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Intercellular cross‑talk 
through lineage‑specific gap 
junction of cancer‑associated 
fibroblasts related to stromal 
fibrosis and prognosis
Seong Ju Cho 1,2, Ji‑Hye Oh 3,4, Jaehoon Baek 1,2, Yunsu Shin 1,2, Wonkyung Kim 3,4, Junsu Ko 2, 
Eunsung Jun 5, Dakeun Lee 6,7, Seok‑Hyung Kim 8*, Insuk Sohn 2* & Chang Ohk Sung 3,4*

Stromal fibrosis in cancer is usually associated with poor prognosis and chemotherapy resistance. 
It is thought to be caused by fibroblasts; however, the exact mechanism is not yet well understood. 
The study aimed to identify lineage-specific cancer-associated fibroblast (CAF) subgroup and their 
associations with extracellular matrix remodeling and clinical significances in various tumor types 
using single-cell and bulk RNA sequencing data. Through unsupervised clustering, six subclusters 
of CAFs were identified, including a cluster with exclusively high gap junction protein beta-2 (GJB2) 
expression. This cluster was named GJB2-positive CAF. It was found to be a unique subgroup of 
terminally differentiated CAFs associated with collagen gene expression and extracellular matrix 
remodeling. GJB2-positive CAFs showed higher communication frequency with vascular endothelial 
cells and cancer cells than GJB2-negative CAFs. Moreover, GJB2 was poorly expressed in normal 
tissues, indicating that its expression is dependent on interaction with other cells, including vascular 
endothelial cells and cancer cells. Finally, the study investigated the clinical significance of GJB2 
signature score for GJB2-positive CAFs in cancer and found a correlation with poor prognosis. These 
results suggest that GJB2-positive CAF is a unique fibroblast subtype involved in extracellular matrix 
remodeling, with significant clinical implications in cancer.

Desmoplastic stromal fibrosis is frequently observed in cancer tissues such as pancreatic cancer, and cancer-
associated fibroblasts (CAFs) are known to play an important role in the fibrosis, promoting tumor progression, 
metastasis, and therapeutic resistance1–4. However, there is still a lack of biomarkers for CAF and formation of 
fibrosis is a complex process. Although it is known to be associated with cross-talk between CAFs and tumor 
cells, the detailed mechanism has not yet been fully elucidated4.

Recent studies have shown that CAFs are not a homogeneous cell population, but rather a heterogeneous 
group with distinct phenotypes and functions5–8. The subtypes of CAFs such as inflammatory CAF (iCAF) and 
myofibroblastic CAF (myCAF) have been identified9, but specific markers for CAFs have not yet been discovered, 
making it difficult to study targeted therapies or mechanisms for CAF. Therefore, identifying CAF subtypes and 
their characteristics is critical for understanding the tumor microenvironment and developing effective therapies. 
CAF, known to generally promote tumor growth and metastasis, has been considered a promising target for a 
long time10. However, most clinical trials targeting CAF have resulted in failures11,12. This could be attributed 
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to the heterogeneity of CAF and their dynamic changes alongside tumor growth11,12. Therefore, it is crucial to 
consider this dynamic nature when studying CAF. Recent advancements in single cell sequencing technology 
have greatly aided in understanding the heterogeneity and plasticity of CAF.

In this study, we aimed to identify CAF lineage specific biomarker and to investigate their functions in the 
tumor microenvironment. Through single-cell RNA sequencing (scRNA-seq) analysis of fibroblasts from multiple 
tumor types, we identified a subgroup of CAFs that express high levels of gap junction protein beta-2 (GJB2), 
and we named this subgroup "GJB2-positive CAFs." We further explored the characteristics and functions 
of GJB2-positive CAFs in the tumor microenvironment, including their association with extracellular matrix 
(ECM) remodeling and collagen production, their interactions with other cells, and their clinical significance. 
Our study suggests the existence of specialized fibroblasts associated with stromal fibrosis formation with lineage 
specific gene expression and provides new insight into the importance of vascular endothelial cells in fibrosis.

Materials
Analysis of scRNA‑seq datasets.  Public scRNA-seq datasets were used for this study. Three colorectal 
cancer datasets13–15 (GSE132465, GSE144735, and GSE178341) and a skin squamous cell carcinoma dataset16 
(GSE144236) were obtained from the Gene Expression Omnibus. Breast cancer and lung cancer datasets were 
obtained from the ArrayExpress database (E-MTAB-8107, E-MTAB-6149, and E-MTAB-6653)15. The pancreatic 
cancer dataset was obtained from the Genome Sequence Archive (CRA001160 under project PRJCA001063)17. 
To minimize bias, we exclusively collected datasets generated using the 10 × Genomics platform. Additional 
data for pancreatic ductal adenocarcinoma, non-small cell lung cancer, and fibroblasts from non-cancer tissues, 
including diopathic pulmonary fibrosis, coronavirus disease, and ulcerative colitis, were obtained from Buechler 
et al.18. The scRNA-seq data for fetal/embryo tissue were also obtained from ArrayExpress (E-MTAB-11343)19. 
The spatially resolved transcriptome analysis of colorectal cancer from the 10xVisium platform was performed 
using STOMICS DataBase (Dataset ID: STDS0000033)20. This study approved by the Institutional Review Board 
of Asan Medical Center, Seoul, South Korea.

Filtration of raw count matrix and log‑normalization.  Filtration of the raw count matrix, normaliza-
tion, scaling, dimensionality reduction, cell clustering, and differential gene expression analysis of the processed 
data were performed in the Seurat package (v 4.1.0)21 in R (v 4.1.2). The raw count matrix was converted to 
a Seurat object using the ‘CreateSeuratObject’ function. We filtered out low quality cells with ≤ 200 or ≥ 6000 
detected genes, unique molecular identifier (UMI) counts ≤ 1000, or a mitochondrial gene ratio ≥ 20%. After 
filtration, we normalized the data in each sample using the ‘NormalizeData’ function with default parameters, 
which generated log(feature counts/total counts for that cell + 1) data.

Dimensionality reduction and clustering analysis.  To identify the top 1000 variable genes for dimen-
sionality reduction, we used the ‘FindVariableFeatures’ function. We set the parameters as follows: dispersion 
cutoff > 0.5, 0.0125 < mean cutoff < 3. The expression levels of the genes were then scaled, and the ‘RunPCA’ func-
tion was applied to the scaled data (except for the CAFs) to achieve dimensionality reduction. For the CAFs in 
each discovery sample, we intersected variable genes across the discovery samples to obtain common variable 
features before applying the ‘RunPCA’ function. Using these common variable features for principal component 
analysis reduced outliers owing to sample-specific bias. The elbow of the principal component analysis scree 
plot was used to determine the number of principal components to use for clustering. To visualize the clustered 
result, we applied the Uniform Manifold Approximation and Projection algorithm. For the clustering of each 
dataset and the construction of a shared nearest neighbor graph, we used the ‘FindNeighbors’ function and the 
‘FindClusters’ function with default parameters; the resolution and dimensionality were determined depending 
on each dataset.

Cell cluster annotation.  We used the ‘SingleR’ R package (v 1.8.1)22 for unbiased cell-type recognition 
with a human reference data set from the Human Primary Cell Atlas22. To verify the cell-type recognition, we 
compared the annotations with known cell-type-specific differentially expressed genes. For elaborate fibroblast 
annotations, we annotated the cells as fibroblasts if they satisfied both of the following conditions5: the cells were 
annotated as ‘Fibroblast’ by ‘SingleR’ and the cells expressed one or more fibroblast markers (DCN, COL3A1, 
or THY1)5,13,15. The three markers were found to be commonly expressed in various fibroblast subtypes of colo-
rectal cancer13, and our previous study also confirmed a similar pattern in fibroblast subtypes of several other 
cancer types5. The fibroblasts and epithelial cells taken from cancer tissues were annotated as ‘CAF’ and ‘Cancer,’ 
respectively, while those taken from normal tissues were annotated as normal fibroblasts (‘NF’) and ‘epithelial 
cells,’ respectively. For the GSE144735 sample, the fibroblasts from the border tissue and cancer tissue were not 
distinguishable on the Uniform Manifold Approximation and Projection plot; therefore, we also annotated the 
fibroblasts from the border tissue as ‘CAF’.

Finding differentially expressed genes and robust markers of the CAF subtypes.  The differ-
entially expressed genes of each cell cluster in the RNA assay were computed using the ‘FindAllMarkers’ and 
‘FindMarkers’ functions. To find differentially expressed genes consistently across the discovery samples, we 
intersected the differentially expressed genes of the same cell types. Then, we calculated the mean p-values and 
fold-change values to use for further analysis. For the CAF subtypes specifically, we applied the ‘FindAllMarkers’ 
function to find robust markers across the discovery samples. The 75 genes with the lowest p-value in each sub-
type were intersected to find robust markers. If the sign of the average log2(fold-change) as not constant across 
the discovery samples, we removed the gene from the list of robust markers.
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CAF subtype classification.  To classify the CAF subtypes consistently across the discovery samples, we 
performed canonical correlation analysis using the ‘cancor’ function in the ‘stats’ R base package. Canonical 
correlation analysis was performed between the clusters obtained from different discovery samples, and then 
repeated to all possible cluster combinations. The input of the ‘cancor’ function was a normalized count matrix; 
the rows were the common variable features and the columns were the cells in the cluster. We then compared the 
correlations between the first canonical variates of all possible combinations to identify the highest correlation. If 
one combination showed the highest correlation, we considered the clusters in that combination to be the same 
subtype. If two combinations showed the same correlation between the first canonical variates, we compared 
the correlations between next canonical variates, until a difference was observed. If the subtype had a definite 
marker, it was utilized to annotate the subtype.

Pseudotime analysis.  The ‘monocle’ (v 2.22.0)23 R package was used to construct a trajectory and find the 
pseudotime of the CAFs. The CellDataSet object was constructed by using the ‘newCellDataSet’ function on 
the ‘RNA’ assay data of the Seurat object. Then, we submitted the CellDataSet object to the ‘estimateSizeFacotrs’ 
and ‘estimateDispersions’ functions for further analysis. The ‘differentialGeneTest’ function was used to find the 
differentially expressed genes among the six CAF subtypes and NF, which were used in the psuedotime analy-
sis. Only differentially expressed genes with adjusted p-values < 0.001 were submitted to the ‘setOrderingFilter’ 
function to construct a trajectory. We used the ‘reduceDimension’ function with the following parameters to 
reduce the dimensions in the monocle: max_components = 2 and method = ‘DDRTree’. Then, we calculated the 
Spearman correlations between pseudotime and the normalized count values for all the features. All the Spear-
man correlations used in this paper were performed in the ‘cor.test’ function in the ‘stats’ R base package. Next, 
we calculated the mean correlation between the discovery samples. We only used genes that were measured 
across all the discovery samples (22,340 genes).

Inferring cell–cell interactions using CellChat.  Cell–cell interactions were inferred by the CellChat 
(v 1.6.1) R package24. CellChat can quantitatively identify cell–cell interactions and cell–cell communication. 
We used the curated human database in CellChat and the cell annotations determined by SingleR. We applied 
CellChat to each discovery sample with default parameters. The cancer cells were divided into several clusters, 
and we used these cancer clusters as inputs to consider heterogeneity. T cells, macrophages, monocytes, and 
endothelial cells were used in the same way as the cancer cells. To explore the interactions between CAFs and 
other cell types, we extracted the cell–cell interactions which were saved in the ‘net’ slot by the ‘subsetCommu-
nication’ function. We collected the overlapping interactions between the clusters and CAFs in each sample, and 
then selected common interactions between the samples.

Measurement of positive cells.  If a cell had a non-zero UMI count for a certain gene, we considered it 
a positive cell for that gene. Then, to identify CAF-specific genes, we counted the cells that were positive for all 
possible genes on the CAFs and NFs across the discovery samples.

Pathway analysis.  Gene set enrichment analysis (GSEA) was performed in the GSEAplot (v 0.1.0)25 R 
package. We compared GJB2-positive CAFs with GJB2-negative CAFs in the ‘hallmark gene set’ and ‘gene ontol-
ogy biological process’ datasets from The Molecular Signatures Database. Specifically, we only used the gene 
ontology biological process gene sets if the gene set name contained ‘MESEN’ or ‘FIBRO’. To achieve consistent 
GSEA results across the discovery samples, we calculated the average normalized enrichment score and nominal 
p-value, then used average values when considering the GSEA result.

Correlation between GJB2 expression and marker gene sets.  To investigate the characteristics 
of GJB2, we calculated the Spearman correlations between the GJB2 expression value and the mean expres-
sion value of each marker gene set. The marker gene sets were sourced from the literature14,26 (Supplementary 
Table S1).

Proportion of GJB2‑positive CAFs according to tumor stage.  To investigate if GJB2-positive CAFs 
are related to poor prognosis, the proportion of GJB2-positive CAFs was calculated according to tumor stage. 
We counted the number of cells in the GJB2-positive and GJB2-negative CAF clusters for each tumor stage in 
the discovery samples. To integrate the notation for the tumor stage, we categorized the stages as follows: Stage 
1, Stage 2, and LOW became ‘low stage,’ while Stage 3, Stage 4, and HIGH became ‘high stage’ (GSE178341 uses 
‘LOW’ and ‘HIGH’ in its metadata). Then, we calculated the proportions of the cells in the GJB2-positive CAF 
clusters, and the numbers of CAF cells at each categorized tumor stage.

The Cancer Genome Atlas bulk tissue RNA‑seq data and clinical information.  Normalized gene 
expression data (illuminahiseq_rnaseqv2-RSEM_gene_normalized) and corresponding clinical data for 8469 
cancer tissues were downloaded (https://​gdac.​broad​insti​tute.​org/). The dataset included the following cancer 
types: bladder urothelial carcinoma (BLCA,  n = 407), breast invasive carcinoma (BRCA,  n = 1079), cervical 
and endocervical carcinoma (CESC, n = 294), colon adenocarcinoma (COAD, n = 274), esophageal carcinoma 
(ESCA, n = 181), glioblastoma (GBM, n = 151), head and neck squamous cell carcinoma (HNSC, n = 515), kidney 
renal clear cell carcinoma (KIRC, n = 510),

kidney renal papillary cell carcinoma (KIRP, n = 283), brain lower grade glioma (LGG, n = 513), liver hepa-
tocellular carcinoma (LIHC, n = 366), lung adenocarcinoma (LUAD, n = 510), lung squamous cell carcinoma 

https://gdac.broadinstitute.org/
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(LUSC, n = 484), ovarian serous cystadenocarcinoma (OV, n = 299), pancreatic adenocarcinoma (PAAD, n = 177), 
prostate adenocarcinoma (PRAD, n = 493), rectum adenocarcinoma (READ, n = 88), sarcoma (SARC, n = 253), 
skin cutaneous melanoma (SKCM, n = 76), stomach adenocarcinoma (STAD, n = 412), testicular germ cell tumors 
(TGCT, n = 133), thyroid carcinoma (THCA, n = 497), thymoma (THYM, n = 1,119), and uterine corpus endo-
metrial carcinoma (UCEC, n = 355).

Single‑cell RNA‑seq sample preparation, library preparation, and sequencing.  CAFs were iso-
lated from endoscopic ultrasound-guided biopsy samples from patients with pancreatic cancer and maintained 
in Dulbecco’s modified Eagle’s medium (HyClone Laboratories) supplemented with 10% FBS, 1% penicillin, 
and streptomycin. We used the CAFs within six passages to avoid potential senescence-associated phenotypic 
changes. The use of the CAFs was approved by the Institutional Review Board of Ajou University Hospital 
(AJIRB-BMR-SMP-20-222).

For scRNA-seq, the 10 × Genomics Chromium platform was used to capture and barcode the cells to gener-
ate single-cell gel beads-in-emulsion, according to the manufacturer’s protocol. Briefly, along with the reverse 
transcription master mix, cell suspensions were loaded onto 10 × Genomics Single Cell 30 Chips. During this 
step, the cells were partitioned into the gel beads-in-emulsion, along with gel beads coated with oligonucleotides. 
These oligonucleotides enable mRNA capture inside the droplets by 30-bp oligo-dT after cell lysis, and provide 
barcodes to index the cells (16 bp) and transcripts (12-bp UMI). Following reverse transcription, cDNAs with 
both barcodes were amplified, and a library was constructed using the Single Cell 3′ Reagent Kit (v3.1 chemis-
try) for each sample. The resulting libraries were sequenced on an Illumina NovaSeq 6000 System in 2 × 150-bp 
paired-end mode.

Sample demultiplexing, barcode processing, and UMI counting.  We performed sample demulti-
plexing, barcode processing, and UMI counting using the official 10 × Genomics pipeline Cell Ranger (v6.1.1) 
(https://​suppo​rt.​10xge​nomics.​com). Briefly, the raw base call files generated by Illumina sequencers were demul-
tiplexed into reads in the FASTQ format using the bcl2fastq conversion software developed by Illumina (https://​
github.​com/​brwnj/​bcl2f​astq). The raw reads were trimmed from the 3′ end to obtain the recommended number 
of cycles for the read pairs (Read 1: 28 bp; Read 2: 90 bp). The reads from each library were then processed sepa-
rately using the ‘cellranger count’ pipeline to generate a gene–barcode matrix for each library. During this step, 
the reads were aligned to the human reference genome (GRCh38). Cell barcodes and UMIs associated with the 
aligned reads were subjected to correction and filtering, and the count matrix data were pre-processed using the 
Seurat R package (v4.1.1). UMIs with < 401, expressed genes > 6000 or < 200, and with > 20% of the read mapped 
to the mitochondrial RNA were filtered out. For visualization, we performed principal component analysis with 
2000 highly variable genes for initial dimensionality reduction, using t-distributed stochastic neighbor embed-
ding to reduce the principal component dimensions into a 2D space. The scRNA-seq data have been deposited 
in the Gene Expression Omnibus with accession No. GSE223858.

Statistical analysis.  Statistical analyses were performed using R version 4.2.1. Differences were compared 
using the two-tailed Mann–Whitney U test or t-test. Correlation analysis of the continuous variables was per-
formed using Spearman or Pearson correlation analysis. Log-rank tests were performed to evaluate survival 
differences between groups. Multivariate Cox proportional-hazards regression analyses were also performed.

Ethics approval and consent to participate.  This study was approved by the Ethical Committee of 
Asan Medical Center. Informed consent was obtained from all participants and all methods were carried out in 
accordance with relevant guidelines and regulations.

Results
Subgroup identification of GJB2‑expressing CAF.  To identify CAF subgroups, fibroblasts were 
extracted from the scRNA-seq data of multiple tumor types using the intersection of two independent approaches 
for robust fibroblast identification (Fig. 1a). Using whole cells, the identified fibroblasts were clustered into sev-
eral groups (Fig. 1b). Among the fibroblasts, the CAFs and NFs clustered separately in multiple tumor types 
(Fig. 1c). When the CAFs were further divided using unsupervised clustering, a total of six subclusters were 
identified. Among these six subclusters, one showed exclusively high GJB2 expression (Fig.  1d and Supple-
mentary Fig. S1a). We called this subcluster “GJB2-positive CAF” and, on average, it accounted for 25.3% of all 
the CAFs across the multiple datasets (Fig. 1e and Supplementary Fig. S1b). GJB2 expression is not specific to 
fibroblasts, as it is also observed in epithelial cells and immune cells (Supplementary Fig. S1c). Several subtypes 
of NFs showing pericyte-like, stem cell, inflammatory, or myogenic features were identified and these subtypes 
were similar across various datasets (Supplementary Fig. S2). The expression of GJB2 was almost negative even 
at the subtype level of these NFs (Supplementary Fig. S2).

GJB2‑positive CAFs are terminally differentiated and associated with collagen gene expres‑
sion.  Trajectory analysis using NFs and CAFs revealed that the GJB2-positive CAF subgroups were mostly 
located towards the end of the pseudotime trajectory, indicating that the GJB2-positive CAF group is a termi-
nal differentiation stage in various NF and CAF subgroups (Fig. 2a and Supplementary Fig. S3). The proto-
typical gene expressions including COL1A1, COL3A1, PDGFRB, ACTA2, and S100A4 for CAF showed higher 
expression in CAF subgroups than NF (Fig. 2b). Meanwhile, to discover genes related to the differentiation of 
CAF, we evaluated gene expression patterns based on pseudotime, the inclusion of commonly expressed CAF 

https://support.10xgenomics.com
https://github.com/brwnj/bcl2fastq
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genes, and the exclusion of commonly expressed NF genes (Fig. 2c and Supplementary Tables S2–S4). Using 
this approach, GJB2, COL10A1, and COL11A1 were identified (Fig. 2d). In the fraction of fibroblasts with gene 
expression (Fig. 2e), vimentin was expressed in most CAFs, irrespective of the CAF subgroup, whereas GJB2 
was expressed in a CAF subgroup but seldom expressed in NF. When the gene expression was correlated with 
pseudotime, GJB2, COL10A1, and COL11A1 were top ranked (Fig.  2f). Overall, these findings suggest that 
GJB2-positive CAFs are a unique subgroup of terminally differentiated CAFs associated with collagen gene 
expression. Considering that GJB2 is known to have two major functions27, gap junction intercellular commu-
nication and hemichannel formation (Fig. 2g), and that GJB2-positive CAFs were significantly associated with 
collagen gene expression, we speculated that ECM remodeling through hemichannels could be a major function 
of GJB2-positive CAFs.

GJB2‑positive CAFs are associated with ECM remodeling.  Next, we further evaluated the function 
of GJB2-positive CAFs in cancer tissues. GJB2 expression in this CAFs was significantly correlated with gene 
expression in the ECM (Fig. 3a). This association was observed in all three datasets (Fig. 3b). The expression of 
individual genes associated with the ECM is higher in GJB2-positive CAFs compared to GJB2-negative CAFs 
(Fig. 3c). The overexpressed genes in GJB2-positive CAFs compared with GJB2-negative CAFs also indicated an 
association with the ECM (Fig. 3d). Moreover, pathway analysis using GSEA revealed enriched pathways of pro-
tein secretion, angiogenesis, and the ECM in GJB2-positive CAFs compared with GJB2-negative CAFs (Fig. 3e).
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Figure 1.   Identification of CAF subgroup. (a) Common fibroblast extraction from scRNA-seq data. (b) 
Clustering of all cell types in three colorectal cancer datasets. (c) Clustering of fibroblasts in cancer and normal 
tissues. (d) Clustering of CAFs (fibroblasts in tumor tissues) revealed six subgroups, which were consistent 
in three independent datasets. (e) GJB2-positive CAF is one of the major subgroups. CAF cancer-associated 
fibroblast.
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Communication of GJB2‑positive CAFs with vascular endothelial cells and cancer cells.  To 
identify the interactions between GJB2-positive CAFs and other cells, we analyzed ligand–receptor interac-
tions using CellChat. The number of GJB2-negative CAFs were higher than the number of GJB2-positive CAFs 
(Fig.  4a); nevertheless, the interaction frequency was higher in GJB2-positive CAFs (Fig.  4b,c). Specifically, 
GJB2-positive CAFs received more signals from other cells than did GJB2-negative CAFs. Interestingly, although 
GJB2-positive CAFs mainly signaled to cancer cells (Supplementary Fig. S4), the main source cells that actively 
signaled to GJB2-positive CAFs were blood vessel endothelial cells (Fig. 4c). Among all the cells that interacted 
with GJB2-positive CAFs, endothelial cells showed the highest frequency of signaling them (Fig. 4d). We ana-
lyzed spatial resolved transcriptome data using 10xVisium in colorectal cancer, to visualize the spatial position-
ing of CAFs expressing GJB2 and vascular endothelial cells (Fig. 4e). We acknowledge that this approach has 
limitations, however, it is worth noting that GJB2-positive cells are co-localized with spots expressing fibroblast 
markers such as DCN, indicating the GJB2-positive CAFs. Additionally, there is partial overlap with regions 
expressing vascular endothelial cell markers like CD31 (PECAM1). These suggest a close relationship between 
these two cell populations.

The main ligand–receptor pairs involved in endothelial cell–CAF interactions were found to be associated 
with EMC containing collagen (Fig. 4f–g and Supplementary Fig. S5). These findings suggest that endothelial 
cells also play an important role in fibrosis and collagen formation in the ECM through cross-talk with GJB2-
positive CAFs in cancer tissues.

GJB2 expression and clinical significance of GJB2‑positive CAFs.  The expression patterns of GJB2 
in various cancer and normal tissues showed that it is mainly expressed specifically in CAFs and is poorly 
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expressed in normal tissues (Fig. 5a). Additionally, the low GJB2 expression in cultured CAFs from pancreas 
cancer tissues suggests that the expression of GJB2 is dependent on interactions with other cells, including 
vascular endothelial cells and cancer cells (Fig. 5b). Therefore, we investigated the clinical significance of GJB2-
positive CAFs in cancer by measuring the GJB2 signature score in 8469 cancer tissues from The Cancer Genome 
Atlas (Fig.  5c and Supplementary Fig.  S6a). We observed a significant correlation (Supplementary Fig.  S6b) 
between the GJB2 signature score and the relative abundance of CAFs determined using the MCPcounter28. In 
most cancer types, patients with a high GJB2 signature score tended to have poor prognosis (Fig. 5d). Among the 
24 cancer types, seven (including pancreatic adenocarcinoma (PAAD), stomach adenocarcinoma (STAD), colon 
adenocarcinoma (COAD), bladder urothelial carcinoma (BLCA), glioblastoma (GBM), kidney renal papillary 
cell carcinoma (KIRP), and brain lower-grade glioma (LGG)] showed significantly poor survival in patients 
with high GJB2 signature scores (Fig. 5e). In all patients with available clinical information (n = 8443), the GJB2 
signature score was elevated in advanced-stage cancers (Fig. 5f). Overall, patients with a high GJB2-positive 
signature score showed poor prognosis (Fig. 5g), and this is a prognostic factor independent of cancer stage, age, 
and sex (Fig. 5h).

Summary of GJB2‑positive CAF characteristics.  GJB2-positive CAFs can be characterized as follows: 
they are terminally differentiated; the GJB2 expression in the fibroblasts is cancer-specific; cancer with a high 
GJB2 signature is associated with poor prognosis; GJB2-positive CAFs communicate abundantly with other 
cells, including vascular endothelial cells and cancer cells; and GJB2-positive CAFs show high secretory activity 
in collagen production and EMC remodeling (Fig. 5i).
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Discussion
In this study, we used scRNA-seq data from multiple tumor types to identify the fibroblast subgroups associated 
with fibrosis. We demonstrated that GJB2-positive CAFs are a unique fibroblast subset, specialized for ECM 
remodeling and cancer-associated fibrosis. GJB2-positive fibroblasts are rarely found in normal tissues, but their 
predominance in cancer tissues suggests their lineage specificity for cancer-associated fibrosis. Considering that 
fibrosis in cancer tissue is associated with poor prognosis, GJB2-positive CAFs are a promising target.

Pathway analysis revealed that GJB2-positive CAFs were enriched in angiogenesis as well as protein secretion 
and ECM-related pathways. We also identified the interactions between GJB2-positive CAFs and other cells, find-
ing that endothelial cells were the main source of signaling to GJB2-positive CAFs, and that the ligand–receptor 
pairs between endothelial cells and GJB2-positive CAFs were associated with ECM containing collagen. This 
suggests the importance of endothelial cells, which have been overlooked in the process of fibrosis formation. 
These findings correspond with those of Hsu et al.29, who reported that dysfunctional vascular endothelium 
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Figure 4.   Cell–cell interactions of GJB2-positive CAFs and their expressions. (a) Cell fraction of GJB2-positive 
or GJB2-negative CAFs. (b) Cell interaction frequencies of GJB2-positive or GJB2-negative CAFs. (c) Higher 
interaction frequencies in GJB2-positive CAFs compared with GJB2-negative CAFs (paired Wilcoxon-rank 
sum test). Cancer cells and endothelial cells interact the most frequently with GJB2-positive CAFs. (d) Sankey 
plot for interactions between CAFs and other types of cells. (e) Gene expression of DCN, GJB2, and PECAM1 
(CD31) in spatially resolved transcriptome data. (f,g) Ligand–receptor pairs frequently identified in GJB2-
positive CAFs and their function.
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Figure 5.   Expression and clinical significance of GJB2-positive CAFs. (a) Fibroblasts in various cancer tissues 
showed high GJB2 expression; however, GJB2 was rarely expressed in fibroblast in normal and non-cancerous 
tissue. (b) Two cultured fibroblasts from pancreatic cancer tissues showed little GJB2 expression. (c) GJB2-
positive CAF signatures in 24 cancer types from The Cancer Genome Atlas bulk RNA-seq data. (d) Clinical 
significance of GJB2-positive CAF signatures (univariate Cox regression analysis). (e) Representative tumor 
types showing poor prognosis and a high GJB2-positive signature (log-rank test). (f) Tumor stage and GJB2-
positive CAF signature. (g) Overall survival of GJB2-positive CAF signature in all patients in The Cancer 
Genome Atlas data (log-rank test). (h) Independent clinical significance of GJB2-positive CAF signature after 
adjustment with stage, sex, and age (multivariate Cox regression analysis). (i) Summary of GJB2-positive CAF 
characteristics. CAF cancer-associated fibroblast.
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contributes to tissue fibrosis in cancer. Our study shows that endothelial cells can secrete collagen, thereby 
contributing to fibrosis directly as well as signaling to CAFs.

Fibrosis and desmoplasia are frequently identified in pancreatic cancer. The GJB2-positive CAFs showed 
the highest abundance in pancreatic cancer among the 24 cancer types from The Cancer Genome Atlas and the 
various scRNA-seq datasets. In particular, the poor prognosis of cancers with high GJB2-positive signatures, 
including pancreatic cancer, suggests that GJB2-positive CAFs play an important role in fibrosis and clinical 
outcomes. We showed a significant correlation between the GJB-positive CAF signature score and the relative 
abundance of CAFs (CAF score) determined using MCPconter program. This finding may provide further evi-
dence of the reliability and validity of the GJB2-positive CAF signature as a robust indicator of CAF quantity. 
However, it is important to acknowledge that the influence of GJB2 expression in cancer cells cannot be excluded. 
Additionally, the potential impact of GJB2 mutations in cancer cells may also be considered in prognostic impact 
of GJB2-positive CAF signature30.

In this study, we used a maker panel of three genes (DCN, COL3A1, and THY1) to annotate fibroblasts based 
on the previous study13. Although using only three genes may have limitations in capturing the full diversity of 
fibroblast populations, previous studies have demonstrated that these genes including DCN, COL3A1, THY1, 
and BGN can serve as canonical markers for fibroblasts5,13,15. In our previous study, these genes were commonly 
expressed in various fibroblast clusters, regardless of whether they were derived from normal or cancer tissues5.

While tissue-specific CAFs have been identified in various studies31, it is also becoming evident through 
integrated pan-cancer research that there are fibroblasts shared among different cancer types18,32,33. In this study, 
although there are limitations in identifying tissue-specific fibroblast populations that may exist in various data-
sets, through integrated analysis of multiple datasets, we have identified fibroblast population that are shared 
across tissues. GJB2-positive CAFs belong to one of these shared populations and GJB2-positive CAFs exhibited 
the highest pseudotime value, indicating that they were the most differentiated among that CAF populations.

We identified the presence of several subtypes of fibroblasts not only in CAFs but also in NFs. NFs also exhibit 
diverse subtypes, which can vary according to age and organs. However, the various subtypes of NFs identified 
in this study were similar across multiple datasets. Therefore, we combined the subgroups of NFs into one group 
for analysis without considering their subtypes, although it may be necessary to consider NF subtypes for further 
studies. Nevertheless, we confirmed that GJB2 expression was almost negative across multiple subtypes of NFs.

This study primarily focuses on human fibroblasts. Upon examining the scRNA-seq data obtained form mouse 
samples34,35, it was found that gjb2 was rarely expressed in mouse tissues including fibroblast (Supplementary 
Fig. S7). This may indicate either as inherent characteristic of mice or a potential limitation in the communi-
cation between mouse fibroblasts and human cancer cells. Further investigation is warranted to elucidate the 
underlying reasons for this disparity.

Disease associated with connexin abnormalities such as GJB2 have been reported in deafness and cardiac 
disease27,36. In cancer, research has mainly focused on the expression of cancer cells37,38. Studies on CAFs are 
extremely limited. This study identifies a unique subgroup of terminally differentiated CAFs with high GJB2 
expression and demonstrated their association with ECM remodeling, their interactions with endothelial cells, 
and their clinical significance in cancer progression. These findings provide insight into the role of GJB2-positive 
CAFs in cancer and may have implications for the development of targeted therapies.

Data availability
All sequencing data used in this study are available in the public domain from the Gene Expression Omni-
bus (accession numbers GSE132465, GSE144735, GSE178341, GSE144236, and GSE223858), ArrayEx-
press (E-MTAB-8107, E-MTAB-6653, E-MTAB-6149, and E-MTAB-11343), the Genome Sequence Archive 
(CRA001160), the European Genome-phenome Archive (EGAD00001005365), and https://​www.​fibro​xplor​er.​
com/.
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