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The fuzzy Kullback–Leibler 
divergence for estimating 
parameters of the probability 
distribution in fuzzy data: 
an application to classifying 
Vietnamese Herb Leaves
Hoa Le 1,3, Vu Ngoc Thanh Sang 2,3, Le Nhi Lam Thuy 2,3 & Pham The Bao 2,3*

In this paper, we address the challenge of estimating probability distributions which are typically 
represented by parameter-based values. However, this estimation is prone to errors and does not 
comprehensively capture the nature of real-world data. Additionally, real-world data often follows 
a mixed form of probability distributions, where sub-datasets may contain incomplete information. 
To enhance flexibility, especially in classification problems, we propose a new method for describing 
parameters estimated through Bayesian statistics. Our method introduces fuzzy parameters and 
assesses the similarity between probability distributions using the fuzzy extended Kullback–Leibler 
divergence. We demonstrate the practical application of our approach in Vietnamese Herb Leaves 
classification. By incorporating fuzzy parameters and leveraging Bayesian statistics, our method 
provides more robust estimations of probability distributions and enables improved flexibility in 
classification tasks.

Handling practical data as a single distribution presents inherent challenges and is deemed inappropriate. To 
overcome this limitation, a promising solution emerges: modeling the probability distribution of the given data as 
a mixture of probability distributions. Accomplishing this involves determining the correct forms of probability 
distributions for mixed data, a task achieved through the utilization of the Expectation–Maximization (EM) 
 algorithm1,2. This algorithm plays a crucial role in accurately estimating the parameters and components of the 
mixed model, enabling a more comprehensive representation of the underlying data structure.

In the context of the mixture model, a crucial step involves determining the number of components and 
parameters required for the mixed model. The Gaussian mixture model (GMM), a widely employed form 
consisting of a mixture of normal distributions, serves as a common starting point. To accurately identify these 
components and parameters, various criteria are employed, such as the Bayesian information criterion (BIC) of 
Schwarz, Akaike’s information criterion (AIC), normalized entropy criterion, or cross-validation3. Regardless of 
the criterion used, it is imperative to select the appropriate number of components, denoted as g0 , in a manner 
that minimizes the discrepancy between the experimental data and the mixed model of normal probability 
distributions. Decisions regarding the mixture of component probability distributions are made based on diverse 
 algorithms1 or hypothesis testing, typically denoted as H0 : g = g0.

The parameters of a mixed model are typically estimated empirically. The estimation process concludes 
when the errors of the estimate become sufficiently small, with values less than ϕ > 0 . The resulting estimated 
parameter, denoted as θ̂ , is then utilized for further inferences. In practice, the possible parameter values revolve 
around the estimated value θ̂ , indicating a range of θ ∈ (θ̂ − ε, θ̂ + ε) . The estimated results pertaining to the 
model’s parameters, encompassing both Bayesian and non-Bayesian statistics, are presented in relation to fuzzy 
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 sets4. Consequently, this estimation process justifies considering the parameters within the estimation models 
as fuzzy numbers.

Furthermore, it is important to acknowledge that a significant portion of the collected data should be treated 
as fuzzy  numbers5. Numerous studies have employed different approaches to estimate the probability distribution 
of fuzzy data. These methods include utilizing a Gaussian mixture model of fuzzy numerical  values6, a fuzzy 
Gaussian mixture model (FGMM) based on the dissimilarity of fuzzy C-means7, a similarity measure between 
fuzzy sets through  entropy8, or hesitant ordered weighted similarity  measures9. However, simply counting the 
number of observations of the fuzzy number intersecting a δ-cut and the number of observations of the fuzzy 
number union with a δ-cut is insufficient to determine the entropy between two fuzzy sets. Therefore, it remains 
necessary to investigate the similarity between fuzzy probability distributions or probability distributions with 
fuzzy parameters.

The primary objective of this research was to address the limitations associated with parameter estimation 
in probability distributions and develop an alternative approach that enhances flexibility and adaptability in 
statistical models, particularly within classification problems. The novelty of this study is the recognizing that 
probability distributions are typically parameter-based. This approach emphasizes the need for a fresh perspective 
on parameter estimation of the mixed form of probability distributions commonly observed in real-world data 
and the importance of considering the complexity and diversity of data patterns.

This research study makes valuable contributions to the field by proposing a novel method that incorporates 
parameters into statistical models, leading to enhanced flexibility and adaptability. Furthermore, the study 
applied the fuzzy extended Kullback–Leibler divergence for parameter description and comparison between 
probability distributions. By demonstrating the effectiveness of this approach and providing tangible evidence 
of its potential applications and benefits, particularly in the context of classifying Vietnamese Herb leaves, the 
research showcases its potential and application in real-world scenarios.

Literature review
The novel fuzzy probability density function, introduced in this research, represents a relatively less explored 
area in the field, as evidenced by the limited number of studies focusing on this concept. The current research 
primarily concentrates on applying this new fuzzy probability density function to a single probability distribution, 
marking a significant advancement in the field. However, it’s crucial to note that this focus is limited to single 
probability distributions. Furthermore, the concept of a mixture of fuzzy probability density functions, capable 
of handling real-world data following a mixture of probability distributions, emerges as a novel and promising 
area of research. Despite its potential to address the limitations of existing methods, particularly when dealing 
with skewed distributions, this concept has not yet been extensively studied, underscoring the need for further 
research in this area as presented in the Table 1.

Neutrosophic statistics and fuzzy logic are distinct statistical approaches that have evolved from classical 
binary logic to represent and quantify uncertainty and vagueness in data and knowledge  bases10. These 
methodologies have gained substantial attention due to their ability to handle imprecise and uncertain 
information. Neutrosophic statistics is grounded in the principles of neutrosophic logic, which does incorporate 
a measure of indeterminacy. They enhance the ’degrees of truth’ concept by accommodating indeterminacy, 
proving beneficial when working with incomplete or conflicting  data19. On the other hand, fuzzy statistics do 
not factor in the measure of indeterminacy. Fuzzy logic embraces the concept of ’partial truth’, effectively dealing 
with data’s imprecision and vagueness, proving its worth in numerous domains like AI, machine learning, and 
control systems. The emphasis of this research is based on fuzzy logic because of its widespread adoption and 
comprehensible structure. While neutrosophic logic has been investigated to a degree, it remains an area with 
significant potential and is earmarked as a promising field for upcoming studies and applications.

The estimations of fuzzy probability density functions based on parametric or non-parametric methods as 
based on histogram  method20, empirical cumulative distribution function-based method, kernel  method5,21. 
The histogram method in determining the probability density function is applicable with additional smoothing 
techniques. In addition, the empirical cumulative distribution function-based method is determined based on the 
lower bound probability density function f Lδ  and the upper bound probability density function f Uδ  , such that the 
expectations of these functions converge to the exact probability density function f, and the variance converges 
to 0. Moreover, suppose the smoothing function is guaranteed, the bias of the lower bound probability density 
function f Lδ  and the upper bound probability density function f Uδ  converge to 0, and the variance converges 
to zero. By employing these estimation methods and optimizing their smoothing techniques, researchers can 
obtain reliable and precise approximations of fuzzy probability density functions, thereby enabling more accurate 
modeling and analysis of uncertain phenomena.

In addition, the kernel method effectively estimates the overall form and shape of fuzzy probability density 
functions, excelling at capturing their complex  structure22. However, it lacks the capability to identify the specific 
mixture of probability distributions that contribute to the formation of the fuzzy density function. Consequently, 
when using Bayesian statistics alone, the kernel method cannot determine the corresponding parameters of the 
underlying probability distributions. In practical applications, incorporating new data and utilizing the kernel 
method to determine the form of a new fuzzy probability density function necessitates restarting the entire 
estimation process. It is unable to leverage previously acquired knowledge or progress, requiring a fresh start 
each time. Conversely, if the mixture form of the underlying probability distributions is already known or pre-
defined, inference techniques can accurately determine the parameters and provide precise  information23. This 
prior knowledge of the mixture form streamlines the estimation process, saving valuable time and computational 
resources.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14537  | https://doi.org/10.1038/s41598-023-40992-y

www.nature.com/scientificreports/

Alternatively, the fuzzy probability density function or the conditional fuzzy probability density function can 
be determined utilizing the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)  model17,24. 
The GARCH model bases its accuracy on an average calculation of variables, aiming for the minimum variance. 
These methods’ advantages are their independence from any preset probability distribution form of the data, 
allowing the results to derive purely from the data itself. If we collect data from the same object but at a different 
time, the probability density functions need to be recalculated. Similarly, fuzzy probabilities are calculated using 
the quantile regression model at specific  levels25. To enhance the accuracy of these calculations, we should use 
more exact measuring tools such as entropy, relative entropy, or Kullback–Leibler divergence. These tools are 
helpful as they clarify how the distribution changes and measure the difference between various probability 
density functions.

Feature parameters of fuzzy data are also crucial for evaluating the characteristics of fuzzy data, such as 
expectation, variance, covariance, higher-order moments, and  entropy26,27. Notably, the Kullback–Leibler diver-
gence, which is an effective tool for measuring the difference between two probability distributions, is not usually 
applied in fuzzy data contexts. This under-utilization hints at a research gap, one that could potentially expand 
the comprehension and utilization of fuzzy data analysis upon exploration.

The fuzzy probability density function is considered as a density curve that resides in two α−level  functions28. 
Estimating the parameters of the probability density function requires numerous trials to confirm the appropri-
ateness of the estimated values. In real-world situations, it is frequently observed that a combination of various 
probability distributions fits better than just a singular one. Therefore, ensuring a good alignment between 
parameters and the projected probability distributions is essential. This area stands as a critical focus for more 
detailed study and research.

Regarding the simulation study, our research team has conducted an extensive analysis in a separate research 
 paper28. Our previous study primarily concentrated on single probability distributions, neglecting the exploration 
of the mixture form. We proposed an algorithm that encompasses both simulated and real datasets, explicitly 
targeting the analysis of stock price data. In that study, we estimated fuzzy probability density functions using a 
mixture of probability distributions located within the region between the δ−level functions. During our previous 
examination, fuzzy probability density functions were emphasized primarily on single probability distributions, 
neglecting the exploration of the mixture form.

Under these circumstances, in this research, we propose a novel approach that treats the parameters of prob-
ability distributions as fuzzy numbers, drawing inspiration from the parameter-centric probability distribution 
perspective of Bayesian statistics. Making assumptions about these parameters becomes crucial when dealing 
with a mixture of probability distributions. Under such conditions, the component probability distributions, 
formulated based on the data, only capture a piece of the total information. We also introduce a new theorem to 

Table 1.  Related works for various distribution models and their key contributions and limitations.

Refs.

Distribution Paramter

Key contribution LimitationsName Kind Name Kind

10 Normal distribution Deterministic Neutrosophic mean and stand-
ard deviation Fuzzy

Used for testing multiple 
neutrosophic population means 
simultaneously

Employed within an uncertain 
context

11 Normal distribution Deterministic Mean and standard deviation Deterministic
Utilization of real-valued 
random variable representations 
with unknown distributions fol-
lowing the central limit theorem

Assumption of independence in 
real-world scenarios and inability 
to handle skewed data in certain 
cases

12 Uniform distribution Deterministic Lower limit and upper limit Deterministic
Application of uniform distribu-
tion in random number genera-
tion and problems with equally 
likely outcomes

It assumes equal likelihood for all 
outcomes and lacks the ability to 
model skewed data

13 Exponential distribution Deterministic Rate parameter Deterministic
Exponential distribution mod-
eling of time between events in 
Poisson point processes

Based on the assumption of 
constant event rates, which may 
not always reflect reality

14 Poisson Distribution Deterministic Rate parameter Deterministic Modeling the number of event 
occurrences in time or space

Based on the assumption of 
constant event rates

15 Local Histogram Deterministic Bin size Deterministic
Simple to construct and 
interpret, requiring minimal 
mathematical calculations

Sensitivity to bin size and 
potential bias in representing 
underlying data distribution

16 GARCH Model Deterministic
Mean, variance, lag order for 
past returns, lag order for past 
conditional volatility, GARCH 
model parameters

Deterministic Suitability for linguistic interpre-
tation of density changes

GARCH Model’s local maxima 
issues during parameter estima-
tion.

17 Fuzzy GARCH Model Fuzzy Mean for each rule, membership 
function parameters Fuzzy

Interpreting gradual changes in 
output density, capture fat tails, 
and multimodality

Potential local optima issues and 
estimation challenges in highly 
parametrized Fuzzy GARCH 
models

18 Fuzzy Coefficient Volatility 
(FCV) models Fuzzy

Parameters modeled through 
defuzzification or linear fuzzy 
numbers

Fuzzy
CV models’ intuitive handling 
of parameter uncertainty and 
superior fuzzy forecasts

Limitation of linear membership 
functions in accurately represent-
ing linguistic terms and decision-
making difficulties in their use
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determine the fuzzy equivalence between two fuzzy probability distributions. The theory is accomplished using 
the fuzzy adaptation of the Kullback–Leibler divergence, which is extensively used in various practical fields.

Parameter estimation in Gaussian mixture model
We make the assumption that observations x1, x2, . . . , xn are independent and conform to the same probability 
distribution. Here, zig is used to denote component membership. Specifically, zig = 1 indicates that observation 
i is a member of component g, while zig = 0 implies otherwise. The likelihood function can be expressed by 
formula (1) as presented  in29:

where v represents the model parameters, which can be detailed as v = (π1, . . . ,πG;µ1, . . . ,µG; σ
2
1 , . . . , σ

2
G). 

By applying the natural logarithm to Eq. (1), we obtain the complete-data log-likelihood which is represented 
by Eq. (2) as mentioned  in29:

In the E-step, zig are replaced by their expected value in formula (3)29:

where i = 1, 2, . . . , n and g = 1, 2, . . . ,G.
The model parameters that maximize the anticipated value of the complete-data log-likelihood can be 

achieved in M-step using the formula (4)29:

Despite the utility of the EM algorithm, it does come with several drawbacks, which are as follows:

• The first limitation is that it is required to pre-define the number of components in the mixture of probability 
distributions. Additionally, we have to choose the optimal number of mixtures that best represent the data 
based on model selection. Indeed, Fig. 1 shows a mixture of two normal distributions N(µ, σ 2) are N(−1; 12) 
and N(2; 22) . Changes in their rates influence the overall shape of the mixture. As observed in Fig. 1a, the 
mixed distribution f clearly exhibits a two-peak structure. However, when scaling the component distribu-
tions with an equal proportion of 50 % for each distribution (Fig. 1b), we observe that the probability density 
function displays two indistinct peaks. Notably, when the probability ratio changes to 90 and 10% in Fig. 1c, 
the previously well-defined probability distribution becomes unimodal, characterized by a single peak. In 
such scenarios, it is appropriate to approximate the distribution as a single probability distribution, such as 
a normal distribution or a skewed distribution.

• Secondly, when it comes to estimating the component probability distributions of a mixture of probability 
distributions, the EM algorithm is typically applicable only to mixtures of normal distributions. However, 
attempting to approximate the data using a mixed form of normal distributions does not ensure complete 
accuracy, as the two component distributions are skewed and have heavy tails. To achieve a more precise 
representation, it is necessary to consider mixtures of skewed distributions that can capture the characteris-
tics of the data more effectively. In Fig. 2, we observe a mixture of two gamma distributions, namely G(k; θ) , 
where k and θ represent the shape and scale parameters. These parameters determine the rates of change 
within the distributions. The two-component gamma distributions in question are G(3; 2) and G(4; 7), which 
possess distinct shapes due to their differing ratios. Upon examining Fig. 2a, we observe two peaks, whereas 
Fig. 2b and c display a single peak. The heavy distribution in the right tail of Fig. 2a suggests that it should 
be approximated as a mixture of two normal distributions. This estimation differs from that of Fig. 2b and c. 
Hence, in order to achieve an accurate approximation of Fig. 2b and c, it is necessary to employ a minimum 
of one mixture comprising three normal distributions, even though the actual distribution is a mixture of 
only two gamma distributions.

  The exponential distribution Exp(� ) with rate parameter � has an expected value of 1
�
 and a variance of 

1
�2

 . It is considered a special case of the gamma distribution, which is a two-parameter family of continuous 
probability distributions. In the gamma distribution with shape parameter k > 0 and scale parameter θ > 0 , 
the mean is kθ , and the variance is kθ2 . When k = 1 , the gamma distribution becomes the exponential dis-
tribution. Therefore, the gamma distribution encompasses the exponential distribution. Additionally, the 
gamma distribution and mixtures of gamma distributions can encompass probability distributions that only 
take positive values, normal distributions, and mixtures of normal distributions, which can include both 
positive and negative values.
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Although, it is possible to calculate the parameters of the normal distribution, the problem arises when the 
probability distributions are not normal. This problem leads to either incorrect approximation across the mixture 
of normal distributions or computationally intensive. Therefore, we need to determine the most appropriate 
probability distribution format for component probability distributions, based on mixed distribution information. 
Thus, we infer the parameters as well as the ratios of the respective component probability distributions.

Calculating the parameters of the normal distribution is feasible. However, complications arise when deal-
ing with probability distributions that deviate from normality. In such cases, approximating the mixture using a 
combination of normal distributions may result in incorrect representations or demand computationally inten-
sive procedures. Hence, it becomes crucial to identify the most suitable probability distribution format for the 
component probability distributions based on the information provided by the mixed distribution. Consequently, 
we infer both the parameters and ratios of the corresponding component probability distributions to ensure an 
appropriate approximation.

Estimate the parameters of the component probability distribution in the mixed 
model
Given that the dataset is divided into sub-datasets, the subsequent challenge is to identify the most suitable 
single probability distribution for each sub-dataset. It is essential to recognize that these sub-datasets represent 
incomplete component data, as there is still potential for data misclassification. Consequently, the estimation of 
probability distributions for the sub-datasets differs from that of the complete dataset, taking into account the 
potential inaccuracies arising from incomplete information.

Estimate the parameters of the component probability distribution. We introduce a novel 
algorithm designed specifically for estimating the parameters within the component probability distribution of 
sub-datasets.

Figure 1.  The mixture of two normal distributions with the component density functions as f1 ∼ N(−1; 12) 
and f2 ∼ N(2; 22) . The mixed density function, denoted as f, represents the combined distribution resulting 
from the mixture of these two components.
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The algorithm presented in Algorithm 1 aims to estimate the parameters for a single component probability 
distribution based on a given sub-dataset. In step 1, the sub-dataset, consisting of n observations, is provided as 
input: sub− dataset = xi , i = 1, 2, . . . , n . It is assumed that the sub-dataset follows some common probability 
distributions g(xi|θ) , where θ = (θ1, θ2, . . . , θk) represents the parameters of the distributions. For instance, in 
the case of a normal distribution, which requires two parameters—the mean and the standard deviation—the 
sample mean and the standard deviation are used as the estimation for these parameters. Under these circum-
stances, the sample mean serves as an estimate for the mean of the target distribution, while the sample standard 
deviation provides an estimate for the standard deviation of the target distribution. In the step 2, the extended 
Kullback–Leibler divergence values are calculated to measure the difference between each probability distribu-
tion and the actual data. This step helps quantify the fit of each distribution to the sub-dataset. Finally, in step 
3, the probability distribution with the smallest extended Kullback–Leibler divergence is selected as the most 
suitable distribution for the given sub-dataset. This selection is based on the notion that the distribution with 
the lowest divergence indicates a better fit to the observed data. The output of the algorithm is the probability 
distribution that is considered best suited to the sub-dataset. By following these steps, the algorithm facilitates 
the estimation of parameters for a single component probability distribution, aiding in the identification of the 
most appropriate distribution that aligns with the given sub-dataset.

The Kullback–Leibler divergence between two probability density functions f(x) and g(x) is determined by 
the formula (5)30:

Figure 2.  The mixture of two gamma distributions in which the component density functions are f1 ∼ G(3; 2) 
and f2 ∼ G(4; 7) and the mixed density function is f.
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We use the extended Kullback–Leibler divergence be determined by the formula (6)31:

in which femp is the empirical probability of data. In this context, it is important to note that the samples 
x1, x2, . . . , xn are arranged in ascending order, as indicated by the notation (xj−1; xj] . These represent non-over-
lapping consecutive intervals. The ordering of samples is a common requirement in certain statistical methods, 
particularly those that involve cumulative probabilities or the calculation of specific types of divergence or 
distance measures. In the case of Eq. (6), this sorted order of samples is utilized to compute the extended Kull-
back–Leibler divergence. This divergence quantifies the difference between the empirical probability distribution 
of the data and the theoretical probability distribution being fitted to the data.

The extended Kullback–Leibler divergence is a more effective measure compared to metrics such as mean 
square error (MSE), mean error (ME), and mean absolute error (MAE) when it comes to determining the appro-
priate probability distribution for a single set of data.

Estimated component parameters based on Bayesian statistics. The parameters of the estimating 
component probability distribution are based on incomplete data, which introduces uncertainty in determining 
the correct probability distribution. As a result, the proposed Algorithm 2 offers improved accuracy in estimating 
the parameters to mitigate the challenges posed by incomplete data.

The adjusted probability density function in Algorithm 2 indeed represents the posterior probability density 
function. The parameters of this function are calculated based on the product of non-negative functions, ensuring 
that they themselves are non-negative. In line with the formula in Bayesian statistics, this non-negative function 
is divided by a constant, specifically the integral of the non-negative function over the entire defined domain. 
Consequently, the newly calculated function satisfies the properties of a probability density function: it is non-
negative and its integral over its defined domain is exactly equal to 1.

Moreover, we have constructed a dataset known as the Vietnamese Herb Leaf Images (V-Herb) database. 
This database was created by collecting photographs of medicinal plants, which were subsequently identified by 
herbalists and botanists. The number of photographs obtained for each species or strain varied based on specific 
requirements. The leaf images in the database encompass both Vietnamese herbal plants and general leaves, 
exhibiting diverse morphological and structural characteristics influenced by factors such as region, climate, 
and soil conditions. The V-Herb database comprises a total of 3807 distinct leaf images corresponding to 296 
unique Vietnamese herbal species. Table 2 showcases some examples of Vietnamese herbal species present in 
our V-Herb database. It is worth noting that all the color images were captured using mobile devices, against 
different backgrounds, at various times, and under varying lighting conditions.

The features from the leaf images were extracted utilizing two methods: histogram of oriented gradients 
(HOG) and local binary pattern (LBP). These techniques allow for the capture of distinct characteristics and 
patterns present in the leaf images.

The original objective of the HOG was to detect humans in cluttered backgrounds by quantifying gradient 
orientation occurrences. The working principle of HOG involves dividing the image into cells and calculating 
a histogram of gradient orientations within each cell. The computation of gradients is performed in both the x 
and y directions, capturing the magnitude and orientation of the gradients using the following formula (7)32:

(5)D(f ||g) =

∫

f (x) log
f (x)

g(x)
dx.

(6)KLD(f ||femp) ≈

n
∑

j=1

Probf ((xj−1; xj])× log
Probf ((xj−1; xj])

Probfemp ((xj−1; xj])
,
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where I(x, y) represents the intensity of the pixel at coordinates (x, y). For each pixel, the gradient value G(x, y) 
and gradient direction θ(x, y) are calculated from two directions determined by (8) and (9) fomulars.

Following the computation of gradients, each pixel within a cell contributes a weighted vote to an orientation-
based histogram. This histogram divides the range of gradient angles into k bins. Normalizing the histograms 
of all cells is essential to reduce the influence of variations in lighting and noise.

The HOG method preserves the local edge or gradient patterns within cells, which enhances its robustness 
against local geometric and photometric variations. HOG does not require on prior knowledge of leaf anatomy 
for leaf categorization. It does not extract information from conventional botanical parameters, such as the leaf ’s 
length-width ratio or the number of lobes. Instead, HOG focuses on capturing the local gradient characteristics, 
making it applicable for leaf classification without explicit botanical feature engineering.

The LBP is another widely-used feature extraction method in texture analysis, valued for its computational 
simplicity and effectiveness in texture  classification33. Prior to applying LBP, the images are pre-processed by 
converting them to grayscale. The LBP operator calculates the difference in gray levels between a central pixel 
and its neighboring pixels within a defined region. If we denote the gray value of a pixel as I(x, y), the LBP value 
of that pixel is computed as a decimal using the following formula (10):

where

and K is the number of neighbor pixels around the center one.
It is important to note that HOG may exhibit limited performance when applied to images with noisy edges. 

In such cases, LBP serves as a potential alternative. LBP features have been extensively employed in diverse 
applications, demonstrating promising performance in tasks like face recognition. LBP is particularly valuable 
due to its ability to classify images with respect to their invariance to monotonic gray level changes and its high 
computational efficiency.

To utilize both HOG and LBP effectively, the feature vectors extracted from training and testing images 
using these methods were concatenated. This concatenation resulted in a new feature vector that combined the 
information captured by both techniques. The resulting feature vector was then employed as the final feature 
representation during the classification stage. This approach helps leverage the strengths of both HOG and 
LBP, enhancing the overall performance of the classification algorithm. Furthermore, we present visualizations 
using histograms of leaf data captured through two distinct methods, namely HOG and LBP. Specifically, these 
histograms showcase the leaf data of four randomly chosen plant specimens, namely Ocimum gratissimum, 
Combretum indicum, Thevetia peruviana, and Senna alata.

Based on the observations from Figs. 3a,b and  4a,b, we observe that the differences between the leaves, 
as extracted using LBP, appear to be quite similar, which presents challenges in classification. In contrast, the 
differences between the leaves are visually discernible when using HOG for feature extraction. However, the 
approximation of the leaf data using a normal distribution is relatively restrictive, necessitating a more accurate 
approximation of the probability distribution form for the leaf data.

Considering the aforementioned situation, it would be more suitable to approximate the data using a 
single skewed probability distribution, as opposed to a mixture of normal distributions, skewed probability 

(7)Gx(x, y) = I(x + 1, y)− I(x − 1, y);Gy(x, y) = I(x, y + 1)− I(x, y − 1),

(8)G(x, y) =
√

G2
x(x, y)+ G2

y(x, y),

(9)θ(x, y) = tan−1 Gy(x, y)

Gx(x, y)
.

(10)L(x, y) =

K−1
∑

i=0

f [(Ii(x, y)− I(x, y))] × 2i ,

f [(Ii(x, y)− I(x, y))] =

{

1, if Ii(x, y)− I(x, y) ≥ 0
0, if Ii(x, y)− I(x, y) < 0),

Table 2.  Examples of Vietnamese herbal species in our V-Herb database.

Vietnamese herbal species Scientific names Vietnamese herbal species Scientific name

Ắc ó Acanthus integrifolius Muồng trâu Senna alata

Bạch hoa xà Plumbago zeylanica Quỳnh lam Gonocaryum lobbianum

Cà hai lá Solanum diphyllum Ngọc nữ biển Clerodendrum inerme (L.) Gaertn

Đinh lăng lá rỗ Polyscias guilfoylei Sâm cau lá lớn Curculigo capitulata (Lour.) Kuntze

Hoắc hương Pogostemon cablin Sử quân tử Combretum indicum

Hương nhu trắng Ocimum gratissimum Thông thiên Thevetia peruviana

Lược vàng Callisia fragrans Xảo tam phân Paramignya trimera
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distributions, or a combination of normal and skewed distributions. In the case of mixed probability distribu-
tions, it becomes crucial to accurately estimate the parameters of the component probability distributions. The 
parametric estimation of these distributions relies on the stability of the selected parameters, taking into account 
the characteristics of the sub-dataset.

In our dataset, we have collected images of various plant species, where factors such as care, soils, and leaf 
age contribute to variations in leaf size. The probability distributions of these data samples exhibit approximate 
similarity.

For data pre-processing, we apply the HOG method to extract leaves from collected data. We propose two 
methods to pre-process the data: the average and the fuzzy methods. For the averaging method, we sorted the 
data in ascending order. Specifically, at each position, we calculate the average of all values in each position. 
Then, the graph of the aggregated data set from each leaf data type is shown in Fig. 5. Furthermore, the leaf data 
sets extracted by the HOG method, in which mean and standard deviation parameters are approximately the 
same, are shown in Table 3.

Given that the datasets exhibit the same mean and standard deviation, estimating the data using the same 
probability distribution will yield identical results. Therefore, it becomes essential to estimate the parameters 
using Bayesian statistics, as outlined in Algorithm 2. This approach ensures parameter stability by adjusting 
them based on the available data.

The estimation of parameters from the probability distribution is performed using the maximum a posteriori 
(MAP) approach, considering loss functions such as the mean for quadratic loss, the median for absolute loss, 
or the mode for 0–1 loss. However, in many cases, it is desirable to estimate specific values, including poten-
tially large values. To address this, the parameters are treated as fuzzy numbers, allowing for a more flexible 

Figure 3.  The histograms of the leaves are based on characteristic extraction using HOG and LBP methods.
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representation. The characterization function of the fuzzy numbers can be determined based on the adjusted 
probability density function corresponding to those parameters.

In the fuzzy number method, the data is sorted in ascending order, and instead of calculating averages, range 
values from the smallest to the largest are computed at each position. As a result, the data is transformed into 
fuzzy intervals, where the estimated parameters also become fuzzy numbers. Details of relevant knowledge about 
fuzzy numbers are presented in the next section.

Fuzzy numbers and the fuzzy Kullback–Leibler divergence
Fuzzy numbers and characterizing functions. 
Definition  126 A fuzzy number x∗ is determined by its characterizing function ξ(·) , which is a real function 
of one real variable x following several requirements:

• ξ : R → [0; 1].
• ∀δ ∈ (0; 1] the so-called δ-cut Cδ(x

∗) = x ∈ R : ξ(x) ≥ 0 is a finite union of compact intervals, [aδ,i; bδ,i] , 
i.e. Cδ(x

∗) = ∪k
j=1[aδ,j; bδ,j] �= 0.

• The support of ξ(.) , defined by supp[ξ(.)] = {x ∈ R : ξ(x) > 0} , is bounded.

The set of all fuzzy numbers is denoted by F (R ).

Definition  226 A fuzzy number is called a fuzzy interval if all its δ-cuts are non-empty closed bounded intervals. 
The set of all fuzzy intervals is denoted by FI(R ).

Figure 4.  The histograms of the leaves are based on characteristic extraction using HOG and LBP methods.
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Mathematical operations for fuzzy quantities. Let x∗1 and x∗2 be two fuzzy numbers that have the 
corresponding characterizing functions ξ1(.) and ξ2(.) . For fuzzy intervals x∗1 and x∗2 , the generalized addition is 
defined using δ-cuts, Cδ(x

∗
1 ) = [aδ,1; bδ,1] and Cδ(x

∗
2 ) = [aδ,2; bδ,2],∀δ ∈ [0; 1] then the δ-cut of the fuzzy sum 

x∗1 ⊕ x∗2 is given by (11)26:

The characterizing function of x∗1 ⊕ x∗2 is determined by Lemma 1.

Lemma  126 The characterizing function ξ(·) of a fuzzy number x∗ holds following condition:

The generalizing product x∗1 ⊗ x∗2 of two fuzzy numbers with corresponding characterizing functions ξ1(·) 
and ξ2(·) is defined by formula (13)26:

The δ-cuts of the product x∗1 ⊗ x∗2 are calculated by (14)26:

Proposition  126 Let x∗1 , x
∗
2 , . . . , x

∗
n be fuzzy intervals with δ-cuts: Cδ(x

∗
i ) = [aδ,i; bδ,i] , then the fuzzy arithmetic 

mean: x∗ = 1
n ⊕n

i=1 x
∗
i  is a fuzzy interval, and δ-cut determined by (15):

(11)Cδ(x
∗
1 ⊕ x∗2 ) =

[

aδ,1 + aδ,2; bδ,1 + bδ,2
]

,∀δ ∈ (0; 1].

(12)ξ(x) = max{δ × ICδ(x∗)(x) : δ ∈ [0; 1]},∀x ∈ R .

(13)ξx∗1⊗x∗2
(x) = sup{min{ξ1(x1), ξ2(x2)} : x1 × x2 = x},∀x ∈ R .

(14)Cδ(x
∗
1 ⊗ x∗2 ) =

[(

min
(x1,x2)∈Cδ(x

∗
1 )×Cδ(x

∗
2 )
x1 × x2

)

;

(

max
(x1,x2)∈Cδ(x

∗
1 )×Cδ(x

∗
2 )
x1 × x2

)]

, ∀δ ∈ (0; 1].

Figure 5.  Approximately normal distribution of data corresponding leaves four categories based on the average 
method.

Table 3.  The parameters of the data set of leaves were extracted by the HOG method.

Types of leaves

Parameters

Mean Standard deviation

Ocimum gratissimum 0.0017 0.0018

Combretum indicum 0.0017 0.0015

Thevetia peruviana 0.0017 0.0018

Senna alata 0.0017 0.0009
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Fuzzy correlation. Assume the characterizing function ξ(·) of the fuzzy number x∗ is described in formula 
(16)34:

Where the functions fx∗(.) and gx∗(.) are referred as the left and the right sides of x∗ , respectively. Additionally, 
the formula (17)34 determines the lower and upper expected values of the fuzzy number x∗ in the similar manner.

Definition  334 For fuzzy numbers x∗ and y∗ , we define (18) and (19) as the correlation formula and the 
correlation coefficient of fuzzy numbers x∗ and y∗.

The equations in Eqs. (16), (17), (18), (19) have been formulated as generalized forms to handle fuzzy num-
bers, accommodating not only Gaussian fuzzy numbers but also a wide range of other fuzzy number types. This 
versatility arises from two main factors. Firstly, the defining function, denoted as xi(x∗)(t) = 1 , is established 
over an interval [t1l ; t

1
r ] rather than at a single point, ensuring its applicability to fuzzy numbers with diverse 

shapes and characteristics. Secondly, the left and right functions of the fuzzy number, represented as fx∗(.) and 
gx∗(.) respectively, need not be identical, thereby allowing for more flexibility in dealing with different fuzzy 
number representations. Consequently, these equations offer a robust framework suitable for handling a broad 
spectrum of fuzzy numbers.

The fuzzy extended Kullback–Leibler divergence. The estimation of parameters for the component 
probability distributions within a mixture of probability distributions was performed using Algorithm 2, resulting 
in the representation of these parameters as probability distributions. To facilitate a more generalized treatment 
of the parameters, we propose considering them as fuzzy numbers, achieved by adjusting the probability density 
function to the characterizing function. This adjustment ensures that the maximum value of the probability 
density function is 1. Specifically, we introduce the adjusted probability density function, denoted as f̃ (θ) , which 
is obtained by dividing the probability density function f (θ) by the value of the probability density function at 
the mode, as defined by the formula (20):

Then, the values θ̃ is the adjusted probability density function f̃ (θ̃ ) ≥ δ for each level δ-cut, with 0 < δ ≤ 1 . 
Since the probability density function follows a single probability distribution, the parameter defined an interval 
θ̃ ∈ (θ̃ l; θ̃ r), θ̃ l ≤ θ̃ r.

When dealing with numerical data represented as fuzzy numbers, the parameters of the fuzzy probability 
density function also become fuzzy numbers. However, it is important to distinguish between probability dis-
tributions with fuzzy interval parameters and fuzzy interval data. In this context, this paper proposes a theorem 
regarding the fuzzy extended Kullback–Leibler divergence to address the aforementioned challenges and provide 
a solution. This theorem introduces a novel approach for evaluating the divergence between fuzzy probability 
distributions, contributing to the advancement of fuzzy inference methods.

Theorem 1 Assume f and g are probability density functions, with the parameters of each probability density 
function θ∗f 1, θ

∗
f 2, . . . , θ

∗
fk , θ

∗
g1, θ

∗
g2, . . . , θ

∗
gh are the fuzzy numbers. Then, the fuzzy extended Kullback–Leibler 

divergence KLD∗(f ||g) between two probability density functions f (x|θ∗f 1, θ
∗
f 2, . . . , θ

∗
fk) and g(x|θ∗g1, θ

∗
g2, . . . , θ

∗
gh) 

is also a fuzzy number, determined by the formula (21):

(15)Cδ(x
∗) =

[

1

n

n
∑

i=1

aδ,i;
1

n

n
∑

i=1

bδ,i

]

, ∀δ ∈ (0; 1].

(16)ξ(x∗)(t) =























0, if t < t0l ,
fx∗(t), if t0l ≤ t < t1l ,
1, if t1l ≤ t ≤ t1r ,
gx∗(t), if t1r < t ≤ t0r ,
0, if t0r < t.

(17)E(x∗) = t1l −

∫ t1l

t0l

fx∗(t)dt,E(x
∗) = t1r +

∫ t0r

t1r

gx∗(t)dt.

(18)C(x∗, y∗) =E(x∗)E(y∗)+ E(x∗)E(y∗),

(19)ρ(x∗, y∗) =
C(x∗, y∗)

√

C(x∗, x∗)C(y∗, y∗)
.

(20)f̃ (θ) =
f (θ)

f (θMode)
.
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Proof The fuzzy extended Kullback–Leibler divergence KLD∗(f ||g) is the integral of the variable x, which depends 
on the fuzzy parameters. Therefore, when the value of the parameter changes, the integration function and the 
integral result also changes.

On the other hand, the value of the Kullback–Leibler divergence KLD(f||g) always non-negative and 
 bounded35. There are the existing minimum and maximum values that measure the difference between two 
probability distributions.

Specifically, for each θ-cuts of the parameters are Cδ(θ
∗
j ) = [θ lj ; θ

r
j ],∀δ ∈ (0; 1] , the fuzzy extended Kullback–

Leibler divergence KLD∗(f ||g) is calculated by (22):

with

and x ∈ M ⊆ (x0; xT ], x0 = min{x} − ε, ε > 0; xT = max{x} .   �

Through Theorem 1, for each δ ∈ (0; 1] , we have the δ-cuts of KLD∗(f ||g) to determine the difference between 
the probability distributions when the parameter changes. Therefore, by applying this result, we can make infer-
ences in classification problems as follows: finding the parameter provides the most similarity between two prob-
ability distributions, through smallest divergence corresponds to the minimum value of KLD∗(f ||g) ; finding the 
value domain of the difference between two probability distributions with fuzzy parameters; finding the domain 
of values of the difference between a probability distribution with fuzzy parameters and the data, through the 
corresponding empirical distribution.

Applications. The detailed illustrations we selected random 23 herbal species for verifying the proposed 
model as presented in the Table 4.

The selected herbals were classified into four types based on their actual distributions. The first type cor-
responds to probability density functions with a single skewed peak and a slight difference between the lower 
and upper bounds. The second type consists of probability density functions with a single balanced peak and a 
higher difference between the upper and lower bounds. The third type exhibits an inverse form of the probability 
density function with a small difference between the upper and lower bounds. The fourth type demonstrates an 
inverse form of the probability density function with a significant difference between the lower and upper bounds.

For each leaf type, we conducted an analysis using both the HOG and LBP methods. The results are presented 
on the left and right sides of the respective figures. The upper bound is represented by the color orange, while the 
lower bound is depicted in blue for each collected dataset. Through the implementation of the HOG method, dis-
tinct differences were observed among the leaves of the selected herbals. On the other hand, the leaves extracted 
using the LBP method displayed minimal variations across all herbals, indicating a high degree of similarity. 

Type 1.  The first probability density function type has one peak, skewed, and a slight difference between the 
lower and upper bounds. The results of Acanthus integrifolius is illustrated in Fig. 6. The results are 
similar for trees Gynura procumbens Merr., Jasminum subtriplinerve, Streblus ilicifolius (Vidal) Corner., 
Mirabilis jalapa L., Paramignya trimera.

Type 2.  The second type has a single peak, balanced with a higher difference between the upper and lower 
bounds. The results of Helicteres hirsuta Lour. is illustrated in Fig. 7. The results are similar for trees 
Senna alata and Combretum indicum.

Type 3.  The third type has the reduced form and a small difference between the upper and lower limits. The 
results of Euphorbiaceae is illustrated in Fig. 8. The results are similar for trees Momordica charantia 
and Curculigo capitulata.

Type 4.  The fourth type has the reduced form of the probability density function and much difference between 
the lower and upper bounds. The results of Pouzolzia zeylanica is illustrated in Fig. 9. The results are 
similar for trees Schefflera arboricola, Gardenia jasminoides Ellis., Polyscias fruticosa, Ocimum gratis-
simum, Callisia fragrans, Celosia argentea L., Cheilocostus speciosus, Folium Viticis negundo, Cascabela 
thevetia and Psychotria reevesii Wall.

The results presented in Table 5 provide valuable insights into the performance of the method we introduced 
compared to several established Convolutional Neural Networks (CNNs), namely Xception, Inception ResNet, 

(21)KLD∗(f ||g) =

∫ ∗

M
f
(

x|θ∗f 1, θ
∗
f 2, . . . , θ

∗
fk

)

× log
f
(

x|θ∗f 1, θ
∗
f 2, . . . , θ

∗
fk

)

g
(

x|θ∗g1, θ
∗
g2, . . . , θ

∗
gh

)dx.

(22)Cδ[KLD
∗(f ||g)] =

[

min
θj∈[θ

l
j ;θ

r
j ]
fg; max

θj∈[θ
l
j ;θ

r
j ]
fg

]

,

fg =

∫

M
f
(

x|θf 1, θf 2, . . . , θfk
)

× log
f (x|θf 1, θf 2, . . . , θfk)

g(x|θg1, θg2, . . . , θgh)
dx

≈

T
∑

t=1

Prob∗f ((xt−1; xt ]|θf 1, θf 2, . . . , θfk)× log
Prob∗f ((xt−1; xt ]|θf 1, θf 2, . . . , θfk)

Prob∗g ((xt−1; xt ]|θg1, θg2, . . . , θgh)
,
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Table 4.  The random selected 23 herbal species.

No. Vietnamese herbal species Scientific names Sample size

1 Ắc ó Acanthus integrifolius 20

2 An xoa Helicteres hirsuta Lour. 17

3 Bầu đất trắng Gynura procumbens Mer. 17

4 Bỏng nổ Euphorbiaceae 18

5 Cây bọ nắm Pouzolzia zeylanica 18

6 Chân chim 8 lá Schefflera arboricola 22

7 Chè vằng Jasminum subtriplinerve 16

8 Dành dành Gardenia jasminoides Ellis. 17

9 Đinh lăng Polyscias fruticosa 16

10 Duối ô rô Streblus ilicifolius (Vidal) Corner. 17

11 Hoa phấn Mirabilis jalapa L. 23

12 Hương nhu trắng Ocimum gratissimum 28

13 Khổ qua rừng Momordica charantia 16

14 Lược vàng Callisia fragrans 17

15 Mào gà hoa trắng Celosia argentea L. 16

16 Mía đỏ Cheilocostus speciosus 20

17 Muồng trâu Senna alata 23

18 Ngũ trảo Folium Viticis negundo 16

19 Sâm cau lá lớn Curculigo capitulata 18

20 Sử quân tử Combretum indicum 24

21 Thông thiên Cascabela thevetia 23

22 Trang trắng Psychotria reevesii Wall. 20

23 Xảo tam phân Paramignya trimera 18

Figure 6.  Type 1. Acanthus integrifolius.
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Figure 7.  Type 2. Helicteres hirsuta Lour.

Figure 8.  Type 3. Euphorbiaceae.
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EfficientNet-B2, and MobileNet-V1. These comparisons are crucial for evaluating the efficacy of our proposed 
approach and understanding its relative strengths and weaknesses. Upon analyzing the accuracy scores, we 
observe that our method achieved an accuracy of 98.86%, which is on par with the best-performing CNNs 
in the comparison. Xception, Inception ResNet, and ResNet achieved the same accuracy of 98.86%, while 
EfficientNet-B2 and MobileNet-V1 attained accuracies of 97.73% and 98.87%, respectively. This similarity in 
accuracy scores suggests that our proposed method holds its ground against well-established CNN architectures 
and demonstrates its competency in handling the V-Herb database.

Conclusion
The analysis of probability distributions offers valuable insights into understanding the characteristics of a given 
dataset. Among these distributions, normal distributions are commonly observed in scientific and engineering 
domains. Fuzzy sets provide a powerful approach for modeling normal distributions and yielding more accurate 
results compared to other methods, thanks to their capability to capture nonlinearities in the  data36. Assumptions 
made about probability distributions effectively shed light on their behavior and  characteristics37,38. For instance, 
when assuming a normal distribution, parameter estimation in Bayesian statistics typically focuses on specific 
values such as mean, median, or mode, based on the corresponding loss functions to achieve maximum posterior 
probability. Moreover, each parameter is estimated based on a single specific value. Consequently, it becomes 
necessary to modify the probability density function of the parameters by considering them as characterizing 
functions to accommodate fuzzy numerical parameters.

In cases where the parameters are represented as fuzzy numbers, we introduce Theorem 1, which enables the 
comparison of similarity between probability distributions using the fuzzy extended Kullback–Leibler divergence. 
This theorem finds application in scenarios such as identifying specific parameter values that minimize the 
divergence or comparing the differences between two fuzzy parametric probability distributions by comparing 

Table 5.  Cost comparison of CNNs and proposed method for leaf recognition on V-Herb database.

Methods accuracy (%)

Xception 98.86

Inception ResNet 98.86

EfficientNet-B2 98.86

Mobilenet-V1 97.73

Proposed method 98.87

Figure 9.  Type 4. Pouzolzia zeylanica.
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their respective δ-cut intervals using extended fuzzy divergences. Prior to determining the difference between 
the probability distribution and the data, one of the two probability distributions is substituted with the empiri-
cal distribution.

By leveraging these concepts and methodologies, we gain valuable insights into probability distributions, 
their parameters, and their comparisons with empirical data. This enables us to make informed decisions and 
draw meaningful conclusions in various statistical and modeling applications. While our current research pri-
marily focuses on fuzzy logic, which has been widely adopted and proven effective in various domains such as 
AI, machine learning, and control systems, we acknowledge that neutrosophic statistics represents a promising 
field with substantial potential for future studies and applications.

In practical scenarios, it is uncommon for a dataset to strictly adhere to a single probability distribution. More 
often, datasets exhibit a mixture of probability distributions, where multiple distributions need to be combined 
to obtain accurate results. Rather than assuming a specific probability distribution beforehand, the appropriate 
approach involves identifying the underlying component distributions. Understanding the components within a 
mixture of probability distributions is crucial for accurate interpretation of the results. This process of identifying 
the component probability distributions within a mixture is essential to avoid confusion and misinterpretation 
of observations.

Estimating the probability distribution of the data becomes challenging when working with only a sub-
set of informative data, as this can lead to misidentification of the probability distribution. Therefore, careful 
consideration is necessary to avoid errors in estimating the probability distribution with incomplete data. Our 
proposed Algorithm 1 determines the single probability distribution that best fits the data based on the extended 
Kullback–Leibler divergence. However, due to the presence of incomplete data, estimating each parameter of the 
probability distribution using only a single value can lead to inaccuracies. Hence, it becomes necessary to consider 
the parameters in the form of probability density functions, employing a Bayesian statistical perspective. This 
involves selecting the probability density function that best fits the data and following the detailed calculation 
steps outlined in Algorithm 2 to determine the parameters of the probability distribution.

The disadvantage of a mixture of normal distributions is that it may not always be the correct probability 
distribution for the data. When the data is better represented using skewed distributions, fewer data points are 
required and higher precision can be achieved. Therefore, post-testing processes are necessary to ensure that 
the estimated parameters of the probability distribution or mixture of probability distributions are based on 
reliable measures such as AIC, BIC, entropy, cross-validation, or hypothesis testing. Among these measures, the 
Kullback–Leibler Divergence offers several advantages in accurately evaluating the parameters of probability 
distribution functions. Another limitation in testing the accuracy of fuzzy probability distributions is the con-
sideration of only certain variables, such as expected value, variance, covariance, and entropy, while neglecting 
others. In Bayesian statistics, parameter estimates mainly involve specific values like mean, median, or mode, 
determined by the corresponding loss functions to ensure maximum posterior probability. Each parameter is 
estimated based on a specific value. To address this, it is necessary to modify the probability density function 
of the parameters using a characterizing function that accounts for fuzzy numerical parameters. In cases where 
the parameters are represented as fuzzy numbers, we introduce Theorem 1, which enables the comparison of 
similarity between probability distributions using the fuzzy extended Kullback–Leibler divergence. The applica-
tions of Theorem 1 include finding specific parameter values that minimize the divergence and comparing the 
differences between two fuzzy parametric probability distributions by evaluating the respective δ-cut intervals 
of the corresponding extended fuzzy divergences. Before determining the difference between the probability 
distribution and the data, one of the two probability distributions is substituted with the empirical distribution.

It is challenging to determine the true form of a probability distribution when relying on distribution assump-
tions. In many cases, real-world data exhibits a mixture of probability distributions, further complicating the 
problem. To address these challenges, we propose a parametric method for estimating fuzzy probability distri-
butions. The novelty of our approach lies in estimating the component probability distributions of the Gaussian 
Mixture Model. In this context, the mixture of probability distributions is defined as a combination of normal 
distributions using the EM technique. Bayesian statistics and our proposed fuzzy extended Kullback–Leibler 
divergence are employed for parameter estimation and assessing the similarity between probability distributions, 
respectively. To demonstrate the applicability of our research, we present an illustrative case study involving 
Vietnamese herb leaves. The experimental results showcased in this paper demonstrate the effectiveness of the 
proposed method for datasets exhibiting similar characteristics.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to its proprietary 
nature but are available from the corresponding author on reasonable request.
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