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MwdpNet: towards improving 
the recognition accuracy of tiny 
targets in high‑resolution remote 
sensing image
Dongling Ma *, Baoze Liu , Qingji Huang  & Qian Zhang 

This study aims to develop a deep learning model to improve the accuracy of identifying tiny targets 
on high resolution remote sensing (HRS) images. We propose a novel multi‑level weighted depth 
perception network, which we refer to as MwdpNet, to better capture feature information of tiny 
targets in HRS images. In our method, we introduce a new group residual structure, S‑Darknet53, as 
the backbone network of our proposed MwdpNet, and propose a multi‑level feature weighted fusion 
strategy that fully utilizes shallow feature information to improve detection performance, particularly 
for tiny targets. To fully describe the high‑level semantic information of the image, achieving better 
classification performance, we design a depth perception module (DPModule). Following this step, 
the channel attention guidance module (CAGM) is proposed to obtain attention feature maps for each 
scale, enhancing the recall rate of tiny targets and generating candidate regions more efficiently. 
Finally, we create four datasets of tiny targets and conduct comparative experiments on them. The 
results demonstrate that the mean Average Precision (mAP) of our proposed MwdpNet on the four 
datasets achieve 87.0%, 89.2%, 78.3%, and 76.0%, respectively, outperforming nine mainstream 
object detection algorithms. Our proposed approach provides an effective means and strategy for 
detecting tiny targets on HRS images.

Target detection in high-resolution remote sensing (HRS) images is currently an important area of research 
for intelligent interpretation of remote sensing images. Accurately identifying tiny targets in HRS images is the 
primary task of remote sensing image target  detection1–5. However, tiny targets in HRS images occupy only a few 
pixels, have indistinct features, and are easily affected by background interference. These factors make it difficult 
for existing network detection models to extract sufficient semantic information for these targets, resulting in 
poor detection and recognition performance and significant limitations. Therefore, detecting tiny targets in HRS 
images remains a significant challenge.

The emergence of deep  learning6–8 has provided an automated framework for feature extraction and rep-
resentation, including classification and targets  detection9–12. Currently, widely used deep learning detection 
algorithms can be mainly divided into two categories. The first category is two-stage targets detection methods. 
Since the proposal of Region-convolutional neural network (R-CNN) by Ross Girshick et al.13, improved algo-
rithms based on R-CNN have emerged successively, such as Fast R-CNN14, Faster R-CNN15, Mask R-CNN16, etc. 
These algorithms divide the targets detection process into two stages. Firstly, they determine the targets region 
and extract the feature information of candidate region targets. Then, they classify and recognize the regions 
using CNN to further predict and identify the position and category of candidate targets. The second category 
is one-stage targets detection algorithms, such as Wei Liu et al.’s  SSD17 and Joseph Redmon et al.’s  YOLO18. Cur-
rently, the latest algorithms in the SSD series mainly include  RSSD19 and  FFESSD20, and the YOLO series include 
 YOLOV421,  YOLOV522, and YOLOV6-M23 versions. These methods directly predict the position and category 
of the target through the network, so they have a faster detection speed.

Targets detection has always been a research topic, but the problem of detecting tiny targets has been largely 
overlooked. Existing deep learning-based targets detection techniques have mainly focused on four approaches: 
(1) Changing backbone network. For instance, densely connected convolutional network (DenseNet)24 and 
Scale-Transferrable Object Detection (STDN)25. (2) Increase receptive field. For example, the RFB module based 
on the Inception algorithm  structure26,27 and the TridentNet algorithm based on the ResNet-101  network28,29. 
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(3) Feature fusion. For example, the NAS-FNP feature pyramid  structure30. (4) Cascade networks, such as the 
R-FCN31 algorithm and the  NetAdapt32 algorithm. However, existing mainstream deep learning networks still 
have some problems in detecting tiny targets on HRS images. For example, the backbone network is difficult to 
effectively extract tiny target feature information, the tiny targets on an image are small in scale and can be easily 
scrambled or occluded, and the semantic feature information of the shallow feature map of tiny targets is weak.

Based on the above discussion and challenges of detecting tiny targets in HRS images, including the difficulty 
of effectively extracting target feature information, small target size, and weak feature response, we propose an 
effective framework called Multi-level Weighted Depth Perceptions Network (MwdpNet). This framework aims 
to address these challenges and improve the detection of tiny targets in HRS images. Our proposed MwdpNet 
uses a multi-level feature weighted fusion strategy to adaptively process semantic and analytical features of tiny 
targets, gradually restoring their edge information. The proposed MwdpNet also includes a deeper perception 
module and a channel attention guidance module to capture contextual information. The effectiveness and 
universality of our proposed MwdpNet are validated through experiments and comparisons with mainstream 
networks using a self-built dataset.

The main contributions of this paper are summarized as follows:

• We propose a framework for detecting tiny targets in HSR images, called MwdpNet, which combines low-level 
semantic information, high-level semantic information, multi-level feature information, and context-aware 
information. Furthermore, we construct a new grouped residual structure and propose a backbone-enhanced 
network, called S-Darknet53.

• A multi-level feature weighting and fusion strategy is proposed to combine shallow features from different 
layers, resulting in enhanced semantic features that enable the network to focus more on important semantic 
information of tiny targets. Additionally, the framework allows for the adaptive selection of high-quality 
training instances to stabilize model training and achieve accurate regression of tiny targets at various scales.

• To better represent features, a deeper perception module (DPModule) is proposed, which performs similar 
scale averaging on the enhanced shallow semantic features and converts the resulting convolutional layer 
features into vectors. To prevent the problem of dimensionality disaster caused by high-dimensional vectors, 
Principal Component Analysis dimensionality reduction algorithm is used. The reduced shallow enhanced 
features are then fused with deep features to form new vector features, which can express more rich semantic 
information of tiny targets.

• A channel attention guidance module (CAGM) is proposed to enhance multi-level features and multi-scale 
contextual representations. The CAGM employs multi-layer perceptrons to focus more on the positional 
sensitivity of HRS images.

Methods
The overall structure of our proposed MwdpNet framework is illustrated in Fig. 1. MwdpNet consists of a single-
stream encoder and decoder. The former extracts feature from the input image to obtain low-level features, while 
the latter fuses the processed feature maps. During the training process, the parameters are iteratively updated by 
minimizing the loss between the forward output and the reference output. (1) Encoder: In this paper, the input 
HRS image is feature-extracted through the encoder to obtain low-level features. It mainly consists of three core 
components: (a) backbone enhancement network; (b) shallow enhancement module; (c) DPModule. This section 
mainly introduces the backbone enhancement network, while other parts will be introduced in later sections. 
(2) Decoder: It consists of the Channel Attention Guided Module (CAGM) (Fig. 1d) and the pixel classifier 
(Fig. 1e). The CAGM module employs channel attention to boost the representation of multi-level features. 
Initially, the low-level features derived from the improved backbone network undergo max pooling and average 
pooling operations along the channel dimension. The resulting two channels are fused via channel fusion, yield-
ing new features. These new features, along with the high-level features, are then refined by the CAGM module. 
Ultimately, the classifier produces a binary image.

Backbone enhancement network. We improve the original residual network structure of Darknet-53 to 
form a new backbone enhancement network, S-Darknet53. We borrow the structure of  Res2Net33 to replace the 
original residual structure with grouped residuals. The original residual network structure is shown in Fig. 1f, 
and the improved grouped residual structure is shown in Fig. 1g. Compared to Res2Net, S-Darknet53 has faster 
detection with equal prediction accuracy. Meanwhile, S-Darknet53 effectively improves the extraction of the 
tiny targets’ features and enhances the table capability of tiny targets compared to Darknet-53. Each grouped 
residual structure is down-sampled by a 3 × 3 convolutional layer with a stride of 2 between them. In the grouped 
residual structure, the 3 × 3 convolution in the residual block is replaced by smaller convolutions grouped into s 
channels ( x1, x2, x3,….xs ), where each channel group has the same width and height, and the number of channels 
in each group is 1/s of the input feature map. The computation process for each group is as follows:

where Conv3×3 is a 3 × 3 convolutional kernel, and s is the scale control parameter. By interweaving the feature 
information of different channels in the same layer of convolutional layers and connecting unused channels, 
this approach significantly improves the utilization of channel feature information in the backbone network and 
enhances its feature extraction ability to obtain more fine-grained features of tiny targets.

(1)yi =

{

xi , i = 1
Conv3×3

(

xi + yi−1

)

, 1 < i < s
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Multi‑level feature weighted fusion. We propose a multi-level feature weighted fusion strategy to fur-
ther enhance the network’s ability to recognize tiny targets, as shown in Fig. 2. In the deep learning-based image 
salient targets detection feature network, low-level features have precise details and edge information about the 
target, and fusing low-level features at different levels of the network can improve the performance of target 
detection. Firstly, the image is fed into the backbone enhancement network to output different levels of feature 
maps C = {C1, C2, C3, C4} . C1 is processed through BN and ReLU to obtain the M1 feature map with constant 
size channels. Then the number of channels of C2 is reduced by 1 × 1 convolution, and up-sampling is performed 
through BN, ReLU and bilinear interpolation to obtain M2 , which has different dimensions from C2 , and the 
above steps are repeated to obtain M3 , M4 feature maps. The main idea of the proposed strategy is to weight dif-
ferent dimensional channels of the base fusion feature map, thus selecting the important feature information of 
the fusion feature map. This enables the fusion of semantic features and early features to be more effective, and 
allows the semantic information of the shallow convolutional layers to be fully enhanced.

Deeper perception module. The deeper perception module proposed in this paper mainly deals with 
the shallow enhancement features obtained in the previous section and the deep features. Figure 3 shows the 
overall processing of the Deeper Perception Module (DPModule). The DPModule mainly consists of two steps. 
(1) Nearby scale averaging: the shallow enhancement features obtained in the previous section and the adjacent 
convolution layers are integrated, flattened into a feature vector, and reduced by Principal Component Analysis. 
(2) Fusion of shallow enhancement feature vector and deep feature vector: the dimensionality-reduced shal-
low enhancement feature vector and deep feature vector are cascaded from top to bottom to form a new dense 
feature vector.

Channel attention guided module. The Channel Attention Guidance Module (CAGM) proposed in this 
paper is an important module in our proposed MwdpNet network. CAGM focuses on location information and 
is designed to enhance the representation ability of multi-level features in HRS images. The design of the CAGM 
module is shown in Fig. 4.

Figure 1.  The framework and modules of the proposed MwdpNet. (a) Backbone network, (b) Shallow 
Enhancement Component for multi-level feature fusion, (c) DPModule, (d) CAGM, (e) Pixel Classifier, (f) 
Original Residule Block, (g) Grouped Residual Structure for network widening.
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Figure 2.  Multi-level feature weighted fusion strategy. It is divided into Part A and Part B, which can adaptively 
add weights to channels.

Figure 3.  Processing flow of the deep perception module. Step 1 is the nearby scale averaging, and Step 2 is the 
enhancement of shallow features.

Figure 4.  Channel attention guidance module CAGM. Obtaining Ms and AS by two types of pooling and one 
convolution after classification.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13890  | https://doi.org/10.1038/s41598-023-41021-8

www.nature.com/scientificreports/

The features obtained from the backbone network at each scale, denoted as F . Firstly, the acquired features 
F are pooled along the channel direction by maximum pooling and mean pooling, and then these two channels 
are merged using channel fusion to obtain new features. Immediately after that, a 1× 1 convolution is applied on 
the merged fused features with the multi-classification function Sigmoid to finally generate the spatial attention 
map Ms , which can be expressed as:

where, FSavg ∈ R
1×H×W and FSmax ∈ R

1×H×W  respectively represent average pooling and max pooling along the 
channel dimension. f 1×1 represents a 1 × 1 filter used in the convolution operation.

Loss function optimization. Due to the difficulty in classifying hard samples between tiny targets and 
background, the model may suffer from the problem of imbalanced positive and negative samples. Therefore, it 
is necessary to consider the contribution ratio of different samples to the loss and give more weight to tiny targets 
samples in the loss function. In this paper, the loss function is defined as:

where, the variable represents the probability that a sample belongs to the true label. The formula for calculat-
ing is:

during the model training process, there is often a significant difference in the number of positive and negative 
samples, which can lead to imbalanced contribution to the total loss. To address this issue, a factor β ∈ [0, 1] 
is designed to control the weight of positive and negative samples on the total loss, in order to balance the 
contribution of different samples to the total loss. In addition, an adaptive modulation factor 

(

1− pt
)ε is added 

to optimize the easy and difficult-to-classify samples. Here, ε ≥ 0 is a focusing parameter, and the modulation 
factor  

(

1− pt
)

ε can reduce the weight of the loss for easy-to-classify samples and increase the weight of the loss 
for difficult-to-classify samples. In this paper, the tiny target recognition algorithm is trained with β = 0.25 and 
ε = 2 to achieve the best detection of the model.

Experimental results
Dataset description. Dataset 1: Based on the DOTA  dataset34, we selected small vehicles, boats, and air-
planes as tiny targets. We manually selected a total of 1022 images containing small vehicles and airplane cat-
egories, with small vehicles ranging in size from 24.7 × 24.7 to 40.9 × 40.9, and airplanes ranging from 37.1 × 37.1 
to 51.2 × 51.2. Dataset 2: Based on the VEDAI  dataset35, we merged the smallest sized vehicles including cars, 
campers, trucks, and lorries into one category, and selected targets ranging in size from 11.5 × 11.5 to 18.7 × 18.7. 
Dataset 3: Based on the VEDAI dataset, we evaluated the detection performance of 9 target categories (boats, 
cars, campers, airplanes, shuttles, tractors, trucks, cargo trucks, and other categories). The displayed target sizes 
range from 13.5 × 13.5 to 24.9 × 24.9. Dataset 4: Based on the NWPU VHR-10  dataset36, we manually selected 
526 images containing airplanes, boats, tanks, and vehicles. The displayed target sizes range from 42.28 × 42.28 
to 48.32 × 48.32, creating a tiny targets dataset. The details of each data set are shown in Table 1.

Details of experiments. The experiment was conducted using Python 3.6 and Pytorch 1.2. The CPU 
model was i7-10875H with 32 GB memory, and two NVIDIA GeForce RTX 3060 GPUs were used. The stochas-
tic gradient descent algorithm was used to update and optimize the network model’s weights during training. 
Two scales were used in training datasets 1–4, with a batch size of 16, initial learning rate of 0.001, learning 
rate decay weight of 0.0005, momentum factor of 0.99, and maximum iteration set to 40,000 (approximately 40 
epochs). Additionally, to ensure training stability, a warm-up process with a small learning rate (1 × e−6 ) was 
used for the first 300 iterations, followed by a change to 0.001. The learning rate was reduced to 1/10 at iterations 

(2)
Ms(F) = σ

(

f 1×1
([

AvgPool(F);MaxPool(F)
]))

= σ

(

f 1×1
([

FSavg ; F
S
max

]))

(3)L
(

pt
)

= −βt
(

1− pt
)ε

log
(

pt
)

(4)pt =

{

p if y = 1
1− p otherwise

Table 1.  The four experimental data sets constructed in this paper.

Datasets Data sources Input image size Tiny targets Tiny target size Number of targets

Datasets1 DOTA 1000 × 1000
2000 × 2000 Small vehicle, ship, plane 24.7 × 24.7–51.2 × 51.2 63,070

Datasets2 VEDAI 1024 × 1024
512 × 512 Car, pick-up, van 11.5 × 11.5–18.7 × 18.7 2108

Datasets3 VEDAI 1024 × 1024 Boat, camping, car, others, pickup, 
tractors, truck, vans, plane 13.5 × 13.5–24.9 × 24.9 3640

Datasets4 NWPU VHR-10 – Plane, ship, storage tank, vehicle 42.2 × 42.2–48.3 × 48.3 2078
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10,000, 20,000, and 30,000. Four experiments were conducted to evaluate and compare the performance of the 
proposed network with other mainstream algorithms for targets detection.

Evaluation metrics. To quantitatively evaluate the performance of our proposed MwdpNet, we use Aver-
age Precision (AP), mean Average Precision (mAP), Precision-Recall Curve (PRC), F1 score, and Intersection 
over Union (IoU) as the evaluation indicators for the network. AP is the ratio of the number of correct identi-
fications to the total number of identifications. mAP is used to indicate the accuracy of all target detections, i.e. 
the average of all AP. Recall is the ratio of the number of correct identifications to the total number of marks. F1 
score combines Ap and Recall to measure the performance of the network in a comprehensive way. IoU is used 
to indicate the overlap rate of candidate and marker boxes. All the indicators are calculated as follows:

where TP is true positive, TN is true negative, FP is false positive, and FN is true negative, P(r) is PRC.

Experiment 1. The performance of MwdpNet was evaluated by inputting two sizes of images, denoted as 
"m" for 1000 × 1000 images and "l" for 2000 × 2000 images (e.g.,  SSDm: inputting 1000 × 1000 images into SSD). 
The compared algorithms were single-stage detection algorithms  (SSD17,  RSSD19,  FFESSD20,  MDSSD37). The 
backbone network used by SSD is VGG16, and ResNet-101 is used by RSSD, FFESSD and MDSSD. The results 
are shown in Table 2.

Experiment 2. Based on extensive experience, the authors found that YOLO series algorithms perform 
well on the VEDAI dataset, and thus compared our model with them. We conducted comparative experiments 
with two different input sizes (512 × 512 and 1024 × 1024) and single-stage detection algorithms  (YOLOV421, 
 YOLOV522, YOLOV6-M23). The backbone network used by YOLOV4, YOLOV5 and YOLOV6-M is Darknet-53. 
The results are shown in Table 3.

Experiment 3. To comprehensively evaluate the effectiveness of our network, we compared it with two-
stage detection algorithms in contrast to single-stage algorithms in experiments 1 and 2. Two-stage algorithms 
are better at identifying tiny targets, so we conducted this experiment on dataset 3. The input image size for 
experiment 3 was set to 1024 × 1024. The compared algorithms include Faster-RCNN15,  OHEM38,  ION39, and 
R-FCN31. The backbone network used by Faster-RCNN, OHEM and ION is VGG16, and ResNet-101 is used by 
R-FCN. The results are shown in Table 4.

Experiment 4. Experiment 4 was conducted on Dataset 4. The compared algorithms include single-stage 
detection algorithms such as RSSD, FFESSD, MDSSD, YOLOV5, and YOLOV6-M, and two-stage detection 
algorithms such as Faster-RCNN, OHEM, ION, and R-FCN. The results are shown in Table 5, where  APs,  APm, 

(5)Precision = TP
TP+FP

(6)Recall = TP
TP+FN

(7)F1 = 2
(

1
Precision

)

+

(

1
Recall

)

(8)AP =
∫ 1
0P(r)dr

(9)IoU = TP
TP+FP+FN

Table 2.  Detection results of various detection algorithms in Experiment 1 on Dataset 1. Significant values are 
in bold.

Method Precision Recall F1-score IoU mAP

SSDm
17 0.536 0.745 0.790 0.803 0.794

RSSDm
19 0.626 0.782 0.809 0.879 0.796

FFESSDm
20 0.868 0.876 0.851 0.853 0.823

MDSSDm
37 0.869 0.874 0.905 0.902 0.829

Oursm 0.875 0.881 0.910 0.910 0.831

SSDl
17 0.452 0.754 0.823 0.823 0.834

RSSDl
19 0.787 0.791 0.879 0.860 0.843

FFESSDl
20 0.783 0.846 0.840 0.861 0.859

MDSSDl
37 0.872 0.888 0.900 0.891 0.863

Oursl 0.851 0.890 0.912 0.899 0.870
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and  APl in the table represent small targets (area <  322), medium targets (area <  962), and large targets (area >  962), 
respectively. Visual contrast is shown in Fig. 5. The orange box is a partial area that we have chosen for the 
comparative experiment. The backbone used by RSSD, FFESSD, MDSSD and R-FCN is ResNet-101. YOLOV5 
and YOLOV6-M use Darknet-53 for the backbone, and Faster-RCNN, OHEM and ION use VGG16 for the 
backbone. The light blue boxes represent ground truth, green boxes represent predicted boxes, and red boxes 
represent malfunction detection boxes.

Model complexity comparison. Table  6 shows the comparison of the model complexity of our pro-
posed MwdpNet and comparison networks, including parameters, computations, and training time. VGG16 
has the most parameters (138.7 M) and computations (15.47GFLOPS/s), resulting in longer training time (251, 
223, 310). Our proposed MwdpNet has 73.2 M parameters, larger than Darknet-53 (40.6 M) and ResNet-101 
(44.0 M), but with no significant difference in computation. MwdpNet has training times of 180 s (dataset 1), 
196 s (dataset 2), and 171 s (dataset 3), which is similar to traditional models and much lower than VGG16. 
Therefore, our proposed MwdpNet achieves the best detection performance without using too much time and 
cost, indicating that the network can effectively balance computation and recognition efficiency.

Table 3.  Detection results of various detection algorithms in Experiment 2 on Dataset 2. Significant values are 
in bold.

Method Precision Recall F1-score IoU mAP

YOLOV4m
21 0.664 0.819 0.723 0.571 0.773

YOLOV5m
22 0.729 0.820 0.792 0.635 0.785

YOLOV6-Mm
23 0.849 0.890 0.869 0.752 0.880

Oursm 0.836 0.886 0.860 0.755 0.872

YOLOV4l
21 0.601 0.711 0.660 0.501 0.751

YOLOV5l
22 0.721 0.827 0.762 0.673 0.760

YOLOV6-Ml
23 0.864 0.879 0.874 0.790 0.896

Oursl 0.858 0.889 0.873 0.775 0.892

Table 4.  Detection results of various detection algorithms in Experiment 3 on Dataset 3. Significant values are 
in bold.

Method

AP

mAPCar Boat Camping Plane Vans Truck Tractors Pickup Others

Faster15 0.676 0.423 0.517 0.799 0.615 0.622 0.742 0.713 0.752 0.651

OHEM38 0.719 0.583 0.767 0.809 0.707 0.688 0.773 0.779 0.792 0.735

ION39 0.764 0.579 0.779 0.843 0.724 0.739 0.807 0.802 0.823 0.762

R-FCN31 0.846 0.583 0.817 0.869 0.775 0.722 0.742 0.773 0.812 0.771

Ours 0.885 0.588 0.789 0.875 0.763 0.761 0.806 0.821 0.819 0.783

Table 5.  Detection results of various detection algorithms in Dataset 4 in Experiment 4. Significant values are 
in bold.

Method Precision Recall F1-score IoU mAP APs APm APl

Two-stage

  Faster15 0.489 0.629 0.550 0.379 0.619 – – –

  OHEM38 0.503 0.715 0.604 0.419 0.626 0.281 0.439 0.652

  ION39 0.517 0.637 0.632 0.391 0.636 0.267 0.444 0.683

 R-FCN31 0.521 0.727 0.677 0.436 0.692 0.302 0.525 0.707

One-stage

  RSSD19 0.542 0.681 0.580 0.432 0.698 0.291 0.591 0.721

  FFESSD20 0.700 0.772 0.709 0.792 0.742 0.351 0.665 0.752

  MDSSD37 0.704 0.744 0.718 0.801 0.744 0.359 0.581 0.779

  YOLOV522 0.723 0.781 0.723 0.809 0.741 0.310 0.585 0.780

 YOLOV6-M23 0.781 0.722 0.819 0.821 0.764 0.382 0.598 0.796

 Ours 0.775 0.781 0.810 0.812 0.760 0.393 0.585 0.789
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Ablation study for the proposed MwdpNet. In order to investigate the impact of DPModule, CAGM, 
and multi-level feature fusion strategy on the performance of MwdpNet, we conducted a series of ablation 
experiments in this study. We tested the modules and strategies on Dataset 2 and selected the five tiny targets 
for comparison using the quantized PRCs curves obtained during training, as shown in Fig. 7. To obtain the 
baseline performance, we designed Network-A with truncated Darknet and additional convolutional layers, 
where DP (DPModule) and CM (CAGM) were both removed. To analyze the impact of CM, we discarded the 
reconstruction network but retained the fusion part in Network-B. Network-C was implemented with trun-
cated Darknet, additional convolutional layers, and DP, which was used to analyze the feasibility of enhancing 
shallow feature information for tiny targets recognition. MwdpNet* was implemented with truncated Darknet, 
additional convolutional layers, DP, and CM, but without using the multi-level feature fusion strategy. MwdpNet 
is the complete network proposed in this paper. From Fig. 6, it is apparent that DP and CM make the PRCs of 
MwdpNet smoother, and the multi-level feature fusion strategy can effectively extract features from tiny targets 
on HRS images in a more reasonable manner.

Table 7 shows the AP scores for four types of tiny targets and the mAP for each network. Without DP and 
CM, Network-A achieved a baseline mAP of 0.388. For Network-B and Network-C, DP and CM achieved 21.1% 
and 30.6% mAP gains, respectively. The effectiveness of the multi-level feature weighted fusion strategy was also 

Figure 5.  Experiment 4 on Dataset 4. Comparison of different algorithms: (a) MwdpNet, (b) YOLOV5, (c) 
YOLOV6-M, (d) RSSD, (e) FFESSD, (f) MDSSD, (g) Faster, (h) OHEM, (i) ION, (j) R-FCN. The light blue boxes 
represent ground truth, green boxes represent predicted boxes, and red boxes represent malfunction detection 
boxes.

Table 6.  Comparison of the complexity of the proposed model with other models.

Model Parameters (M) Computation (GFLOPS/s) Dataset1 training (s)/epoch Dataset2 training (s)/epoch
Dataset3 training (s)/
EPOCH

VGG16 138.7 15.47 251 223 310

ResNet-101 44.0 10.39 104 156 120

Res2Net-50 34.5 12.46 143 179 167

Tiny-darknet 16.9 11.34 178 179 210

Darknet-53 40.6 12.57 129 187 175

MwdpNet 73.2 13.23 180 196 171
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Figure 6.  Precision-Recall curves (PRCs) of the proposed MwdpNet algorithm and comparison methods.

Table 7.  Structural comparison of MwdpNet in different configurations. Significant values are in bold.

Network-A (without DP and FM) Network-B (without DP) Network-C (without CM) MwdpNet* MwdpNet

Plane 0.373 0.645 0.664 0.757 0.881

Car 0.341 0.687 0.689 0.834 0.896

Vans 0.355 0.576 0.701 0.786 0.852

Boat 0.382 0.663 0.765 0.820 0.869

Storage tank 0.493 0.674 0.653 0.821 0.891

mAP 0.388 0.649 0.694 0.803 0.877

Figure 7.  Two network validation curves. (a) Network-A, (b) MwdpNet. The blue, green and red lines represent 
Loss, F1 and AP respectively.
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confirmed by the gain in AP scores. MwdpNet achieved a 7.4% mAP gain compared to MwdpNet* and demon-
strated the feasibility of the proposed strategy for identifying tiny targets.

During training, we also visualized the loss, F1, and AP values for different networks, as shown in Fig. 7. As 
can be seen from Fig. 7, the loss curve for Network-A shows a less obvious descending trend and more fluctua-
tions compared to that of MwdpNet. The F1 and AP values of MwdpNet outperform those of Network-A. This 
indicates that our proposed DP and CM can be more effective in obtaining information about tiny targets in 
the dataset.

Figure 8 shows the heatmaps of the five networks after feature fusion. For comparison, the heatmap area is 
cropped from a portion of the input image. The comparison of the heatmaps in (a)–(e) indicates that the response 
of the target areas in the shared feature maps is enhanced through DP, CM, and multi-level feature fusion, which 
is beneficial for improving the recognition ability of the network. Compared with (a), (b), and (c), the response 
of the background area is significantly weakened in (d) and (e), indicating that the target feature and localization 
accuracy have been improved. The background information can be fully utilized by CM, while the target feature 
can be more effectively extracted and fused by DP. Using the proposed modules and strategies can better focus 
the network on the target area.

Discussion
We conduct a total of five experiments, including four comparative experiments and one ablation experiment. 
The four comparative experiments are designed to comprehensively evaluate the performance of our proposed 
MwdpNet and nine other mainstream algorithms for detecting tiny targets. The ablation experiment is performed 
to validate the effectiveness of the various modules of MwdpNet in detecting tiny targets.

By analyzing the four comparison experiments, we find that our proposed MwdpNet has several advantages 
in detecting tiny targets: (1) The proposed MwdpNet performs better in recognizing tiny targets in large-scale 
images. For example, in Experiment 1, Table 2 shows that when the input image is 2000 × 2000, the mAP of 
MwdpNet is 87.0%, which achieves the optimal detection accuracy and is 1.3% higher than MDSSD. In Experi-
ment 2, Table 3 shows that when the input image is 1024 × 1024, the mAP of MwdpNet is 13.2% higher than 
that of YOLOV5, which is comparable to that of YOLOV6-M. (2) Our proposed MwdpNet is more capable of 
recognizing tiny targets with different shapes. In Experiment 3, as shown in Table 4, when recognizing targets of 
various shapes such as trucks, tractors, and cars, the APs of the proposed MwdpNet are 76.1%, 80.6%, and 88.5%, 
which are 3.9%, 6.4%, and 3.9% higher than that of the R-FCN, respectively. (3) The proposed MwdpNet can 
better recognize the edge information of tiny targets. As shown in the visual comparison image in Experiment 
4 (Fig. 5), the bounding box predicted by MwdpNet can more accurately identify the location of tiny targets 
compared with the other nine mainstream algorithms.

In the ablation experiment, the precision-recall curves visualization (Fig. 6) for five tiny targets shows that our 
proposed MwdpNet is able to learn effectively. The heatmaps (Fig. 8) also indicate that the DPModule, CAGM, 
and multi-level feature fusion strategy of the proposed MwdpNet enhance the response of shared feature maps, 
which is beneficial for improving the accuracy of detecting tiny targets.

However, the precision advantage of the proposed MwdpNet is not particularly apparent when identifying 
tiny targets with fixed shapes and colors, such as planes and boats. For example, in Experiment 3, Table 4 shows 
that the mAP of our proposed MwdpNet for these targets are only 0.6% and 0.5% higher than those of R-FCN, 
respectively. This is because our proposed MwdpNet primarily focuses on exploring the contextual semantic fea-
ture information of tiny targets, which can better determine the position of tiny targets on the image. Therefore, 
in future work, we aim to improve the model’s generalization ability while ensuring its performance in detecting 
tiny targets on large-scale images remains stable. We also plan to enhance the backbone network of the model 
and further accelerate its performance.

Figure 8.  Shows the heatmaps of the shared feature maps after fusion for the five networks (a) Network-A, (b) 
Network-B, (c) Network-C, (d) MwdpNet*, and (e) MwdpNet.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13890  | https://doi.org/10.1038/s41598-023-41021-8

www.nature.com/scientificreports/

Conclusion
In this paper, we presented a novel and effective MwdpNet framework for detecting tiny targets in HRS images. 
In order to improve the accuracy of tiny targets detection in HRS images, we have designed a multi-level feature 
weighted fusion strategy in the MwdpNet detection framework. This strategy fully utilizes feature maps of dif-
ferent sizes to enhance the detection performance of tiny targets and improves the residual structure to enhance 
the ability of feature channel information extraction in the backbone network. Additionally, the deep perception 
module (DPModule) and channel attention guidance module (CAGM) are introduced in MwdpNet to achieve 
good classification performance and improve the recall rate of tiny targets. The performance of the proposed 
MwdpNet has been evaluated on three public datasets, and ablation experiments have demonstrated the effec-
tiveness of the proposed strategies and each module in MwdpNet, particularly for tiny targets.

This study reveals the possibility of fully extracting all semantic features contained in HRS images, and 
provides a more effective technical approach for exploring the spatial relationships and configurations between 
different feature units on images. This is the true significance of information extraction and target recognition 
in HRS images.

Data availability
All data generated or analyzed during this study are included in this published article.
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