a zero-valued distribution, which 
can be effectively regulated using L2 regularization. This ensures that the surrogate predictions remain closely 
aligned with the known reference equilibrium state, preventing excessive divergence and enhancing the 
robustness of the surrogate. It is worth highlighting that during the joint training process, all the parameters 
of CG-DeepONet(1,1) are re-trained together with the ones of CG-DeepONet(2,1) , rather than being kept 
frozen. This is performed by employing fine-tuning transfer learning with L1-SP and L2-SP regularization 
as described in reference113.

–	 Faster Timescales. It is possible to increase the accuracy of the CG model by further splitting the energy 
space into a higher number of clusters. Therefore, by sequentially repeating the same procedure that has 
been done for augmenting the model from Timescale 1 to Timescale 2, we can construct a surrogate that can 
predict the dynamics of high-resolution CG models. In our case, we further split each bin into three more 
bins, obtaining first a 3-group CG modeling for Timescale 2, then a 9-group CG modeling for Timescale 3, 
and finally a 27-group CG modeling for Timescale 4. We treat each group’s triplet with a single DeepONet, 
and we apply the EquilSoftmax layer at the output of each entire timescale block. As explained in the previous 
paragraph, the predicted mass fraction of each macro-group multiplies the distribution of the corresponding 
three micro-groups, obtaining a hierarchical surrogate for multi-scale coarse-grained dynamics, as shown 
in Fig. 3c.

Training strategy.  Physics-informed neural networks (PINNs)76 can integrate data and physical governing laws 
by adding PDE residuals to the loss function of neural networks by relying on automatic differentiation. This 
capability can also be incorporated into the DeepONet framework (physics-informed DeepONet or PI-Deep-
ONet)82,83. Specifically, the following composite loss function is minimized to train the network parameters, θ:

where Ld(θ) is computed based on the discrepancy between predicted and given data points, Lr(θ) is the 
residual loss, Lic(θ) is the loss over the initial conditions of the 0-D reactor, and �(θ) contains the L1 and L2 
regularization loss. These terms can be expressed as follows:

where Nd , Nr , and Nic denote the batch sizes of the training data. Y  are the exact mass fraction values from direct 
numerical simulation of the CG master equations (CGME), whereas Ŷ  are the predicted ones from the surrogate. 
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Ŷ
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The parameters �d , �r , and �ic correspond to weight coefficients in the loss function that can effectively assign a 
different learning rate to each loss term. In this study, the error function ℓ is expressed as follows:

while the residual r ∈ R is

with �0 being the right hand side of Eq. (3).
Given the hierarchical structure of the proposed surrogate, the parameters of the entire network are trained 

by adopting a multi-step procedure: 

	 i.	 Fully data-driven optimizations. In this first step, the surrogate is trained sequentially from the slowest to 
the fastest timescale with only anchor and ICs points (�d = 1, �r = 0, �ic = 1) obtained from the numeri-
cal solution of the coarse-grained master equations: 

a)	 Training only Timescale 1 with data generated by solving CGME1;
b)	 Training jointly Timescales 1-2 with data generated by solving CGME3;
c)	 Training jointly Timescales 1-2-3 with data generated by solving CGME9;
d)	 Training jointly Timescales 1-2-3-4 with data generated by solving CGME27.

		     At each training step, the knowledge acquired from the previous iterations is preserved and used as 
a prior by employing fine-tuning transfer learning with L1-SP and L2-SP regularization as described in 
reference113. For instance, in step (b), the calibrated weights for Timescale 1 from step (a) are kept and 
finely retrained with the newly initialized parameters of Timescale 2.

	 ii.	 Hybrid physics-informed and data-driven optimization. The governing equations describing the CGME27 
model are now enforced in the trained surrogate from step (i.d) using the hybrid loss formulation shown 
in Eq. (15). The weight coefficients �i are automatically tuned using the learning rate annealing technique 
described in reference114. The tuning procedure involves balancing the gradients of different loss terms 
during back-propagation using �i as a re-scaling factor of the learning rate corresponding to each loss 
term. This technique ensures that the model’s parameters are updated in a balanced manner, giving equal 
importance to all the loss terms. The complete training history of the parameter values �i can be found in 
the Supplementary Sect. S.2.2.3.

The decision to incorporate the residual loss only in the final step is intended to accelerate the training of the 
entire surrogate. Data from numerical simulations serves as anchor points for frequent or commonly seen 
scenarios, while the residual of the governing laws ensures the model’s ability to generalize to different, unseen 
physical conditions.

Adaptive pruning technique.  Flow simulations are often characterized by regions of strong and weak 
non-equilibrium conditions of the gas. When the extent of non-equilibrium is large, the highest resolution is 
needed to resolve all the physical processes accurately. However, there are conditions for which the fine scales 
(or micro-groups) corresponding to the highest resolution CG model are in equilibrium with other neighboring 
groups or states. For these cases, adding resolution penalizes the computational efficiency rather than improving 
the model’s accuracy. In fact, under these conditions, the population distribution can be approximated with a 
Boltzmann distribution, and the low-fidelity CG model can accurately resolve their dynamics. Figure 4 illus-
trates the concept described above, where all the reconstructed low-lying energy states from different coarse-
grained (CG) models are considered to be in equilibrium. As a result, it is sufficient to predict the values of the 
first group of the CGME3 model, without needing to resolve all the timescales.

These observations indicate the need to introduce a controller in the algorithm that accurately determines the 
resolution level needed to describe the dynamics of the system, without explicitly computing unnecessary fine 
scales. In the following, the design procedure for the additional controller-acting surrogate is firstly outlined, 
including the definition of the control variable and the network architecture. Subsequently, the adaptive infer-
ence technique is described, which involves the dynamic pruning of unnecessary nodes in the CG-DeepONets 
hierarchical architecture. This online pruning process enhances computational efficiency by selectively skipping 
the evaluation of specific nodes based on the local thermochemical state of the gas.

–	 Physically-relevant non-equilibrium control variable. First, defining a metric that can quantify the physical 
information lost due to the coarse-graining procedure is crucial. This work employs the Euclidean distance 
between the Boltzmann reconstructed states of the highest resolution CG model available (i.e., Timescale 4) 
and the remaining low-fidelity ones. Since only the zeroth-order moment of the master equations is consid-
ered, the bin-specific coefficient α in Eq. (2) is selected to construct our metric, which can be expressed as 
follows: 
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ρ, Ŷ ,T

)∥∥∥∥∥
1

,



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15497  | https://doi.org/10.1038/s41598-023-41039-y

www.nature.com/scientificreports/

where ts and P (or p) refer to the timescale and its specific group, respectively. Equation (21) involves the com-
putation of the difference between the offsets of the log-linear Boltzmann distribution functions described 
in Eq. (2). The sum in Eq. (21) is performed over all the Np micro-groups of Timescale 4 that belong to the 
macro-group P of timescale ts. Figure 5a provides a visual intuition of Eq. (21) for the first CGME3-group, 
which consists of the sum of the drawn dashed black lines. We briefly mention that other options for con-
structing the metric could have relied on the Kullback-Leibler divergence computed between population or 
energy distributions at the different temporal scales.

–	 Controller-acting surrogate architecture. Given the defined metric, the design of the non-equilibrium con-
troller-acting surrogate requires a specific architecture. To maintain consistency with the coarse-grained 
operator network described in Section “Neural operators”, we again leverage the multi-scale connotation of 

(21)δ
(ts,·,P) =

1

Np

∑

p,I (4,·,p)⊂I (ts,·,P)

(
α
(ts,·,P) − α

(4,·,p)
)2

,

Figure 4.   Example of the adaptive strategy. (a) O 2 QSS rovibrational distribution for 1-group (CGME1), 
3-groups (CGME3), 9-groups (CGME9), and 27-groups (CGME27) coarse-graining. The dashed ovals 
identify those CG high-resolution groups that can be accurately reconstructed from the low-resolution ones. 
(b) Exploded view of the groups’ graph. The opaque dots represent the Boltzmann-reconstructed groups that 
correspond to the ovals in (a) and do not require evaluations of CG-DeepONets’ high-resolution components.

Figure 5.   Adaptive inference design. (a) Euclidean distance metric, δ , used to quantify the physical information 
lost due to the equilibrium assumption imposed in a too-large subspace in the energy phase. α represents 
the zeroth-order term, i.e., the offset of the log-linear Boltzmann distribution function defined in Eq. (2). (b) 
Schematics of the multi-scale network architecture of the controller-acting surrogate responsible for adapting 
the required coarse-grained model resolution based on the local flow conditions.
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the physical problem by separately modeling the underpredicted non-equilibrium values for each CG low-
fidelity model, as illustrated in Fig. 5b. An exponential transformation is applied to the surrogate outputs, 
and a single DeepONet is used for each triplet of values, following a similar approach as used for the CG-
DeepONets. More details can be found in the Supplementary Sect. S.2.3.

–	 Physics-driven online pruning. The composition of coarse-grained deep operator networks (CG-DeepONets) 
and non-equilibrium controller-acting DeepONets (Neq-DeepONets) allows the development of a technique 
that, given IC and time instant, adaptively predicts the groups’ distribution with the highest accuracy and 
lowest computational cost possible. This technique can be summarized as a two-step procedure which goes 
as follows: 

	 i.	 The first step involves querying the Neq-DeepONets to obtain the non-equilibrium control variable 
δ for each CG resolution level. This variable reflects the inaccuracy of the low-fidelity CG models 
in describing the non-equilibrium state of the gas at the upcoming time instant.

	 ii.	 The predicted δ is then compared with a user-chosen tolerance level, δtol . If the predicted value 
is lower than the tolerance, the resolution level of the specific low-fidelity CG model is deemed 
sufficient to accurately represent the reactor dynamics. In such a case, the leaf nodes of the corre-
sponding dependent tree in the CG-DeepONets model are temporarily pruned and not evaluated, 
as exemplified in Fig. 4b.

	    At this point, we highlight the twofold advantage of CG-DeepONets’ hierarchical structure. In fact, other 
than simplifying the training stage, the presence of the controller boosts the inference phase, as the surrogate 
relies only on the CG-DeepONets’ components that are truly required to characterize the non-equilibrium 
distributions. The details of the adaptive algorithm are presented in the Supplementary Sect. S.2.3.

Results
The framework discussed in the previous sections is used to construct a surrogate for an ideal chemical reactor. 
The first part of this section provides the details of the training and testing of the surrogate in isothermal 0-D 
scenarios, demonstrating its ability to learn the differential operator governing the physics of the reactor. The 
surrogate’s predictions are then compared against the solutions obtained from the numerical integration of the 
governing equations. Observables such as time-resolved distributions and its moments, including densities and 
energies, are employed for evaluation. Furthermore, details regarding the adaptive technique and a preliminary 
analysis of computational savings are provided. At the end of the section, the results of the one-dimensional 
numerical experiment are analyzed in terms of surrogate accuracy and performance.

Inference.  As explained in Section  “Physical modeling”, different initial conditions have been uniformly 
sampled from Table 1 to train and test the proposed ML framework. Figure 6 shows the broad ranges of the space 
of ICs for pressure, P0 , molar fraction of atomic oxygen, XO0 , and internal temperature, Tint0 . A fourth dimen-
sion should be considered since the translational temperature of the reactor, T, also varies. In Fig. 6, the red dots 
represent unseen test scenarios, whereas the black crosses represent the training points.

Figure 7a compares the exact solution computed by the numerical integrator and the surrogate’s predictions 
for one unseen scenario taken from the test data set in Fig. 6. The isolated blue line represents the evolution of 
the atomic oxygen taken from Timescale 1. In contrast, the others describe the dynamics of the 27 rovibrational 
energy-based groups predicted by Timescale 4. The inference has been performed by querying the CG-DeepONet 

Figure 6.   Space of initial conditions. The black crosses represent the set of training points, while the red 
dots identify the testing data set. Note: the figure is missing the last fourth dimension in the space of initial 
conditions, i.e., the translational temperature of the reactor, T.
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based on the vector of time instants generated from the numerical integrator and the given initial conditions, 
defined by 

{[
T , ρ, YO20

]
, tk

}M
k=1

 , with M the number of evaluation points.
From Fig. 7a, it can be observed that the predicted and exact solutions show excellent agreement. This 

indicates that the trained model is capable of accurate predictions for different and unseen initial conditions 
(additional test cases are presented in the Supplementary Sect. S.2.2.2). Negligible discrepancies can be noticed 
in various regions of the dynamics of the heat bath, which can be improved by further refining the trained 
model. To the author’s best knowledge, this work provides the first application of PI-DeepONets to a dynamical 
system containing many such degrees of freedom. The main reason for such good surrogation of the dynamics 
is that the hierarchical structure of the proposed deep learning framework embodies the multi-scale connota-
tions of the problem, showing higher accuracy and robustness compared to a vanilla DeepONet architecture 
(details provided in the Supplementary Sect. S.2.1.1). The micro-groups inside each macro-groups equilibrate 
faster between each other than with other ones outside it. For this reason, they show very similar behavior in 
their dynamics, which can be captured by the few modes discovered by the shared trunk. This aspect facilitates 
reaching high levels of accuracy with a relatively small number of network parameters. Indeed, the surrogate 
correctly predicts the dynamics of almost thirty species spanning a wide range of orders of magnitude (around 
12) in mass fractions values. Additionally, to expand the initial conditions’ space even further by keeping such 
a high accuracy level and relatively small network architecture, one could consider constructing multiple sur-
rogates. Each of these surrogates can be built with the same architecture but specialized for a local sub-domain 
in the space of the initial conditions.

Accuracy.  The relative L2-norm has been used as the error metric to evaluate the accuracy of the surrogate, 
consistently with reference82. In particular, the employed test error corresponds to the mean relative error of the 
surrogate’s predictions for Timescale 4 over all the examples in the test data set:

where NG = 27 represents the number of groups, N = 100 denotes the number of testing cases, and t represents 
a set of log-uniformly spaced points in the time domain. For this analysis, 1 000 points in time have been sampled 
from each testing scenario. The four highest errors of the inferred solution are presented in table 3. Once again, 
the reported values confirm the excellent agreement between the numerically integrated master equations and 
the predicted solutions, with a maximum relative L2-norm error of approximately 4.5%.

Surrogate predictions vs. numerically‑integrated thermochemical models.  To demonstrate the 
level of physical accuracy of the coarse-grained surrogate discussed in this study, a comparison is made against 
the reference CG solution, the high-fidelity state-to-state solution, and the computationally cheaper two-tem-
perature model of Park, which is a specific case of the multi-temperature models described in Section “Physical 
modeling”. The exact CG, StS, and Park’s solutions have been computed with traditional numerical integrators. 
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Figure 7.   Inferred solution. (a) Reference solution (solid line) versus prediction from the trained model 
(dashed line with markers). The isolated blue line represents the evolution of the atomic oxygen, while the 
remaining are the 27 groups of O 2 in ascending order of energy content per particle (top-down). Initial 
conditions used: P

0
= 3 617.24 Pa , XO0

= 0.4996 , Tint0 = 4 333.16 K , T = 9 742.13 K . (b) Predicted O 2 
rovibrational states distribution at three different time instants taken from the dynamics shown in (a).
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In Fig. 8, two different approaches are considered for Park’s model, one employing the less accurate but still 
widely used kinetics from reference102, derived from empirical methods or experimental data, and the other 
using the more recent QSS approach5, whose kinetic database is directly computed from state-to-state calcula-
tions. Figure 8 shows the evolution of the total mass fraction and internal energy content per particle of O 2 for 
the different models considered. It is evident from the figure that the coarse-grained grouping strategy employed 
in this work provides the closest solution to state-to-state modeling. Only Timescale 1 (or CG-DeepONet(1,1) ) 
of the proposed surrogate has been queried to produce the evolution of the total mass fraction of O 2 shown 
in Fig. 8a, which is in excellent agreement with the numerically-integrated CG solution. This is because CG-
DeepONet(1,1) implicitly contains all the information about the energy transfer processes between the 27 groups, 
as it has been trained with data from the integration of CGME27. However, while using only Timescale 1 is suf-
ficient for accurately predicting the dynamics of the total mass fraction of the reactor species, the same approach 
may not be accurate for predicting the total internal energy content of the molecule. This is because CG-Deep-
ONet(1,1) is specifically designed to model only the zeroth-order moment of the master equations and may not 
capture higher-order moments, such as the total internal energy content, with sufficient accuracy. Therefore, this 
quantity generally requires the evaluation of the overall surrogate, which includes the low-scale components 
CG-DeepONet(2:4,:) . The discrepancy between the CG surrogate’s predictions and the StS numerical solution in 
Fig. 8 is almost exclusively determined by the physical simplifications made by the CG model. In particular, the 
energy difference that can be noticed at the initial time instants is caused by the fact that the reconstructed states 
within each bin follow a Boltzmann distribution at the translational temperature T (for the assumptions made 
in Section “Physical modeling”). In contrast, the quantum energy levels for the StS solution follow a distribution 
at temperature Tint0.

The proposed hierarchical architecture could be upgraded to model higher-order moments of the master 
equations. This improvement could involve replicating the same architecture as the CG-DeepONets to model 
the internal energy content of every single bin. Consequently, CG-DeepONet(1,1) could correctly predict both 
zeroth-, i.e., total mass, and first-order moment, i.e., internal energy, of O 2 . In such a case, the low-scale compo-
nents CG-DeepONet(2:4,:) would not be required to predict the solution shown in Fig. 8b, but they might still be 

Table 3.   Test error. The four highest mean relative L2-norm testing errors (with standard deviations) of the 
trained model for Timescale 4.

Group Rel. error [%]

Ŷ
(4,2,6) 4.52± 2.44

Ŷ
(4,3,9) 4.12± 2.64

Ŷ
(4,9,27) 3.82± 1.59

Ŷ
(4,6,21) 3.35± 1.54

Figure 8.   Surrogate predictions compared to numerically-integrated thermochemical models. ◦ Black dashed 
line: state-to-state exact solution ◦ Blue line with markers: coarse-grained exact solution ◦ Blue dashed line 
with markers: coarse-grained surrogate predictions ◦ Orange line with markers: Park’s two-temperature model 
with QSS approach5 ◦ Orange dashed line with markers: Park’s two-temperature model with kinetics from 
reference102. Initial conditions used: P

0
= 3 000 Pa , XO0

= 0.2 , Tint0 = 1000 K , T = 10 000 K . (a) Evolution of 
total mass fraction of O 2 . (b) Weighted rovibrational energy evolution per particle of O 2.
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necessary for providing the correct distribution function of the quantum energy states when considering other 
physical phenomena, such as radiation.

Adaptive inference.  The advantage of the hierarchical architecture proposed in this work is the ability to 
tailor the model complexity to the specific localized flow conditions to obtain a computationally efficient yet 
accurate physical model. Figure S4 in the Supplementary Information shows an example of the dynamics of 
underpredicted non-equilibrium Euclidean metric computed via Eq. (21) for Timescale 1 and Timescale 3 for 
the same test case shown in Fig. 9. The values plotted in Fig. S4 can be considered a good reference for the space 
the proposed metric can span, as the analyzed test case exhibits considerable initial thermal and chemical non-
equilibrium. It should be noted that the values of δ(1,1,1) reported in Fig. S4a are almost an order of magnitude 
larger than Fig. S4b due to the more accurate modeling adopted in the latter. Overall, the trend is decreasing by 
approaching the equilibrium, except for the evident QSS region starting around 10−6 s, where all the quantities 
remain constant. δ(3,2,6) shows an interesting behavior in Fig. S4b, which corresponds to the sixth group of the 
9-groups rovibrational energy-based coarse-grained grouping strategy for Timescale 3, the one close to the dis-
sociation energy (5.115 eV). By observing the highly non-equilibrium StS dynamics at QSS of the states in this 
group (e.g., Fig. 2), it is clear that the highest resolution possible is necessary for that region of the energy space 
to model the dynamics of those states accurately5.

The solution obtained with the adaptive technique is compared with the exact one in Fig. 9 for two differ-
ent values of the underpredicted non-equilibrium metric tolerance, δtol . This value acts as a discriminant for 
assuming equilibrium inside each macro-group for all the timescales modeled. For δtol = 0.1 , the adaptation 
starts playing effect just before the QSS region, as can also be deduced from Fig. S4a, whereas for δtol = 0.5 , 
it already acts at the beginning of the dynamics. We can assert that for a value of δtol = 0.1 , the solution looks 
very similar to the exact one, supporting the effectiveness of the adaptive technique in terms of physical accu-
racy. The adaptive solutions shown in Fig. 9 have been obtained by solving the number of groups dictated by 
the respective δ reported in Fig. 10a as functions of time. From Fig. 10a, it is evident that the number of the 
solved groups decreases considerably by increasing the tolerance value, confirming the validity of the proposed 
adaptive technique. As already demonstrated in the previous section, the prediction of the total mass fraction 
of O 2 is independent of the tolerance used since our model has been trained such that even the lowest-fidelity 
coarse-grained model can correctly predict the actual mass of the reactor species. However, in the case of energy, 
the choice of the proper tolerance can play an essential role in predicting its correct value, as shown in Fig. 10b.

Figure 10c presents a preliminary performance analysis of the adaptive technique for the different tolerance 
values based on a comparison with the standalone CG-DeepONet model. The reported timings are obtained as 
the mean of 1000 different inference evaluations of the model per each physical time instant, conducted with 
a single central processing unit (CPU) core. The computations shown in Fig. 10c have been performed in the 
TensorFlow115 environment, which means that a large part of the network evaluation time involves Python call 
overhead. The bar plot illustrates that the adaptive technique outperforms the standalone surrogate at later stages 
of the system’s dynamical evolution, particularly when the composition approaches the asymptotic equilibrium 
value. The opaque bar chunks in Fig. 10c represent the contribution to the inference cost due to the Neq-Deep-
ONets surrogate. A great advantage of this methodology is also its flexibility, as computational costs and physical 
accuracy can be easily balanced by tuning the tolerance value, δtol . Moreover, inference with physics-informed 

Figure 9.   Exact vs. adaptive solution for different δtol . Exact solution (solid line) versus prediction from the 
trained surrogate (dashed line with markers) using the adaptive technique. The isolated blue line represents 
the evolution of the atomic oxygen, while the remaining are the 27 groups of O 2 in ascending order of 
energy content per particle (top-down). Initial conditions used: P

0
= 3 000 Pa , XO0

= 0.2 , Tint0 = 3 500 K , 
T = 8 000 K . (a) Underpredicted non-equilibrium tolerance used: δtol = 0.1 . (b) Underpredicted non-
equilibrium tolerance used: δtol = 0.5.



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15497  | https://doi.org/10.1038/s41598-023-41039-y

www.nature.com/scientificreports/

DeepONets is trivially parallelizable with graphics processing units (GPUs), which can remarkably boost the 
inference timings shown in Fig. 10c. Wang et al.82,83 have already demonstrated that PI-DeepONets can outper-
form and replace conventional numerical solvers even for long-time integration.

One‑dimensional shock case scenario.  In this section, preliminary results of a one-dimensional 
numerical experiment are presented, where the constructed surrogate is tested both with and without the adap-
tive technique.

Figure 11a,b present the final temperature and mass fraction profiles in the shock reference frame for the test 
case scenario described in Sect. 2.1. In both figures, the exact solution obtained using a thermochemical library 
is represented with black dashed lines, while the solution obtained using the surrogate without adaptation and 
employing adaptive inference with tolerance values of δtol = 0.01 and δtol = 0.05 are represented by blue, orange, 
and green lines, respectively. The integration using the surrogate produces physically correct solutions, with the 
largest differences noticed at the tail of the temperature profile, in particular when the tolerance value is high. As 
already explained in the previous section and demonstrated in Fig. 10b, the reason for these small discrepancies 
is due to the incorrect predictions of internal energy, which can result in incorrect temperature profiles while 
the conservation equation for total energy is integrated in time. The reconstructed microscopic distribution is 
also presented in Fig. 11c, showing a good agreement of the surrogate predictions with and without adaptation 
compared to the numerically integrated solution.

Figure 10.   Adaptive solution for different δtol . The evolution of the total mass fraction of O 2 is not reported 
here, as the model accurately predicts the solution regardless of the tolerance value used. (a) Total number of 
actually modeled O 2 groups. (b) Weighted sum of the grouped-specific O 2 rovibrational energy, with weights 
given by the groups’ distribution. (c) Computational cost comparison between the adaptive technique and the 
standalone CG-DeepONet model for single-time instant evaluation. The numbers on top of the bars are the 
corresponding number of groups, also shown in (a).

Figure 11.   One-dimensional shock solution. Comparison between exact and predicted final solutions in 
the shock reference frame, xs . ◦ Black dashed line: exact solution ◦ Blue line: surrogate predictions without 
adaptation ◦ Orange line: adaptive surrogate predictions with δtol = 0.01 ◦ Green line: adaptive surrogate 
predictions with δtol = 0.05 . (a) Translational temperature. (b) Total mass fractions of O 2 and O. (c) 
Reconstructed O 2 rovibrational states distribution at xs = 5× 10−4 m and corresponding Boltzmann 
equilibrium distribution function.



17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15497  | https://doi.org/10.1038/s41598-023-41039-y

www.nature.com/scientificreports/

Figure 12a,b provide a preliminary performance analysis of surrogate inference with and without adaptation. 
The timings are computed by evaluating only the integration time for the reactive step in Eq. (9) using a single 
CPU core within Fortran 2008 environment. The corresponding statistics, i.e., mean and standard deviation, 
are calculated over 500 iterations and averaged over the number of cells in the 1-D domain. The speedup statis-
tics are then obtained using the formula proposed by Díaz and Rubio116, which approximates the ratio of two 
independent normal random variables with a normal distribution. In Fig. 12a, the speedup of the standalone 
surrogate is presented as a function of time step, �t , which has been varied by changing only the number of cells 
and keeping everything else fixed. The surrogate inference is at least eight times faster than the serial integration 
performed with a conventional implicit scheme, in this case, the second-order backward differentiation formula 
(BDF2). Furthermore, the maximum speedup is reached when the integration time is much longer, which is 
expected since the integrator may need more steps to reach the final time, unlike the surrogate inference, which 
is independent of the total integration time. The computed speedup depends on various factors, such as the 
dimension of the network, the stiffness associated with the system of equations, the scheme and tolerances used 
for the ODEs integration, and the length of the integrated physical time. All these details for this particular test 
can be found in the Supplementary Sect. S.3. In Fig. 12b, a comparison is shown between the varying speedup 
with δtol obtained with the adaptive inference technique (light blue) and the constant one obtained with the 
standalone surrogate (light orange) for �t = 1.33× 10−7 s. As expected, increasing the tolerance values leads 
to higher speedups, which is consistent with the reported timings in Fig. 10c. However, this comes at a cost of 
reduced accuracy, as shown in Fig. 12c, which presents the increasing mean relative error for temperature and 
total mass fraction of O 2 with increasing δtol . The reference error values for the surrogate without adaptation 
are εYO2 = 0.93% and εT = 0.58% . It is noteworthy that the computation of the error does not include points 
in the domain where the gas experiences the left or right equilibrium thermochemical states, as the surrogate 
predictions are not considered in those regions. The increasing error is again related to the inaccurate predic-
tion of internal energy, as observed in the previous analysis of the temperature profile in Fig. 11a, and it may 
be exacerbated by the error accumulation issue, also shown by Zanardi et al.104 This highlights the importance 
of upgrading the surrogate to also model the internal energy content of each individual bin, as it can lead to 
improved accuracy in terms of the macroscopic quantities of interest. Nevertheless, this approach holds promise 
when scaled to multi-dimensional CFD simulations with millions of unknowns. For example, in hypersonic 
simulations, most domain points may lie in the equilibrium or near-equilibrium regions, while only a few points 
may be in strong non-equilibrium regions (such as shock proximity) where the evaluation of the entire surrogate 
is needed. In light of these considerations and the performance analysis performed, the adaptive technique has 
the potential to outperform the standalone model in a multi-dimensional simulation framework.

Conclusions
We proposed a new machine learning-based paradigm inspired and constrained by physical laws for solving 
multiscale non-equilibrium flows. The designed model (CG-DeepONet) sequentially learned the integral solu-
tion operator for multi-fidelity coarse-grained master equations by employing a physics-inspired hierarchical 
architecture, where physics-informed DeepONet (PI-DeepONet) represents the core element. Furthermore, we 
developed a controller-acting surrogate (Neq-DeepONet) to learn the dynamics of the underpredicted degree 
of non-equilibrium to tailor the model’s accuracy to the local non-equilibrium conditions. Finally, by combin-
ing the two, we designed a novel adaptive pruning inference technique for non-equilibrium thermochemical 
processes, which showed flexibility in balancing accuracy and computational cost.

Figure 12.   Surrogate performances and accuracy in one-dimensional simulation. (a) Speedup achieved using 
the surrogate without adaptation with increasing �t , which is equivalent to reducing the number of cells while 
maintaining a constant CFL. (b) Speedup achieved using adaptive surrogate inference with increasing δtol . (c) 
Mean relative percentage error for YO2

 and T as a function of δtol . The constant reference values for the surrogate 
without adaptation are εYO2 = 0.93% and εT = 0.58%.
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Overall, the proposed framework incorporates different key elements that enforce the underlying physics 
into the surrogate: (i) the physics-based dimensionality reduction in the state space; (ii) the additional layers 
enforcing the Boltzmann distribution functions, which in turn allow the imposition of prior distributions for 
the network parameters. When propagated to the state populations (e.g., mass fractions), such priors provide 
physically consistent solutions even when the surrogate is not trained (i.e., equilibrium distributions); (iii) the 
physics-informed loss; (iv) the hierarchical architecture and the related sequential fine-tuning transfer learning 
between different time scales, with mass conservation enforced; (v) the online pruning of the surrogate at the 
prediction phase through a parsimony-based approach that relies on an additional controller-acting surrogate 
informed by a non-equilibrium variable.

The methodology was applied to the study of chemical kinetics relevant for application to hypersonic flight 
and was tested on oxygen mixtures. However, the framework is not constrained to the chosen thermochemi-
cal configuration, but it can be extended to Air-5 mixtures (i.e., simultaneously with N 2 , O 2 , NO, N, and O 
species) or even other fields of physics spanning a wide range of temporal scales, such as electromagnetism, 
magnetohydrodynamics, and more generally, plasma physics. The proposed framework was tested in 0-D and 
1-D configurations, and the following results were obtained:

–	 In 0-D scenarios, the CG-DeepONet surrogate alone showed excellent physical accuracy compared to the 
numerical integration of the master equation, with a maximum relative error of 4.5%. It also exhibited good 
computational efficiency when the adaptive method was used, gaining more than 3X speedup in the regions 
of weak non-equilibrium.

–	 The 1-D numerical experiment demonstrated the flexibility of the proposed method in capturing complex 
dynamics and confirmed the good performances and accuracy of both standalone and adaptive versions of the 
constructed surrogate. The relative error was in the range of 1–4.5% with a corresponding 8X-13X speedup 
compared to conventional implicit schemes employed in an operator-splitting integration framework. As 
expected, the choice of high tolerances for the adaptive schemes and the consequent lack of degrees of free-
dom in characterizing the rovibrational distribution generated error accumulations in the predictions of the 
overall O 2 internal energy. In future work, we will treat the group temperatures as state variables together with 
the species mass fractions. This addition will have two benefits. Firstly, it will allow us to achieve comparable 
accuracy with fewer groups. Secondly, it will enable the accurate prediction of the O 2 internal energy by 
relying only on the first scale (i.e., CG-DeepONet(1,1) ), similar to what was achieved for the mass fractions 
(e.g., Fig. 8).

Future work will extend and test the framework to 2-D and 3-D simulations, leveraging its ability to be designed 
and constructed independently of geometric features of the problem. Additionally, alternative neural operator 
approaches other than DeepONets will be explored to mitigate the issue of error accumulation. Beyond the 
application and the numerical outcomes, this work serves as an example on how physics and machine learning 
can enhance each other, aiming for more interpretable and robust ML-based tools for the scientific community.

Data availability
The dataset used in the current study is available from the corresponding author upon reasonable request.

Code availability
The code used in the current study is available from the corresponding author upon reasonable request.
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