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Analysis of carbon emission drivers 
and multi‑scenario projection 
of carbon peaks in the Yellow River 
Basin
Liangmin Wang  & Weixian Xue *

The Yellow River Basin is a key ecological barrier and commercial zone in China, as well as an essential 
source of energy, chemicals, raw materials, and fundamental industrial foundation, the achievement 
of its carbon peaking is of great significance for China’s high-quality development. Based on this, we 
decomposed the influencing factors of carbon dioxide emissions in the Yellow River Basin using the 
LMDI method and predicted the carbon peaking in the Yellow River Basin under different scenarios 
using the STIRPAT model. The results show that (1) the energy intensity effect, economic activity 
effect and population effect play a positive role in promoting carbon emissions during 2005–2020. The 
largest effect on carbon emissions is the population size effect, with a contribution rate of 65.6%. (2) 
The STIRPAT model predicts that the peak of scenarios “M–L”, “M–M” and “M–H” will occur in 2030 
at the earliest. The “M–H” scenario is the best model for controlling carbon emissions while economic 
and social development in the Yellow River Basin. The results of this paper can provide a theoretical 
basis for the development of a reasonable carbon peak attainment path in the Yellow River Basin and 
help policy makers to develop a corresponding high-quality development path.

Human activities have caused and exacerbated the global climate change crisis, which will lead to a serious crisis 
for human society if the emission of greenhouse gases such as carbon dioxide is not strictly controlled. Carbon 
peaking and carbon neutrality are the keys to address climate change1. China has become the focus of emission 
reduction due to its large total and high share of carbon emissions, and its peak time and peak level have become 
the focus of global attention2. In order to cope with global climate change, in September 2020, China commit-
ted to “strive to achieve carbon peaking by 2030 and carbon neutrality by 2060”. Promoting carbon emissions 
to reach the peak will not only give China more voice in climate negotiations, but also drive China to achieve 
high-quality development. In order to help regions with conditions take the lead in achieving the peak in carbon 
emissions, the National 14th Five-Year Plan suggests providing support. The objective of attaining the carbon 
peak will ultimately be executed at the regional level because socioeconomic development in China is unevenly 
distributed among regions.

In addition to being a significant energy, chemical, raw material, and basic industrial base, the Yellow River 
Basin is also a significant location for energy consumption and air pollution in China. The Yellow River Basin’s 
rough development pattern of “high consumption and high pollution” has become a significant factor in delay-
ing the achievement of the "peak carbon emission" aim. With the introduction of the Outline of the Plan for 
Ecological Protection and High-Quality Development of the Yellow River Basin, China has focused more on 
the synergy of the Yellow River Basin and emphasized the development of the Yellow River Basin as a whole. At 
the present stage, the energy structure of the Yellow River Basin favors coal-based fossil energy, among which 
three provinces, Henan, Shaanxi and Inner Mongolia, concentrate more than 70% of China’s coal production, 
but by 2020, the power generation capacity of new energy sources such as hydro and wind power in the Yel-
low River Basin will only account for 26% of the entire basin. The three provinces and regions with the highest 
carbon emission intensity. The economic development of the Yellow River Basin is relatively lagging behind in 
the country, and its industrial development is dominated by the secondary industry, which in turn is dominated 
by primary processing, and the extraction of energy and mineral resources is common. The Yellow River Basin 
has a vibrant grassland pastoral industry, and its primary industry accounts for a higher percentage than the 
Chinese average, but the development of the tertiary industry is significantly behind the coastal areas and below 
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the national average. Meanwhile, in recent years, the carbon emission ratio of the whole basin has reached more 
than one-third of the national level. The current condition of heavy industry development in the Yellow River 
Basin has also significantly hampered the preservation of the environment and high-quality development of 
the region. The Yellow River Basin has a lot of energy industries, especially coal-based industries, while in the 
downstream of energy, many high energy-consuming industries are derived, thermal power, building materi-
als, iron and steel, and even coal chemical industry in turn cause pollution from the source3. As an important 
natural ecological barrier and economic zone in China, it is important to study the drivers of carbon emissions 
and carbon peaks in the provinces along the Yellow River Basin to achieve high-quality development in China. 
In this paper, we decompose the influencing factors and emission projections of carbon dioxide emissions in 
the Yellow River Basin.

Literature review
The current research literature around carbon emissions mainly focuses on the analysis of carbon emission 
influencing factors and carbon peak prediction. For the study of carbon emission impact factors, Kaya equation4, 
structural decomposition method (SDA)5, exponential decomposition method (IDA)6, etc. are mainly used in 
IDA, such as Marshall-Edgeworth, Fisher, Divisia, etc. Among them, the logarithmic mean Divisa decomposition 
exponential method (LMDI) is the logarithmic form of Divisa exponential method.LMDI decomposition method 
can be further divided into additive form and multiplicative form. It has been widely valued for its advantages 
such as easy modeling, more desirability, more suitable for interpretation of results, and satisfying factor revers-
ibility while eliminating residuals7. Therefore, this method is now widely used, for example, Kong et al.8 used 
LMDI to analyze the influencing factors of carbon emissions in China; Xu et al. 9 used LMDI, decomposed the 
carbon emissions of different provinces in China and analyzed the main influencing factors of carbon emissions 
in different provinces; Zhang et al.10 used LMDI to construct factor decomposition model of carbon emissions 
from background power generation, and analyzed the degree of contribution of different factors.

Carbon peak forecasting is mainly to analyze the future trend of carbon emissions, so it needs to simulate 
the development of economic and social factors that affect carbon emissions, etc. Scenario analysis is the most 
commonly used method for carbon peak forecasting. By combining scenario analysis with the LEAP model, 
some scholars have predicted the peak situation for China as a whole and for provinces or key regions11–13; some 
scholars have combined the STIRPAT model with the STIRPAT model to investigate the path to peak for China 
as a whole and for the east, central and western regions. Pathways to achieve peak14–20. Fang et al.21 combined 
scenario analysis with methods such as Monte Carlo analysis to calculate the emissions of eight sectors in China 
and predicted the carbon peaks of the eight sectors; Ma et al.22 analyzed the drivers of the evolution of carbon 
emissions of tourism in China from 2000 to 2017 and predicted the carbon peaks of tourism using scenario 
analysis and Monte Carlo simulation. Liu et al.23 decomposed the carbon emission influencing factors of indus-
try in Henan Province and analyzed the carbon peak attainment under different scenarios; Xie et al.24 applied 
CGE to simulate how China could peak its emissions and achieve the 2 °C target by 2030 through different 
key countermeasures in different industries; Tian et al.25 used CGE mannequin to find out about the common 
top carbon environmental and aid influences beneath the cutting-edge countrywide goal and the trendy extra 
aggressive top carbon coverage in Shanghai.

As mentioned earlier, many studies predicting CO2 emissions have been conducted at global, national, 
regional and city scales. However, few studies in the literature have taken the Yellow River Basin as a whole, and 
in the context of China’s increasing emphasis on the overall synergistic development of the Yellow River Basin, 
a study of its overall CO2 emissions and peak carbon emissions is important for the Yellow River Basin as a 
whole to achieve high-quality development. The Yellow River Basin is a major concentration of solar, wind, and 
hydro energy resources in China, and is a renewable energy power base26. As one of the core basins in China, 
the whole basin has a heavy industrial structure, coal-fired energy structure, high energy consumption intensity, 
and a large proportion of “two high” industries, so it has a long way to go to promote green and low-carbon 
development, and therefore its carbon peaking is important for China to achieve peaking27. At the same time, in 
the previous literature, when using the STIRPAT model to analyze the carbon emissions scenarios, it is rare to 
divide the scenarios into positive and negative influencing factors, so that the possible scenarios can be studied 
more carefully and provide a stronger basis for the scenarios.

In this study, the LMDI model is used to consider the influence of drivers such as carbon emission intensity 
of residents, energy consumption structure, energy intensity, industrial structure, scale of economic activities, 
and population size on carbon dioxide emissions in the Yellow River Basin, and the extended STIRPAT model is 
used to determine the relationship between carbon dioxide emissions and the above drivers with the help of SPSS 
software package. The specific tasks of this study are (1) to decompose the carbon emissions of each province 
in the Yellow River Basin as well as the overall, and analyze the influencing factors of carbon emissions in each 
province as well as the overall; (2) to derive the amount and occurrence time corresponding to the peak carbon 
dioxide emissions of the Yellow River Basin as a whole under different scenarios, and put forward several policy 
recommendations to propose targeted carbon dioxide emission reduction measures to accelerate low-carbon 
development.

Data and methodologies
Study area and data.  The Yellow River Basin flows through nine provinces and regions in Qinghai, 
Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan and Shandong, however, only two states in 
Sichuan Province, Aba and Ganzi, belong to the Yellow River Basin, so this paper mainly examines the other 
eight provinces and regions in the Yellow River Basin.
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In 2020, the Yellow River Basin will account for 30% and 25% of the country’s population and GDP, respec-
tively, and 35% and 41% of the country’s total fossil energy consumption and carbon emissions, respectively. 
and carbon emissions account for 35% and 41% of the country respectively. More than 3/4 of the Yellow River 
Basin is a moderately fragile ecological area, with soil erosion of about 260,000 square kilometers, and natural 
grassland degradation in the upper reaches is still relatively serious.

The total population, total GDP, GDP of three industries and urbanization rate required for the model in 
this paper are obtained from the statistical yearbooks of eight provinces in the Yellow River Basin from 2005 to 
2020. The energy consumption of three industries (including coal, natural gas, oil, diesel, and electricity) and 
the proportion of non-fossil energy are obtained from the China Energy Statistical Yearbook and the China 
Statistical Yearbook of the Yellow River Basin for 2005–2020. Carbon emissions are based on the IPCC method, 
and the reference coefficients and average low-level heat generation data of various energy sources involved are 
based on the Chinese national standard GB/T2589-2008. The data of carbon content per unit calorific value and 
carbon oxidation rate used to calculate energy carbon emission coefficients are obtained from the Guidelines 
for the Preparation of Provincial Greenhouse Gas Inventories.

Methodologies.  LMDI model construction.  The LMDI decomposition model has many points in com-
mon with the Kaya property, which was proposed by the Japanese scholar Yoichi Kaya28. The advantage of the 
Kaya property is the simplicity of the mathematical form and the convincing explanation of the change in carbon 
emissions29. According to Kaya;s property, the relationship between these factors can be written as:

where I denote total CO2 emissions, which is the amount of CO2 corresponding to the heat released from the 
combustion of fossil energy sources (mainly including coal, oil, and natural gas, etc.). i denotes different types 
of industries and j denotes different types of energy sources, then Iij denotes the carbon dioxide produced by 
the i-th energy consumption of the i-th industry; Ei denotes the energy consumption of the i-th industry and Eij 
denotes the j-th fuel consumption of the energy consumption of the i-th industry; Q denotes the total output 
level of the region, and Qi denotes the gross product of the ith industry; P denotes the population. Fij denotes 
the carbon emission factor, characterizing the level of technology, Uij denotes the ratio of fuel j consumption 
to total consumption for industry i, Si denotes the energy intensity of industry I, Isi denotes the ratio of GDP to 
GDP for industry i, and A denotes GDP per capita.

This paper chose the additive LMDI method to research energy-related CO2 emissions as shown in the fol-
lowing equations:

where �Itot is the total increment of carbon dioxide emissions during the study period, �Iemf  , �Imix,�Iint , �Istr , 
�Iact and �Ipop are the influencing factors on carbon emissions, i.e. carbon emission intensity, energy consump-
tion structure, energy intensity, industrial structure, scale of economic activities, and population size, respectively. 
�Iemf  is the carbon emission factor utility, i.e., through technical means, it affects the carbon emission factor 
of energy sources, which in turn affects carbon emissions. �Imix is the energy consumption structure effect, 
i.e., it affects carbon emissions by adjusting the consumption structure of energy sources. �Iint represents the 
energy intensity effect, i.e., it affects carbon emissions indirectly by adjusting energy intensity. �Istr represents 
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the industrial structure effect, i.e., the indirect effect on carbon emissions by adjusting the industrial structure. 
�Iact represents the economic activity scale effect, i.e., the effect on carbon emissions when people expand 
their economic activities. �Ipop represents the population scale effect, i.e., the effect on carbon emissions as the 
population expands.

Modified STIRPAT model construction.  Ehrlich and Holden30first proposed to establish the "I = PAT" constant 
equation reflecting the influence of socio-demographic factors on environmental stress, which relates "envi-
ronmental impact (I)", "population size (P)", "wealth per capita (A)" and "technology level (T)" and is known as 
the environmental stress equation. Initially, the IPAT equation was widely applied to the effect of demographic 
factors on the environment and analyzed the problem by changing one factor while keeping the others fixed. 
There is some debate about I = PAT, but its biggest flaw is that it assumes the same rate of change in the elasticity 
of population, affluence, and technology to the environment.

To fill this gap, York31 constructed a stochastic STIRPAT model based on the IPAT method. The model equa-
tion can be expressed as follows:

where I, P, A, and T denote environmental pressure, population size, affluence, and technology level, respectively, 
a is the model coefficient, b, c, and d denote elasticity coefficients, and e is the model error term. Compared 
with the IPAT model, firstly, the STIRPAT model has better scalability and can introduce multiple independent 
variables to test the influence of each independent variable on environmental pressure when conducting environ-
mental impact assessment; secondly, STIRPAT is a non-linear model and the introduction of exponents makes it 
possible to use the model to analyze the non-equal proportional influence of human factors on the environment.

To facilitate the testing of human factors on environmental of the environment and to better overcome the 
heteroscedasticity of the model, we take the logarithmic transformation of Eq. (9) and obtain the following model:

According to the previous literature review, domestic and foreign scholars have extended the model for 
specific research needs when conducting related studies. In this paper, we consider the urbanization rate (Ps) 
in conjunction with the LMDI model, taking into account that the rapid economic development has brought 
about an increasing level of urbanization32, and the resulting infrastructure construction and changes in people’s 
consumption patterns have also generated a large number of carbon emissions. The formula can be extended 
as follows:

where I is total CO2 emissions; P denotes population size; A denotes GDP per capita, representing the level of 
economic development; T denotes carbon emission intensity; PS denotes urbanization rate; U denotes the share 
of non-fossil energy and Is denotes the share of secondary industry. is a constant term, b, c, d, e, f, and g denote 
the elasticity coefficients of the explanatory variables with respect to the explained variables, and h denotes the 
error term.

Simulation of CO2 emissions based on scenario analyses.  We employ scenario analysis to determine the effects of 
various parameter combination values on upcoming CO2 emissions. In reality, population expansion, economic 
expansion, and increasing urbanization all contribute to rising carbon emissions. However, reducing carbon 
emission intensity and adjusting energy structure and industrial structure will help reduce carbon emissions. 
Therefore, we divided the above drivers into two groups: positive factors (including P, A, Ps) and negative factors 
(including T, U, Is).

The study divides the annual rates of change of positive and negative components into three levels: low, 
medium, and high, designated, respectively, by "L," "M," and "H." The combination of these drivers at various 
levels will produce eight CO2 emission scenarios, which are presented in Table 1 and obviously do not take into 
account the "L–H" scenario. This is so because it is doubtful that the level of technology and industrial structure 

(9)I = aPbAcTde

(10)InI = ln a+ b(ln P)+ c(lnA)+ d(lnT)+ ln e

(11)InI = ln a+ b(ln P)+ c(lnA)+ d(lnT)+ e(ln Ps)+ f (lnU)+ g(ln Is)+ ln h

Table 1.   Description of 8 scenarios.

Scnearios

Positive factors Negative factors

Population size GDP per capita Urbanization rate Carbon emission
The share of non-
fossil energy

The share of 
secondary industry

L–L L L L L L L

L–M L L L M M M

M–L M M M L L L

M–M M M M M M M

M–H M M M H H H

H–L H H H L L L

H–M H H H M M M

H–H H H H H H H
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will advance and change quickly when social and economic development is slow or stagnant. Based on the 14th 
Five-Year Plan, the 14th Five-Year Plan for Energy Conservation and Emission Reduction, related policies, case 
studies, and other relevant literature, the future rates of change of each driver at different levels are derived. 
The annual rate of change of each driver for 2021–2050 was chosen as the average value for five years, and the 
detailed definition of the annual rate of change of drivers for 8 scenarios from 2021 to 2050 is shown in Table 2.

Results and analysis
Additive LMDI decomposition of CO2 emissions.  In order to further explore the intrinsic influence 
mechanism of CO2 emissions and measure the influence of each influence factor in the above two stages, we 
adopt the LMDI method to decompose the total CO2 emissions into six influence factors: carbon emission 
factor, energy consumption structure, energy intensity, industrial structure, economic activity and population. 
Then we obtained the variance of the factors for each province each year, and the contribution of each factor 
to the carbon emission of each province and the overall Yellow River Basin from 2005 to 2020 is shown below.

It can be seen from Table 3: The energy consumption structure effect, energy intensity, economic activity effect 
and population effect of Qinghai Province from 2005 to 2020 play a positive role in promoting carbon emissions; 
carbon emission coefficient and industrial structure play a negative role in influencing carbon emissions. Among 
them, economic activity has the largest contribution to CO2 emission, with the cumulative emission reaching 
5,551,200 tons. The contribution to carbon emission can be calculated, the largest is the scale effect of economic 
activity, contributing 76%, and the other influencing factors in order of contribution are: population scale effect 
is 54%, energy consumption structure is 11%, industrial structure effect is 6%, economic activity effect is − 22%, 
and energy consumption structure effect is − 25%.

It can be seen from Table 4: For Gansu Province, the overall carbon emission from 2005 to 2020 is reduced, 
and the energy consumption structure effect, industrial structure effect and economic activity effect play a 

Table 2.   Definition of annual variation rates of driving factors under different scenarios (%).

Scenarios Year Population size GDP per capita Urbanization rate Carbon emission
The share of 
non − fossil energy

The share of 
secondary 
industry

L–L

2021–2025 − 0.2 3.50 0.8 − 2.5 8 − 1.5

2026–2030 − 0.25 2.50 0.6 − 1.5 5 − 0.8

2030–2040 − 0.3 1.50 0.4 − 1 3 − 0.5

2040–2050 − 0.4 0.50 0.2 − 0.5 2 − 0.3

L–M

2021–2025 − 0.2 3.50 0.8 − 3 10 − 2

2026–2030 − 0.25 2.50 0.6 − 2 7 − 1.3

2030–2040 − 0.3 1.50 0.4 − 1.5 5 − 0.8

2040–2050 − 0.4 0.50 0.2 − 1 3 − 0.5

M–L

2021–2025 − 0.15 5.50 1 − 2.5 8 − 1.5

2026–2030 − 0.2 4.00 0.8 − 1.5 5 − 0.8

2030–2040 − 0.25 2.50 0.6 − 1 3 − 0.5

2040–2050 − 0.35 1.00 0.4 − 0.5 2 − 0.3

M–M

2021–2025 − 0.15 5.50 1 − 3 10 − 2

2026–2030 − 0.25 4.00 0.8 − 2 7 − 1.3

2030–2040 − 0.35 2.50 0.6 − 1.5 5 − 0.8

2040–2050 − 0.5 1.00 0.4 − 1 3 − 0.5

M–H

2021–2025 − 0.15 5.50 1 − 3.5 12 − 2.5

2026–2030 − 0.25 4.00 0.8 − 2.5 9 − 1.5

2030–2040 − 0.35 2.50 0.6 − 2 7 − 1

2040–2050 − 0.5 1.00 0.4 − 1.5 5 − 0.6

H–L

2021–2025 − 0.1 7.00 1.2 − 2.5 8 − 1.5

2026–2030 − 0.15 5.00 1 − 1.5 5 − 0.8

2030–2040 − 0.2 3.00 0.8 − 1 3 − 0.5

2040–2050 − 0.25 2.00 0.6 − 0.5 2 − 0.3

H–M

2021–2025 − 0.1 7.00 1.2 − 3 10 − 2

2026–2030 − 0.15 5.00 1 − 2 7 − 1.3

2030–2040 − 0.2 3.00 0.8 − 1.5 5 − 0.8

2040–2050 − 0.25 2.00 0.6 − 1 3 − 0.5

H–H

2021–2025 − 0.1 7.00 1.2 − 3.5 12 − 2.5

2026–2030 − 0.15 5.00 1 − 2.5 9 − 1.5

2030–2040 − 0.2 3.00 0.8 − 2 7 − 1

2040–2050 − 0.25 2.00 0.6 − 1.5 5 − 0.6
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positive contribution to carbon emission; the carbon emission coefficient effect, energy intensity effect and 
population scale effect play a negative influence on carbon emission. The contribution to each effect carbon 
emission can be calculated, the largest is the economic activity scale effect, which contributes 101%, and the other 
influencing factors in order of contribution are: energy consumption structure effect is 23%, industrial structure 
effect is 7%, carbon emission effect is − 51%, population scale effect is − 80%, and energy intensity effect is − 101%.

It can be seen from Table 5: For Inner Mongolia, the overall carbon emissions are reduced from 2005 to 2020, 
and the energy intensity effect, industrial structure effect and population size play a positive contribution to 
carbon emissions; the carbon emission factor effect, energy consumption structure effect and economic activity 
effect play a negative effect on carbon emissions. The contributions to carbon emissions can be calculated, in 
descending order, as the population size effect with 124%, the energy intensity effect with 77%, the industrial 
structure effect with 13%, the energy structure consumption effect with − 20%, the carbon emission factor effect 
with − 86%, and the energy intensity effect with − 209%.

It can be seen from Table 6: The overall carbon emissions in Ningxia from 2005 to 2020 are increasing, and the 
energy intensity effect, economic activity scale effect and population scale play a positive contribution to carbon 

Table 3.   Impact of different factors on carbon emissions in Qinghai Province, 2005–2020 (Unit: 104 tons).

Time period
Carbon emission 
coefficient

Energy consumption 
structure energy intensity

Industrial structure 
effect Economic activity scale Population scale Total

2005–2006 43.13 − 17.91 − 54.67 − 66.07 29.54 16.13 − 49.85

2006–2007 31.25 89.06 − 24 25.92 43.48 15.53 181.23

2007–2008 − 92.37 − 34.58 − 32.77 − 39.68 51.07 11.69 − 136.63

2008–2009 − 34.51 − 5.3 42.28 88.19 14.59 13.68 118.93

2009–2010 34.79 − 47.28 − 28.95 − 52.19 50.31 29.64 − 13.68

2010–2011 − 13.21 − 4.31 − 20.99 − 24.88 51.27 24.72 12.6

2011–2012 32.9 19.66 − 31.06 38.6 32.08 28.98 121.17

2012–2013 73.32 − 23.99 − 12.18 − 0.12 38.12 29.06 104.21

2013–2014 − 64.39 120.52 − 69.92 32.45 55.31 37.61 111.59

2014–2015 5.06 60.11 − 21.6 18.39 − 30.91 34.69 65.74

2015–2016 − 98.14 87.84 − 49.73 68.6 44.72 35 88.3

2016–2017 − 115.46 − 26.48 271.56 − 23.84 32.33 34.24 172.35

2017–2018 − 16.95 − 27.65 293.74 − 250.88 40.21 34.53 73

2018–2019 33.69 − 28 − 42.91 59.74 25.33 32.59 80.43

2019–2020 − 4.1 − 81.04 − 176.44 − 32.16 77.66 13.77 − 202.3

Total − 184.97 80.64 42.37 − 157.92 555.12 391.86 727.1

Proportion − 0.25 0.11 0.06 − 0.22 0.76 0.54 1

Table 4.   Impact of different factors on carbon emissions in Gansu Province, 2005–2020 (Unit: 104 tons).

Time period
Carbon emission 
coefficient

Energy consumption 
structure Energy intensity

Industrial structure 
effect Economic activity scale Population scale Total

2005–2006 98.92 − 41.08 93.29 − 37.55 92.2 − 18.51 187.27

2006–2007 55.44 197.32 − 47.12 − 114.52 85.76 − 23.09 153.79

2007–2008 − 48.97 69.32 − 11.86 − 21.57 62.65 − 17.73 31.85

2008–2009 − 72.59 − 11.31 49.27 46.67 71.73 − 82.33 1.45

2009–2010 − 52.52 − 10.71 − 155.35 − 27.98 15.01 − 26.84 − 258.4

2010–2011 27.1 − 4.76 − 16.91 14.12 12.46 − 30.96 1.05

2011–2012 − 56.05 39.83 − 62.79 119.96 14.03 − 18.29 36.69

2012–2013 − 43.58 45.2 − 94.16 − 0.59 141.85 − 19.91 28.81

2013–2014 − 22.89 − 30.04 − 89.87 15.61 78.96 − 14.72 − 62.95

2014–2015 9.35 21.18 − 191.47 86.45 15.97 − 109.21 − 167.72

2015–2016 − 76.43 45.53 − 143.32 80.25 15.88 − 92.15 − 170.23

2016–2017 − 97.43 − 40.92 − 60.6 − 10.93 15.32 − 11.17 − 205.72

2017–2018 − 11.54 − 48.3 − 11.63 − 111.11 14.18 − 18.9 − 187.29

2018–2019 − 61.29 − 51.13 − 14.25 27.56 14.78 − 14.28 − 98.62

2019–2020 − 7.79 − 15.87 45.14 − 15.21 65.19 − 66.85 4.62

Total − 360.26 164.25 − 711.63 51.17 715.99 − 564.93 − 705.42

Proportion 0.51 − 0.23 1.01 − 0.07 − 1.01 0.8 1
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emissions; the carbon emission coefficient effect, energy consumption structure effect and industrial structure 
effect play a negative effect on carbon emissions. The contribution to carbon emissions can be calculated from 
the largest to the smallest, which is the population size effect with a contribution of 310%, the economic activity 
scale effect with 264%, the energy intensity effect with 175%, the carbon emission coefficient effect with − 87%, 
the energy consumption structure effect with − 118%, and the industrial structure effect with − 445%.

It can be seen from Table 7: The overall carbon emissions in Shaanxi Province from 2005 to 2020 are increas-
ing, and the scale effect of economic activities and population size play a positive contribution to carbon emis-
sions; the carbon emission coefficient effect, energy intensity effect, energy consumption structure effect and 
industrial structure effect play a negative effect on carbon emissions. The contribution to carbon emissions can 
be calculated from the economic scale effect, population scale effect, carbon emission coefficient effect, industrial 
structure utility, energy consumption structure and energy intensity effect, in descending order.

It can be seen from Table 8: The overall carbon emissions in Shanxi from 2005 to 2020 are increasing, except 
for the carbon emission coefficient which plays a negative contribution, all other effects play a positive contribu-
tion to carbon emissions. The contribution to carbon emissions can be calculated from the largest to the smallest 

Table 5.   Impact of different factors on carbon emissions in Inner Mongolia, 2005–2020 (Unit: 104 tons).

Time period
Carbon emission 
coefficient

Energy consumption 
structure Energy intensity

Industrial structure 
effect Economic activity scale Population scale Total

2005–2006 − 518.04 − 18.94 61.75 − 16.97 − 311.94 39.21 − 764.95

2006–2007 266.92 5.39 250.06 − 17.89 − 151.18 57.05 410.35

2007–2008 − 28.93 − 29.88 30.05 14.57 36.48 56.27 78.55

2008–2009 − 37.88 − 3.25 16.51 − 34.53 12.63 41.77 − 4.75

2009–2010 − 50.47 − 25.67 20.61 31.60 − 17.20 49.48 8.35

2010–2011 − 69.78 38.62 15.44 91.30 − 133.75 54.62 − 3.55

2011–2012 19.79 − 29.00 22.61 42.45 − 104.15 41.42 − 6.89

2012–2013 − 70.00 26.67 20.83 − 10.82 − 152.83 36.53 − 149.63

2013–2014 − 38.90 − 12.42 13.84 − 31.40 − 106.67 28.70 − 146.85

2014–2015 57.40 − 12.07 13.74 − 10.11 − 52.96 29.05 25.05

2015–2016 − 33.06 − 54.95 16.00 83.88 − 29.04 29.20 12.03

2016–2017 − 25.75 − 50.76 26.39 − 32.18 − 13.93 37.66 − 58.57

2017–2018 − 32.13 − 16.95 − 39.48 13.30 − 26.48 42.96 − 58.76

2018–2019 42.60 12.03 − 17.90 − 11.72 25.33 38.91 89.25

2019–2020 63.96 68.22 − 42.02 − 41.82 − 77.66 72.66 43.34

Total − 454.27 − 102.97 408.42 69.66 − 1103.36 655.49 − 527.03

Proportion 0.86 0.20 − 0.77 − 0.13 2.09 − 1.24 1.00

Table 6.   Impact of different factors on carbon emissions in Ningxia, 2005–2020 (Unit: 104 tons).

Time period
Carbon emission 
coefficient

Energy consumption 
structure Energy intensity

Industrial structure 
effect Economic activity scale Population scale Total

2005–2006 − 143.79 5.26 35.84 − 35.62 81.46 10.55 − 46.30

2006–2007 418.30 1.45 76.33 − 31.00 77.08 13.56 555.71

2007–2008 − 123.72 − 17.79 64.65 − 42.60 − 94.23 10.97 − 202.73

2008–2009 − 110.15 − 0.82 19.72 − 209.03 57.76 50.60 − 191.91

2009–2010 112.47 − 7.91 70.76 73.74 10.51 16.66 276.23

2010–2011 46.23 10.52 − 50.55 − 45.59 125.00 20.42 106.03

2011–2012 − 19.22 − 24.95 91.00 − 19.01 20.39 13.02 61.24

2012–2013 − 54.52 − 76.84 64.14 29.43 38.39 13.10 13.70

2013–2014 − 17.74 − 53.75 68.72 − 86.60 22.28 10.17 − 56.92

2014–2015 − 17.16 − 42.47 − 85.27 70.79 19.19 80.35 25.45

2015–2016 − 32.06 − 16.31 59.79 11.71 23.91 74.26 121.31

2016–2017 − 86.84 16.32 − 15.86 − 20.17 23.20 94.82 11.46

2017–2018 − 46.13 − 55.91 − 49.82 − 462.22 11.77 17.05 − 585.26

2018–2019 − 53.26 40.87 − 18.11 − 17.75 20.90 28.68 1.33

2019–2020 − 20.42 21.78 − 33.39 28.96 11.14 72.45 80.52

Total − 147.99 − 200.56 297.96 − 754.99 448.74 526.68 169.85

Proportion − 0.87 − 1.18 1.75 − 4.45 2.64 3.10 1.00



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13684  | https://doi.org/10.1038/s41598-023-40998-6

www.nature.com/scientificreports/

in order of energy intensity effect, economic scale effect, population scale effect, energy consumption structure 
effect, industrial structure utility, and carbon emission coefficient effect.

It can be seen from Table 9: The overall carbon emissions in Henan from 2005 to 2020 are increasing, except 
for the industrial structure effect which plays a negative role in promoting carbon emissions, all other effects play 
a positive role in promoting carbon emissions. The contribution to carbon emissions can be calculated from the 
largest to the smallest in order of population size effect, energy intensity effect, carbon emission coefficient effect, 
economic activity size effect, energy consumption structure utility, and industrial structure effect.

It can be seen from Table 10: The overall carbon emissions in Shandong Province from 2005 to 2020 are 
increasing, the energy consumption structure effect and industrial structure effect play a negative contribution, 
and all other effects play a positive contribution to carbon emissions. The contribution to carbon emissions can 
be calculated from the largest to the smallest in order of population size effect, energy intensity effect, economic 
activity size effect, carbon emission factor effect, energy consumption structure utility, and industrial structure 
effect.

Table 7.   Impact of different factors on carbon emissions in Shaanxi Province, 2005–2020 (Unit: 104 tons).

Time period
Carbon emission 
coefficient

Energy consumption 
structure Energy intensity

Industrial structure 
effect Economic activity scale Population scale Total

2005–2006 17.14 12.85 − 10.74 − 106.61 33.09 12.40 468.35

2006–2007 − 27.11 − 326.67 45.18 50.38 − 21.94 13.44 413.80

2007–2008 − 54.03 5.10 250.58 30.01 8.00 16.27 647.74

2008–2009 37.05 30.78 129.04 − 130.49 − 71.61 16.26 721.68

2009–2010 46.16 20.99 − 226.11 53.33 16.50 16.79 1498.68

2010–2011 − 16.17 − 42.83 87.82 71.35 18.23 72.79 1023.54

2011–2012 − 4.84 − 80.35 396.87 160.40 17.57 56.59 202.51

2012–2013 − 9.06 16.12 546.72 − 40.10 15.69 44.48 217.16

2013–2014 23.43 − 28.76 681.09 − 54.96 41.29 59.86 − 182.69

2014–2015 − 33.28 − 29.08 607.03 350.82 26.05 49.47 269.38

2015–2016 − 41.61 − 57.16 − 317.15 − 90.11 52.70 71.60 − 497.74

2016–2017 − 170.84 39.43 − 97.29 − 69.13 10.14 72.15 − 525.14

2017–2018 − 150.02 − 10.78 375.04 − 111.83 20.80 62.52 − 43.33

2018–2019 − 13.10 21.80 484.00 − 147.62 − 64.34 30.90 609.47

2019–2020 87.96 − 53.81 268.69 349.16 13.06 26.40 − 392.86

Total − 429.32 − 2666.46 − 6914.68 − 733.86 14,553.01 621.92 4430.58

Proportion − 0.10 − 0.60 − 1.56 − 0.17 3.28 0.14 1.00

Table 8.   Impact of different factors on carbon emissions in Shanxi Province, 2005–2020 (Unit: 104 tons).

Time period
Carbon emission 
coefficient

Energy consumption 
structure Energy intensity

Industrial structure 
effect Economic activity scale Population scale Total

2005–2006 − 391.97 69.56 54.67 − 70.79 36.58 91.98 − 209.98

2006–2007 201.58 29.48 24.00 − 47.76 132.12 16.59 356.01

2007–2008 − 38.59 15.47 320.77 11.27 41.19 15.18 365.28

2008–2009 88.41 200.33 42.28 15.94 39.90 83.47 470.33

2009–2010 64.65 84.06 58.95 − 78.23 31.76 16.77 177.95

2010–2011 26.61 24.27 20.99 − 52.03 42.11 148.04 209.98

2011–2012 − 68.58 77.65 31.06 44.18 37.71 54.16 176.17

2012–2013 − 19.31 − 20.99 120.18 − 57.49 98.60 20.34 141.33

2013–2014 − 47.38 − 26.58 69.92 51.30 49.15 77.99 174.39

2014–2015 − 36.07 − 35.12 210.60 330.51 81.06 − 62.42 488.57

2015–2016 − 49.92 − 19.30 490.73 − 11.08 32.06 51.94 494.43

2016–2017 − 28.87 − 63.61 − 21.56 − 12.78 86.98 146.23 106.38

2017–2018 − 28.81 − 25.27 293.74 − 63.86 18.91 78.75 273.47

2018–2019 − 66.97 − 42.08 − 20.91 48.71 33.14 52.46 4.34

2019–2020 − 8.65 − 34.18 176.44 75.21 161.77 30.41 401.00

Total − 403.87 233.69 1871.84 183.08 923.04 821.88 3629.65

Proportion − 0.11 0.06 0.52 0.05 0.25 0.23 1.00
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It can be seen from Table 11 and Fig. 1: The effects of various factors on CO2 emissions varied during the 
study period. Overall, it seems that the energy structure effect, economic activity effect and population effect in 
the Yellow River Basin from 2005 to 2020 play a positive contribution to carbon emissions; the carbon emission 
factor, energy consumption structure and industrial structure play a negative effect on carbon emissions. The 
largest contribution to carbon emissions in the Yellow River Basin is the population size effect, which contributes 
60%, and the other influencing factors in order of contribution are: energy intensity effect of 41%, economic 
activity size effect of 8%, energy consumption structure effect of − 1%, carbon emission factor effect of − 5%, 
and industrial structure effect of − 6%.

It can be obtained from Fig. 1 that the population size effect, energy intensity effect, and economic size effect 
are all contributing to carbon emissions in the Yellow River Basin for each year from 2005 to 2020. The carbon 
emission coefficient effect and industrial structure effect also play a suppressive role on carbon emissions for 
almost every year of the study period. The energy consumption structure effect slowly shifts from being a facilita-
tor to a suppressor of carbon emissions during the study period.

Table 9.   Impact of different factors on carbon emissions in Henan Province, 2005–2020 (Unit: 104 tons).

Time period
Carbon emission 
coefficient

Energy consumption 
structure Energy intensity

Industrial structure 
effect Economic activity scale Population scale Total

2005–2006 543.00 − 0.77 200.13 − 195.44 20.04 1060.37 1627.34

2006–2007 363.48 0.85 501.14 − 260.43 − 21.24 904.91 1488.70

2007–2008 − 80.51 − 1.38 530.73 28.34 − 27.20 1225.76 1675.74

2008–2009 − 57.22 − 0.48 18.55 − 66.76 − 23.88 378.62 248.84

2009–2010 23.70 10.62 1594.01 − 190.51 38.99 803.02 2279.82

2010–2011 18.02 0.49 1362.58 − 39.12 15.77 736.09 2093.83

2011–2012 − 13.12 3.10 379.62 114.89 47.20 993.41 1525.09

2012–2013 − 81.31 7.48 224.43 − 110.81 59.90 708.01 807.70

2013–2014 − 26.88 − 0.56 252.09 − 21.98 − 31.74 965.73 1136.67

2014–2015 40.27 21.13 53.91 69.32 21.01 950.24 1155.89

2015–2016 − 28.65 0.56 461.06 − 21.01 54.29 456.20 922.45

2016–2017 − 120.71 16.65 637.72 61.05 34.13 970.34 1599.17

2017–2018 − 96.71 39.68 447.28 − 118.24 38.04 603.30 913.35

2018–2019 − 43.19 − 54.95 490.11 − 521.26 5.29 409.12 285.12

2019–2020 − 54.93 − 2.81 294.86 471.47 19.22 1321.70 2049.51

Total 385.24 39.60 7448.22 − 800.50 249.84 12,486.83 19,809.23

Proportion 0.02 0.00 0.38 − 0.04 0.01 0.63 1

Table 10.   Impact of different factors on carbon emissions in Shandong Province, 2005–2020 (Unit: 104 tons).

Time period
Carbon emission 
coefficient

Energy consumption 
structure Energy intensity

Industrial structure 
effect Economic activity scale Population scale Total

2005–2006 496.67 − 1.36 40.29 − 40.16 44.93 11.10 551.47

2006–2007 126.22 1.49 74.00 − 186.00 46.14 13.91 75.76

2007–2008 − 50.66 − 2.37 11.45 − 92.17 − 42.10 13.07 − 162.79

2008–2009 − 30.77 − 0.83 11.97 − 179.11 − 42.10 71.63 − 169.21

2009–2010 41.99 − 19.44 76.90 − 60.56 10.09 122.12 171.09

2010–2011 73.11 0.84 24.67 − 25.38 51.34 118.06 242.63

2011–2012 − 32.21 4.78 38.97 − 64.58 53.52 75.90 76.37

2012–2013 − 89.58 − 11.68 42.45 46.63 25.83 81.12 94.77

2013–2014 − 40.05 − 0.87 32.84 − 12.50 55.09 60.20 94.71

2014–2015 − 15.94 1.86 − 19.39 − 24.93 − 48.45 79.32 − 27.53

2015–2016 − 23.84 0.99 40.64 − 68.91 68.50 60.74 78.13

2016–2017 − 37.29 − 30.02 70.53 − 54.41 30.40 63.31 42.52

2017–2018 − 94.17 71.43 44.17 − 39.90 41.21 56.79 79.54

2018–2019 − 80.74 − 10.19 37.09 − 19.01 29.62 798.17 754.94

2019–2020 − 101.46 − 5.19 26.26 154.05 60.82 738.21 872.69

Total 141.26 − 0.55 552.84 − 666.94 384.82 2363.66 2775.09

Proportion 0.05 0.00 0.20 − 0.24 0.14 0.85 1.00
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The dominant factor of increasing population size on the increase of carbon emissions in the Yellow River 
Basin. This conclusion is consistent with the findings of previous scholarly studies. Since the promulgation of 
the family planning policy, the overall population growth rate in China has been on a declining trend33, and the 
Yellow River Basin has kept pace with the national population change, but still increased by about 232,000 people 
per year from 2005 to 2020. The high growth in the absolute number of people is accompanied by a change in 
the consumption pattern of residents’ life and an increase in the urban population. At this time, the growth of 
energy consumption is essential to ensure the survival and development of the nation and the continuous and 
stable growth of the economy, thus leading to a continuous rise in carbon emissions.

Energy intensity is an important factor in the increase of carbon emissions in the Yellow River Basin. Energy 
intensity represents the efficiency of energy economic activities, expressed in terms of energy consumption per 
unit GDP pair, and reflects the input versus output of the energy system34. The energy intensity of various indus-
tries in the Yellow River Basin continued to show an increasing trend during the study period, with a basin-wide 
energy intensity of 1.11 t of standard coal per million yuan in 2005 and 0.21 t of standard coal per million yuan 
in 2020, a figure that still has some distance to go when compared to other advanced regions in the international 

Table 11.   Impact of different factors on total carbon emissions in the Yellow River Basin, 2005–2020 (Unit: 
104 tons).

Time period
Carbon emission 
coefficient

Energy consumption 
structure Energy intensity

Industrial structure 
effect Economic activity scale Population scale Total

2005–2006 145.06 7.60 420.57 − 569.21 25.90 1223.22 1973.34

2006–2007 1436.08 − 1.63 899.59 − 581.30 190.21 1011.89 3279.34

2007–2008 − 517.79 3.90 1163.59 − 111.85 35.86 1331.48 1931.73

2008–2009 − 107.51 209.12 329.61 − 469.12 59.03 573.72 725.02

2009–2010 108.29 4.66 410.82 − 250.81 155.96 1027.64 2962.09

2010–2011 45.69 22.83 423.04 − 10.25 182.42 1143.79 2476.12

2011–2012 − 122.12 10.72 866.27 436.88 118.35 1245.19 2016.18

2012–2013 − 239.52 − 38.05 912.42 − 143.86 265.55 912.73 1116.73

2013–2014 − 217.06 − 32.46 958.72 − 108.09 163.68 1225.53 893.55

2014–2015 26.80 − 14.46 567.55 891.24 30.96 1051.52 1346.26

2015–2016 − 351.65 − 12.80 558.02 53.34 263.03 686.80 554.25

2016–2017 − 596.35 − 139.41 810.89 − 162.39 218.56 1407.58 1036.07

2017–2018 − 430.33 − 73.74 1353.04 − 1144.74 158.65 877.02 191.25

2018–2019 − 188.99 − 111.66 897.10 − 581.34 90.04 1376.54 1721.92

2019–2020 − 25.00 − 102.90 559.55 989.64 331.20 1208.75 1455.51

Total − 1306.19 − 268.27 11,130.78 − 1761.84 2289.43 16,303.39 27,309.05

Proportion − 0.05 − 0.01 0.41 − 0.06 0.08 0.60 1.00
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Figure 1.   Contribution of different factors to the impact of carbon emissions in the Yellow River Basin 
Province, 2005–2020.
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and domestic context, but it can be seen that the Yellow River Basin has not achieved much in terms of energy 
use efficiency. According to the energy intensity is related to various factors such as technology level, industrial 
structure and energy structure, but according to the decomposition results, the change of industrial structure 
and energy consumption structure contribute negatively to carbon emission, so it is concluded that the increase 
of energy intensity in our province is due to the lack of updating of technology level, which in turn leads to the 
increase of carbon emission.

The impact of the change in industrial structure on carbon emissions in this period shows a negative effect of 
− 6% contribution. The secondary industry always dominates carbon emissions from 2005 to 2020, with its share 
of emissions at 70.51% in 2005 and rising to 83.51% in 2020. In the same period, the share of carbon emissions 
from the primary industry increases from 3.5% to 4.2%, but the share of carbon emissions from the tertiary 
industry decreases from 29.01% to 16.35%. In terms of GDP, the share of primary industry GDP in 2005 was 
10.17% and 8.26% by 2020, while the share of secondary industry GDP decreased from 47.51% to 43.39% and 
the share of tertiary industry GDP increased from 41.60% to 47.10% in the same period. The high value-added 
and low energy consumption industrial characteristics possessed by the tertiary industry increased the GDP 
share of the tertiary industry by 5.50% and reduced the proportion of carbon emissions by 12.66% during the 
period 2005–2020. Although carbon emissions from the secondary industry increased during the study period, 
carbon emissions from the tertiary industry showed a long-term decreasing trend, and its decrease offset the 
increase in the secondary industry. As a whole, the change in industrial structure has a negative impact on the 
growth of carbon emissions.

The increase in the scale of economic activities is one of the reasons for the growth of carbon emissions in the 
Yellow River Basin during the study period. Carbon emissions in the Yellow River Basin increased by 10% from 
2005 to 2020, with a 5.28-fold increase in total GDP and a 4.84-fold increase in GDP per capita. Carbon emis-
sions are a direct product of energy consumption, which is a basic input to keep the economic system running35, 
so carbon emissions and economic development will undoubtedly maintain a high correlation. Meanwhile, the 
Yellow River Basin, as a major energy province with developed industries, relies on high carbon energy consump-
tion for economic growth, which in turn leads to a significant increase in CO2 emissions.

The change in the energy mix shows a strong negative effect on the growth of carbon emissions, which can be 
considered as the initial effect of energy mix optimization. According to the same amount of energy consumption, 
the larger the share of fossil energy sources, the more carbon emissions are produced by the energy system36. 
At the same time, for the same amount of fossil energy consumption, the energy type composition is different, 
leading to different carbon emissions due to the different carbon emission factors of each fossil energy source. 
Among the main fossil energy sources, the one with the smallest carbon emission factor is natural gas, which 
is therefore a clean energy source, followed by oil, and the one with the largest carbon emission factor is coal. 
Coal consumption in always dominated and its consumption scale is on a long-term upward trend. According 
to the data of three major energy structure changes, the tertiary sector has the biggest change, and its share of 
natural gas has increased by 10.88%, while its share of coal has decreased by 22.95%, so the negative effect of 
energy structure changes on carbon emission growth mainly comes from the adjustment of the tertiary sector, 
considering that the share of non-fossil energy (including hydropower, wind power, nuclear power, etc.) has 
increased by 6.12% in this period, which can further explain.

The response between CO2 emissions and impact factors.  From a macroscopic perspective, the 
LMDI approach can examine the primary effects and contributions of each influencing factor to CO2 emissions 
in the Yellow River basin. The strategy, meanwhile, falls short of fully capturing how carbon emissions fluctu-
ate as an influencing factor shifts. That is, it is unable to define how changes in energy use and carbon emis-
sions affect the drivers. Based on this flaw, we develop a better STIRPAT model to characterize the relationship 
between changes in CO2 emissions and the factors that affect them in the Yellow River Basin and to predict CO2 
emission trends. In this work, carbon intensity is directly employed for the prediction of peak carbon emissions 
in the Yellow River Basin, i.e., the carbon emission factor is paired with energy intensity, in order to more intui-
tively characterize the amount of low-carbon technology development.

In order to eliminate the interference of multiple covariance on the experimental results, the model was 
analyzed and processed by the method of ridge regression in this study. Ridge regression is a biased estimation 
regression method specifically used to analyze covariance data. It is a more realistic and trustworthy regression 
method by abandoning the unbiased nature of least squares to generate regression coefficients. Hoerl and Ken-
nard proposed the ridge regression estimation37. Figure 2 shows the trajectory of the ridge, and Fig. 3 shows the 
relationship between the resultant R-squared and the ridge coefficient K from the ridge regression.

The trend of the regression coefficients of the variables progressively stabilizes at k = 0.3, as shown in Fig. 2, 
where the coefficient of determination R2 is 0.9676. As a result, when k = 0.3, the normalized ridge regres-
sion equation is produced. Therefore, further normalized ridge regression is required to retrieve the matching 
unstandardized ridge regression equation in order to assess the elasticity coefficients between CO2 emissions and 
each affecting factor. Table 12’s transformation results are displayed, and it is clear that every variable passes the 
test for statistical significance. Consequently, using the fitted parameters calculated from the ridge regression, 
the improved STIRPAT model can be expressed as Eq. (12).

Additionally, the CO2 emissions from 2011 to 2020 were obtained in accordance with Eq. (12) and the model 
was verified in order to further assess the extended STIRPAT model’s resilience. Table 13 illustrates the con-
trast between the STIRPAT model’s actual and anticipated values. The findings indicate that there is an average 

(12)lnI = 0.61+ 0.28lnp+ 0.32lnA+ 0.09lnT− 0.0762lnU+ 0.16lnPS+ 0.02lnIs
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relative error of 3.44% between the predicted and actual values. This suggests that carbon dioxide emissions can 
be predicted using the enlarged STIRPAT model.

Analysis and forecast of CO2 emission scenarios.  It can be seen in the extended STIRPAT model that 
slight fluctuations in the values of these drivers may have an impact on the CO2 emissions and the timing of the 
peak carbon emissions. Therefore, this study uses scenario analysis to seek the effects of different combinations 
of parameter values on future CO2 emissions.

Figure 4 shows the projected CO2 emissions for 8 scenarios from 2021 to 2050. Table 14 shows the peaks of 
the Yellow River Basin under each scenario. In terms of the time to peak, the earliest peak of scenarios “M–L”, 
“M–M” and “M–H” occurs in 2030, which is in line with the national target of reaching the peak in 2030, and the 
latest peak of scenario “L–L” occurs in 2041. L–L” scenario, which peaks in 2041. The latest scenario “L–L” peaks 

Figure 2.   Ridge Trace Map.

Figure 3.   Relationship between R-squared and ridge coefficient K.
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in 2041. "It is found that with the same growth rate of population, GDP per capita, and urbanization rate, faster 
technological progress, energy structure and industrial restructuring will effectively reduce the future carbon 
emissions in the Yellow River Basin and shorten the time to reach the peak of carbon emissions. The high rate of 
economic development generates carbon dioxide, which is offset to some extent by the optimization of energy 
structure and the development of low-carbon technology, while the progress of energy structure and low-carbon 
technology accelerates the pace of reaching the peak of carbon emissions. The simultaneous slow development 
of economic and technological progress will delay the time to reach the peak of carbon emissions.

In terms of peak size, it is clear that there are significant differences in the carbon emission peaks for different 
scenarios, from large to small quantities, as “H–L”, “M–L”, “L–L”, “H–M”, “M–M”, “H–H”, “M–H”, and “L–M”. 
Taking “L–M”, “M–M” and “H–M” as examples, reducing the speed of economic and social development and 

Table 12.   Ridge regression results of CO2 emissions in the Yellow River Basin.

Variable Parameter Standard error Standardised coefficient t Statistics p-Value

LnP 0.2826 0.0479 0.2761 5.9062 0.0035

LnA 0.3202 0.0613 0.3188 5.2241 0.0001

LnT 0.0886 0.0505 0.0869 1.7529 0.0005

LnU − 0.0762 0.0435 0.0715 − 1.7497 0.0006

LnPs 0.1644 0.0271 0.1542 6.0563 0.0002

LnIs 0.0240 0.0527 0.0231 0.4559 0.0003

constant 0.6086 0.7159 0.0000 0.8501 0.0075

R^2 = 0.9676 F Statistics = 14.9394 Sig.F = 0.0024

Table 13.   Comparison of measured and projected CO2 emissions, 2011–2020.

Year Actual values (104 tonnes) Predicted values (104tonnes) Relative error (%)

2011 334,143.83 345,462.33 3.39

2012 346,090.64 356,846.65 3.11

2013 359,595.84 355,484.45 1.14

2014 362,751.34 385,467.21 6.26

2015 298,282.29 318,354.51 6.73

2016 363,391.45 369,495.32 1.68

2017 370,521.01 384,563.21 3.79

2018 388,745.44 384,613.21 1.06

2019 398,849.18 378,856.32 5.01

2020 406,313.28 412,353.21 1.48
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Figure 4.   Projected CO2 emissions in the Yellow River Basin under 8 scenarios from 2021 to 2050.
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maintaining the existing energy-saving and emission reduction policies can reduce the size of the peak, but 
cannot advance the peak time.

In practice, in order to meet the economic and social development needs of the Yellow River Basin, we should 
choose a scenario that can ensure the speed of economic development and achieve carbon emission reduction 
at the same time. The "M-H" scenario is the best model to control carbon emission while economic and social 
development, and it can respond to the national goal of 2030 carbon peak. To maintain a medium growth rate in 
this environment, socioeconomic development is required. The Yellow River Basin has recently optimized indus-
trial structure, conducted supply-side structural reforms, and rationalized resource allocation. These changes 
have also changed economic growth. Since 2015, tertiary industry has dominated economic growth in the Yellow 
River Basin, with the share of output from secondary industry declining and the energy consumption structure 
progressively shifting from high-carbon coal to low-carbon natural gas. As a result, the "M-H" scenario devel-
opment model satisfies the criteria for the social and economic sectors’ sustainable development in the Yellow 
River Basin and represents a more realistic path to reaching peak carbon emissions.

Conclusions
This study takes the Yellow River Basin as the research object, constructs a decomposition model of carbon 
emission influencing factors, and applies the log-average partition index (LMDI) factor decomposition method 
to decompose the factors influencing carbon emission changes into carbon emission coefficients, energy con-
sumption structure, energy intensity and other influencing factors, and visually analyzes the contribution of each 
factor to the carbon emission changes from 2005 to 2020. Then, the extended STIRPAT model is used to explore 
the relationship between carbon emissions and population, GDP per capita, carbon intensity, urbanization rate, 
energy structure and industrial structure. Then, the extended model was fitted with ridge regression using rel-
evant data from 2005 to 2020 using SPSS statistical software. The STIRPAT model can be used to predict future 
CO2 emissions in the Yellow River basin, according to a combination of satisfactory fitting findings and model 
validation. Also, this study conducted scenario analysis to determine the anticipated CO2 emissions in the Yel-
low River Basin for the period of 2021–2050 under eight scenarios, allowing researchers to explore the effects of 
various combinations of drivers on CO2 emissions. The results show that CO2 emissions peak in 2030 only under 
the “M–L”, “M–M”, and “M–H” scenarios, compared with the other five scenarios. The “M–H” scenario meets 
the requirements of sustainable socio-economic development in the Yellow River Basin. This requires socio-
economic development and technological progress to maintain medium growth while continuously adjusting 
the energy and industrial structures.

To ensure the smooth implementation of the low-carbon development plan in the Yellow River Basin, the 
Yellow River Basin should make every effort to complete the control of population size within 401.3 million, 
maintain stable economic growth, reduce carbon emission intensity to 1.25, increase urbanization rate to 79.05%, 
increase the proportion of non-fossil energy to 22.34%, and reduce the proportion of secondary industry added 
value to GDP to 36.18% by 2030 In addition, we will adjust the economic structure, transform the mode of eco-
nomic development, and strive to actively expand domestic demand. The study’s findings can help policy mak-
ers develop appropriate energy-saving and emission-reduction measures in addition to serving as a theoretical 
foundation for the overall construction of a peak carbon emission management framework in the Yellow River 
Basin and the formulation of reasonable socioeconomic development and carbon emission reduction targets.

The starting point of this paper is to jointly achieve the carbon peak target in the Yellow River Basin and to 
promote high-quality and synergistic development in the Yellow River Basin. Therefore, based on the results of 
this paper, the following suggestions are made: 1. The main source of carbon emissions in Qinghai Province is 
the scale of economic activities. In view of the fact that Qinghai province has the lowest carbon emissions in the 
Yellow River basin and its economy is relatively backward compared to other places, the main focus of Qinghai 
is on economic development. 2. The increase of carbon emissions in four provinces, namely Inner Mongolia, 
Ningxia, Henan and Shandong, is due to the expansion of population size. Shandong and Henan, as large popula-
tion provinces, should control the population growth appropriately.3. For Shaanxi and Shanxi, which are large 
energy provinces, there are cases of successful transformation of clean coal technology and high-efficiency 
pulverized coal type industrial boilers, as well as the experience of successful research and development of high-
efficiency equipment, so they should continue to invest in this direction and promote the efficient use of coal.4. 
For Gansu, the increase of carbon emissions mainly comes from economic development. Therefore, the energy 

Table 14.   Carbon emission peak and its peak time.

Scenarios Carbon emissions at peak Carbon peak time

L–L 525,702.63 2041

L–M 418,391.21 2040

M–L 559,571.40 2030

M–M 490,250.10 2030

M–H 427,362.01 2030

H–L 606,075.74 2035

H–M 488,616.13 2033

H–H 450,639.36 2032
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supply-side reform should be promoted to make the energy-related industries develop in the direction of green 
and intelligent. Maximize the efficiency of energy utilization, improve the conversion capacity of natural gas, 
coal, oil and other energy sources, and build a high-end green energy industrial base.

Data availability
Materials described in the manuscript will be freely available to any researcher wishing to use them for non-
commercial purposes, without breaching participant confidentiality. All authors can provide data.
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