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An artificial intelligence algorithm 
for automated blastocyst 
morphometric parameters 
demonstrates a positive 
association with implantation 
potential
Yael Fruchter‑Goldmeier 1,8, Ben Kantor 2,8, Assaf Ben‑Meir 2,3, Tamar Wainstock 4, Itay Erlich 2, 
Eliahu Levitas 1,5, Yoel Shufaro 6,7, Onit Sapir 6,7 & Iris Har‑Vardi 1,2,5*

Blastocyst selection is primarily based on morphological scoring systems and morphokinetic data. 
These methods involve subjective grading and time‑consuming techniques. Artificial intelligence 
allows for objective and quick blastocyst selection. In this study, 608 blastocysts were selected for 
transfer using morphokinetics and Gardner criteria. Retrospectively, morphometric parameters 
of blastocyst size, inner cell mass (ICM) size, ICM‑to‑blastocyst size ratio, and ICM shape were 
automatically measured by a semantic segmentation neural network model. The model was trained 
on 1506 videos with 102 videos for validation with no overlap between the ICM and trophectoderm 
models. Univariable logistic analysis found blastocyst size and ICM‑to‑blastocyst size ratio to be 
significantly associated with implantation potential. Multivariable regression analysis, adjusted for 
woman age, found blastocyst size to be significantly associated with implantation potential. The 
odds of implantation increased by 1.74 for embryos with a blastocyst size greater than the mean 
(147 ± 19.1 μm). The performance of the algorithm was represented by an area under the curve of 
0.70 (p < 0.01). In conclusion, this study supports the association of a large blastocyst size with higher 
implantation potential and suggests that automatically measured blastocyst morphometrics can be 
used as a precise, consistent, and time‑saving tool for improving blastocyst selection.

Since the birth of Louise Brown, the first baby to successfully be born from in-vitro fertilization (IVF) methods, 
the pregnancy rate of women treated with IVF has steadily increased. In the United States, implantation rates have 
increased from 27.6% in 2003 to 41.6% in 2020 in women younger than 35 years of age for non-preimplantation 
genetic testing (PGT) fresh embryo transfers from non-donor  oocytes1,2. The optimization of embryo culture 
conditions has contributed to this increase in implantation rate. Optimization of culture conditions includes 
extended embryo culture for up to six days, to the blastocyst  stage3–6. Delaying embryo transfer to the blastocyst 
stage seems to improve uterine and embryonic synchronicity resulting in greater live birth  rates7,8. Gardner and 
Schoolcraft developed a blastocyst grading system that focuses on blastocyst expansion level and trophectoderm 
(TE) and inner cell mass (ICM) integrity to aid in the selection of a high-quality  blastocyst9.

Previous publications show that blastocysts with a better expansion grade have greater implantation, preg-
nancy, and live birth rates following  transfer10–17. Other investigators have found a positive correlation between 
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blastocyst diameter, width, and area to clinical pregnancy  rate18,19. TE quality has also been shown to be associ-
ated with implantation rate and live birth  rate13,17. Some of these studies have found ICM grade did not predict 
implantation potential nor live birth  rate13,14,17. However, other studies have found an association between ICM 
morphometric measurements and implantation potential. When analysing expanded blastocysts, studies have 
demonstrated a strong relationship between the size and shape of the ICM to implantation  potential15,20. Research 
by Almagor and colleagues found that embryos with a high ICM-to-blastocyst diameter ratio had significantly 
increased pregnancy rates in  SETs21.

An important technological advance in the field of assisted reproductive technology (ART) is the time-lapse 
monitoring (TLM) system, which was created to enable continuous embryo monitoring without removal from 
the incubator for frequent observations of embryonic  development22,23. The data obtained from TLM provide 
raw images and videos rich with information that can be used in artificial intelligence (AI) technology to aid 
in embryo selection. This information is used in AI models that have been developed to annotate morphoki-
netic  events24,25, detect blastocyst  morphology26–29, and identify embryos with greater blastocyst  quality30. Other 
algorithms have been created to predict clinical outcome such as clinical  pregnancy27,28,31,32 and implantation 
 potential19,29. Although the aforementioned studies show great promise, there are debates in the scientific litera-
ture as to TLM’s applicability between clinics, predictive value, and contribution to IVF clinical  outcome33–37.

The incorporation of TLM data into AI technologies has introduced the concept of automatization of embryo 
selection. An advantage of automated embryo selection is the removal of subjectivity. Subjective embryologist 
annotation of blastocyst morphology grading may result in inconsistent findings between labs due to intra- 
and inter-observer  variability38,39. Therefore, an objective automated analysis of embryos is important for 
 reliability40,41. One such objective tool is a deep learning algorithm based on artificial neural networks (ANNs), 
such as convolutional neural networks (CNNs), that automatically analyse embryos. Several AI models have 
already been created to automatically define blastocyst  morphology26, grade  blastocysts30,42, and annotate 
 morphokinetics24. Furthermore, Tran et al. developed a deep learning algorithm that could directly analyse the 
entire raw time-lapse video without the need for annotated parameters, making use of every data point collected 
from TLM to predict the probability of clinical  pregnancy31.

The purpose of the present study was threefold: (1) to present a novel approach in blastocyst analysis that 
uses automatic measurements by an AI tool; (2) to study the association between automatically measured blas-
tocyst morphometric parameters and implantation rate; and (3) to demonstrate the predictive power of a newly 
developed algorithm on implantation rate for its use as a future tool in embryo selection.

Results
Data from 608 day-5 transferred blastocysts was analysed. Two hundred (32.9%) of the transferred embryos 
had a positive known implantation data (KIDp) and 408 (67.1%) of the transferred embryos had a negative 
KID (KIDn). The overall mean age of patients in this study was 33.5 years (19–45 years) with KIDp embryos 
associated with a younger maternal age compared with KIDn embryos (30.9 years and 34.8 years, respectively; 
p < 0.001, Table 1).

Analysis of the automated blastocyst morphometric measurements was performed at the mean time to blasto-
cyst expansion minus the mean time to pronuclear fading (tEB-tPNf; 85.98 ± 5.18 h). The analysis demonstrated 
that KIDp embryos had significantly larger blastocyst sizes compared to the blastocyst sizes of KIDn embryos 
(152 ± 19.2 µm and 144 ± 18.5 µm, respectively; p < 0.001, Table 1). However, no significant differences were found 
between KIDp and KIDn embryos (Table 1) regarding ICM size (76.8 ± 12.0 µm and 77.0 ± 12.8 µm, respectively; 
p = 0.898) and shape (1.43 ± 0.344 and 1.40 ± 0.298, respectively; p = 0.313). Embryos that resulted in implantation 
had a smaller ICM-to-blastocyst size ratio than did embryos that did not result in implantation (0.507 ± 0.090 
and 0.536 ± 0.092, respectively; p < 0.001, Table 1). This finding stems from a significant difference in blastocyst 
size between implanted and non-implanted embryos and not from a difference in ICM size. Therefore, it seems 
that implanted embryos included more expanded blastocysts than did non-implanted embryos.

A multivariable logistic regression analysis was performed. Although ICM size was not found to be significant 
in the univariable logistic regression analysis, it was included in the multivariable logistic regression analysis 
due to its clinical importance. Blastocyst size had a significant positive association with implantation such that 
with every 1 μm increase in blastocyst size, there was a relative increase in the odds of implantation by 2.1% 
(adjusted OR 1.02, 95% CI 1.01–1.03; p < 0.001, Table 2). Woman age had a significant negative association with 
the odds of implantation (adjusted OR 0.898, 95% CI 0.870–0.926; p < 0.001, Table 2). In another multivariable 

Table 1.  Morphometric blastocyst parameters of embryos with known implantation data (KID). KIDp known 
implantation data positive, KIDn known implantation data negative, SD standard deviation, ICM inner cell 
mass.

Parameter

KIDp (N = 200) KIDn (N = 408)

P-valueMean ± SD Mean ± SD

Woman age (years) 30.9 ± 5.3 34.8 ± 6.3  < 0.001

Blastocyst size (μm) 152 ± 19.2 144 ± 18.5  < 0.001

ICM size (μm) 76.8 ± 12.0 77.0 ± 12.8 0.898

ICM-to-blastocyst size ratio 0.507 ± 0.090 0.536 ± 0.092  < 0.001

ICM shape 1.43 ± 0.344 1.40 ± 0.298 0.313
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logistic regression analysis, blastocyst size was replaced with ICM-to-blastocyst size ratio. ICM-to-blastocyst 
size ratio was significant in this multivariable analysis despite including the nonsignificant variable of ICM size. 
Since ICM size does not significantly differ between implanted and nonimplanted embryos, it is the component 
of blastocyst size in the variable of ICM-to-blastocyst size ratio that makes this parameter a significant predictor 
of implantation potential.

Based on the results of the multivariable logistic regression analyses, embryos were divided into two groups 
according to blastocyst sizes larger than the mean size (147 ± 19.1 μm) (group 1) and blastocyst sizes smaller 
than the mean size (group 2). A significantly higher rate of implantation was found in group 1 as compared to 
group 2 (41.2% vs. 25.8%, respectively; OR 2.01, 95% CI 1.43–2.84; p < 0.001). The independent effect of this 
criterion on implantation potential was analysed and adjusted for woman age. Among women whose embryos 
met the criterion for inclusion in group 1, the odds for implantation increased by 1.74 as compared to embryos 
from women that did not meet the criterion (95% CI 1.22–2.50; p = 0.002, Table 3). As previously demon-
strated, woman age maintained its negative association with implantation potential (adjusted OR 0.898, 95% CI 
0.871–0.927; p < 0.001, Table 3). The performance of the algorithm, which included woman age and analysed 
embryos according to the aforementioned criterion, is represented by an area under the curve (AUC) of 0.70 
(SE = 0.02, 95% CI 0.653–0.738, p < 0.01). The performance of a model analysing woman age alone is represented 
by an AUC of 0.68 (SE = 0.02, 95% CI 0.640–0.726, p < 0.01). The difference between the aforementioned AUCs 
was not significant (p = 1).

Discussion
The most significant contribution of the current publication is the addition of automated measurements of 
blastocyst morphometrics to the embryo selection process. To the best of our knowledge, this is the first study 
to show a correlation between automatically measured blastocyst morphometric parameters and implantation. 
Morphometrics that are determined automatically by ANNs reduce intra- and inter-observer variation between 
embryologists by providing consistent and objective measurements, and save time spent on manual measure-
ments. In addition, the algorithm developed in this study predicted increased implantation rates among patients 
whose embryos had a blastocyst size larger than the mean with an AUC of 0.70 (SE = 0.02, 95% CI 0.653–0.738, 
p < 0.01). This AUC of 0.70 is greater than the AUC of an algorithm analysing implantation rates using woman 
age alone (AUC 0.68, SE = 0.02, 95% CI 0.640–0.726, p < 0.01). Furthermore, the difference between these AUCs 
was not significant (p = 1).

The results from the present study demonstrate that blastocyst size and woman age are independently associ-
ated with implantation potential. These results support findings in publications that found a positive correlation 
between blastocyst expansion degree and implantation  rate15,16,18,19 and a negative correlation between woman 
age and  implantation43–46.

In the current study, the morphometric parameters of ICM size and ICM shape were found to be not sig-
nificantly associated with implantation potential. In contrast, Richter et al. found that in expanded blastocysts, 
implantation was increased in women whose blastocysts had a large ICM area and/or slightly oval ICM  shape20. 
The same study showed that blastocyst size was not significantly associated with implantation. The discrepan-
cies between Richter et al. and the present study may be explained by differing observation methods and culture 
conditions. Richter et al. examined the embryos at 24-h intervals and, therefore, it is possible that certain key 
developmental changes were missed. Furthermore, the method of observation employed by Richter et al. did not 
allow for continuous and undisrupted culture conditions, which is known to negatively affect embryo develop-
ment and  quality47,48 and would thus affect the results of the study. In addition, Richter and colleagues included 
the zona pellucida in their measurement of blastocyst size, a method which was not employed in this study as 
the zona pellucida undergoes considerable change throughout blastocyst expansion leading to inconsistent 
measurements. In this study, blastocyst size was calculated by a bounding box around the outer part of the TE 

Table 2.  Multivariable logistic regression analysis assessing the independent effect of ICM size, blastocyst size, 
and woman age on implantation potential. OR odds ratio, CI confidence interval, ICM inner cell mass.

Variable Adjusted OR (95% CI) P-value

ICM size 0.987 (0.973–1.002) 0.083

Blastocyst size 1.02 (1.01–1.03)  < 0.001

Woman age 0.898 (0.870–0.926)  < 0.001

Table 3.  Multivariable logistic regression analysis, adjusted for woman age, assessing the independent effect of 
blastocyst size on implantation potential. OR odds ratio, CI confidence interval.

Variable Adjusted OR (95% CI) P-value

Blastocyst size > mean 1.74 (1.22–2.50) 0.001

Woman age 0.898 (0.871–0.927)  < 0.001
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cells, excluding the area occupied by the zona pellucida, and defined as the average between the width and height 
of the outer part of the TE.

Like the present study, Almagor and colleagues analysed the relationship between the ICM and blastocyst 
diameter relative to implantation. They demonstrated that in pre-expanded blastocysts, implanted embryos had 
significantly larger ICM-to-blastocyst diameter ratio compared to non-implanted  embryos21. The present study 
found the opposite when analysing the ratio in expanded blastocysts: ICM-to-blastocyst size ratio was smaller in 
implanted embryos than in non-implanted embryos. It is possible that the relative size of the ICM-to-blastocyst 
holds different importance at different stages of development and would explain the variations between the pre-
sent study and Almagor’s study. Furthermore, this study utilized automatization of blastocyst size measurement 
while Almagor et al. and Richter et al. utilized manual measurements.

The use of AI algorithms to predict clinical outcome in ART has already shown great  promise19,27–29,31,32. Bori 
et al. incorporated manually measured blastocyst morphometrics and morphokinetics in an ANN to predict 
implantation with relatively good  performance19. Although the present study did not include morphokinetics 
in its algorithm, it introduces the novelty of automated morphometric measurements. Additionally, Bori and 
colleagues included only embryos from oocyte donations while the present study analysed embryos from autolo-
gous oocytes. Analysis of embryos solely derived from oocyte donation limits Bori’s algorithm to the prediction 
of high-quality embryos derived from young patients with likely high-quality oocytes. The analysis of embryos 
originating from autologous oocytes and from women of a wide range of ages makes the algorithm of the present 
study more widely applicable.

One strategy employed by AI models is the analysis of blastocyst morphology at an endpoint. Diakiw et al. 
developed an AI model that involved the deep learning analysis of the embryo on day 5 of culture. AI scores 
were created to represent the likelihood of clinical pregnancy and thus provided a qualitative score for blastocyst 
selection. The AI scores of the study were significantly correlated with known morphological features of embryo 
quality based on the Gardner  criteria28. Chavez-Badiola et al. created an AI model dubbed ERICA that analysed 
embryos on day 5 or 6 of culture and provided a qualitative ranking system for the prediction of embryo ploidy 
and  implantation29. Similarly, our study developed an AI model to analyse the blastocyst on day 5 of culture, 
but, at a specific blastocyst developmental stage (mean tEB-tPNf). This time was chosen for blastocyst morpho-
metric measurement as it is the time of development when the ICM and TE borders are clearly seen and can 
therefore be most accurately measured. Before the time of blastocyst expansion, the embryo has not significantly 
increased in size and therefore, it would be difficult to find differences in blastocyst sizes between embryos. This 
novel timepoint for morphometric measurement presents a new viewpoint into the blastocyst selection process, 
which this study has shown is associated with the likelihood of implantation and has not yet been described in 
the automatization of AI.

Although the present study includes woman age, an important confounding factor in ART, it lacks some 
information on patient characteristics, such as BMI, number of oocytes retrieved, and semen analysis, which 
could be additional confounders. Another limitation includes the retrospective nature of the study and that 
automatic morphometric measurements were performed on day-5 blastocysts that were preselected based on 
morphokinetic parameters and Gardner criteria, which may introduce a selection bias.

Despite the limitations, the study has several notable strengths. First and foremost, this is the first study of 
its kind to date to automatically measure blastocyst morphometric parameters without time-consuming manual 
annotation. The study population included embryos collected from three different IVF centres each using the 
same time-lapse system and culture conditions. Therefore, the results of the present study can be more widely 
applied to other centres using the same conditions. Additionally, women from a wide range of ages were included 
in this study. This reflects clinical practice as centres often see patients from a variety of ages and thus further 
increases the relevance of the study’s algorithm. Furthermore, our study provides a quantifiable measurement for 
the likelihood of implantation, which can be applied for practical clinical use. Although our automatic morpho-
metric method was performed on a group of preselected embryos, we demonstrated that even in such a group, 
the odds of implantation are improved. In other words, all else equal, embryos with blastocyst sizes greater than 
the mean had an almost two-fold greater odds of implantation than did embryos with blastocyst sizes smaller 
than the mean (adjusted OR 1.74, 95% CI 1.22–2.50; p = 0.002, Table 3).

In conclusion, the selection of embryos using an algorithm based on automatically measured blastocyst 
size may serve to improve clinical outcome relating to increased implantation potential. The comprehensive 
automatization of blastocyst parameters should increase the consistency and accuracy of blastocyst measure-
ments. Furthermore, automatization should decrease the amount of time embryologists spend on blastocyst 
measurements and increase the predictive power of the algorithm for improvement of clinical outcome. Future 
research will include the application of this algorithm to prospective embryo selection. In addition, the algorithm 
will incorporate automatically measured blastocyst morphokinetics following research demonstrating the reli-
ability of these measurements.

Materials and methods
A retrospective nested case–control study was conducted and included 608 embryos from women who under-
went IVF treatment in three public IVF units between 2014 and 2017. The protocol was approved by the Soroka 
University Medical Center Institutional Review Board (IRB number: 0006-20HMO). All experiments were per-
formed in accordance with the relevant guidelines and regulations. Due to the retrospective nature of the study, 
the review board of Soroka University Medical Center approved the study with deidentified data and without 
requiring individual informed consent from each patient.

The inclusion criteria were: (1) Patients who underwent an IVF procedure of day-5 blastocyst transfers with 
continued growth monitoring via Embryoscope with known implantation data (KID). (2) The number of the 
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transferred embryos was one or more. (3) Transferred embryos resulting in no implantation (KID negative, 
KIDn) or in which the number of gestational sacs with foetal heartbeat matched the number of transferred blas-
tocysts (KID positive, KIDp). The exclusion criteria were: (1) Frozen embryo transfer cycles (the morphological 
appearance of the thawed blastocyst may differ from its fresh state since during the freezing process, the blastocyst 
undergoes collapse and not all thawed blastocysts return to their original expansion). (2) Transfers of embryos 
that underwent preimplantation genetic testing (PGT). (3) Embryos from donor oocytes.

Ovarian stimulation and luteal support. In this study, two ovarian stimulation protocols were used: the 
gonadotropin-releasing hormone antagonist and the long gonadotropin-releasing hormone agonist protocols in 
combination with either human menopausal gonadotropin or recombinant follicle stimulating hormone.

Oocyte retrieval and fertilization. Cumulus-oocyte complexes were cultured in fertilization medium 
(Life Global®, Cooper Surgical, Brussels, Belgium) at 37 °C, 5.7%  CO2, and 5%  O2. Fertilization was performed 
by insemination or by intracytoplasmic sperm injection (ICSI). Before ICSI, oocyte denudation was initiated by 
incubation in 80 IU/mL of hyaluronidase (Irvine Scientific, Santa Ana, CA, USA) followed by mechanical pipet-
ting to remove the cumulus cells from the oocyte. ICSI procedures were performed using a Nikon Eclipse Ti 
microscope. The inseminated oocytes were inserted into the slides one day after oocyte retrieval when mechani-
cal denudation from cumulus and corona radiata cells was completed.

Embryo culture and imaging system. Immediately after the ICSI procedure, or the day after insemi-
nation and oocyte denudation, the oocytes were placed in culture slides (EmbryoSlide, Vitrolife A/S, Aarhus, 
Denmark) containing 12 micro-wells, each filled with 25-µL droplets of a single step Global medium or one-step 
medium “SAGE 1step” (SAGE, Al-rad medical, Nes Ziona, Israel), and covered with mineral oil. The slides were 
prepared 17 h in advance and left in an incubator to pre-equilibrate at 37 °C in 5.7%  CO2. The oocytes were 
incubated in a time-lapse incubator—an EmbryoScope™ system at 37 °C, 5.7%  CO2, and 5%  O2 (Vitrolife A/S, 
Aarhus, Denmark). Images were acquired at intervals of 15 min through several focal planes and obtained data 
was evaluated on an Embryo Viewer® workstation external computer (Vitrolife A/S, Aarhus, Denmark). All focal 
planes were used for annotation and three central focal planes (− 15, 0, 15) were used as model input.

Embryo selection and transfer. This study included data analysis of videos obtained from embryos cul-
tured in time-lapse incubators (Embryoscope, Vitrolife). The clinical data collected from the patients’ medical 
files included age, fertilization method, and number of transferred and implanted blastocysts. Before embryo 
transfer, annotation of morphokinetic events during embryonic development and blastocyst grading were per-
formed by one well trained embryologist using Embryo Viewer®. Oocyte fertilization was confirmed by the 
presence of two pronuclei (2PN). All the relevant morphokinetic events included time of pronuclear fading 
(tPNf) to time of expanded blastocyst (tEB). tPNf was calculated as time 0 to enable a similar starting point for 
the annotation of blastocysts originating from insemination or ICSI procedures. tEB was defined as the time to 
form a full blastocyst, consisting of an expanded blastocoel cavity and well-defined ICM and  TE49. Embryos were 
cultured for five days and transferred at the blastocyst stage. Blastocyst selection was based on morphokinetic 
parameters and Gardner  criteria9. Blastocyst culture and transfer were based on patient and physician decision. 
Embryos were transferred using an abdominal ultrasound-guided technique.

Blastocyst measurements. A retrospective quantitative measurement of blastocyst morphometric 
parameters of all the 608 transferred blastocysts with KID were performed. To measure the blastocyst morpho-
metric parameters at the same time of development for all the transferred blastocysts, the morphometric vari-
ables were measured at the mean time of blastocyst expansion minus the mean tPNf (tEB-tPNf; 85.98 ± 5.18 h). 
For each blastocyst, the following measurements were performed: blastocyst size (μm), ICM size (μm), ICM-to-
blastocyst size ratio, and ICM shape. The model outputs a pixel mask with a value of 1 for each pixel belonging 
to the embryo while excluding the zona pellucida (i.e., the outer part of the TE). The model was trained to match 
the hand drawn segmentation of an expert embryologist (Fig. 1; see “Training of the segmentation models”). 
From this raw pixel output, the blastocyst size was calculated by finding a bounding box around all the pixels 
belonging to the embryo followed by taking the average of the width and height of the bounding box. This value 
was defined as the blastocyst size. To determine the ICM size of the blastocyst, the ICM model first outputs a 
pixel mask that corresponds to the hand drawn segmentation (Fig. 1; see “Training of the segmentation mod-
els”). Then, an ellipse that best fits around the segmented ICM pixels in the least-square sense was determined 
(implemented in the OpenCV library using function cv.fitEllipse()). To get a single number to correspond to the 
ICM size, ICM size was defined as the long diameter of the fitted ellipse. The ICM-to-blastocyst size ratio was 
defined as the ICM size divided by the blastocyst size (with ICM size and blastocyst size calculated as previously 
described). ICM shape was calculated as the long diameter of the fitted ellipse divided by the short diameter. In 
cases of ICM shape = 1, the shape is round and in cases of ICM shape > 1, the shape is more elongated.

Training of the segmentation models. Expert embryologists manually marked tight polygons around 
the ICM and outer parts of the TE. The semantic segmentation neural network model was trained on these hand 
drawn segmentations and output a pixel-level annotation for each object. The number of videos and frames 
annotated for each task is shown in Supplementary Table 1. The frames do not include cleavage stage embryos 
and include embryos from the start of blastocyst (tSB) until the last frame before embryo transfer. All segmenta-
tion models are based on the AI technology known as  CHLOETM by Fairtility LTD which used Mask-RCNN 
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neural network architecture with a ResNet50 backbone and with Feature Pyramid Networks. The model was 
pretrained on the ImageNet and MS-COCO datasets. As for image preprocessing, for the TE model, the images 
were resized to a 384 × 384-pixel resolution. For the ICM model, the images were cropped to contain only 
the embryo (using the TE model) and then resized to a 224 × 224-pixel resolution. Train/validation/test were 
determined by randomly splitting the annotated videos between the three sets, and then taking the frames. This 
ensures that frames from a single video were not split between train/validation/test. For the TE model, one video 
was kept for model validation and 32 videos were kept for model testing (Supplementary Table 1). One video for 
validation was enough to choose a model that demonstrated very high accuracy (nearly 100%) on the test data, 
so we opted to keep all the rest as training data.

For each frame, the overlap between the model-predicted pixel mask and the embryologist-annotated pixel 
mask was calculated using Intersection Over Union (IOU). Predicted mask was treated as a correct prediction 
if the overlap between the predicted mask and the expert annotated mask crossed a certain threshold. The 
number of frames in which the model-predicted TE/ICM overlapped with embryologist-annotated TE/ICM in 
more than 50% of the pixels was 99.9% and 95.9%, respectively. Furthermore, the number of frames in which 
the model-predicted TE/ICM overlapped with the embryologist-annotated TE/ICM in more than 75% of the 
pixels was 99.9% and 72.8%, respectively.

Outcome measures. Embryo implantation was confirmed by the presence of a gestational sac with a foetal 
heartbeat by a transvaginal ultrasound examination six weeks following oocyte retrieval.

Data analysis and statistical methods. Statistical analysis was performed with SPSS statistical software 
version  29th edition (SPSS Inc., Chicago, IL). The studied embryos were divided into groups (cases and controls), 
for each of the studied outcomes. The χ2 test was used to compare categorical variables. Data on continuous vari-
ables, including all blastocyst morphometric values, were expressed as mean ± standard deviation and compared 
using two-sided Student’s t-test with an alpha of 0.05. All continuous variables were tested a-priori for normal 
distribution, using a histogram curve, mean and standard deviation, skewness and kurtosis. Logistic regression 
analysis was used to identify the independent association between the different time intervals and/or the differ-
ent morphometric parameters and KID results while adjusting for maternal age. The correlation between all the 
covariables was checked and only those without a significant correlation to one another (r < 0.6, p < 0.05) were 
included in the multivariable regression analyses. The adjusted odds ratio (OR) and 95% confidence interval 
(95% CI) were computed. A p-value < 0.05 was considered significant.

The performance of the algorithm was assessed using receiver operating characteristics (ROCs). The ROC 
curve is depicted by plotting the true positive rate (TPR) against the false positive rate (FPR) at various thresh-
olds. The accuracy is measured by the area under the ROC curve (AUC). AUC may be used to represent the 
discriminative performance of a binary classifier and thus was the most appropriate measure for the study’s model 
to identify blastocysts according to odds of implantation. ROC characteristic analysis was conducted based on 
several logistic models, and the corresponding AUC was compared between them using the DeLong method.

Data availability
The datasets generated and/or analysed during the current study are not publicly available as they are property 
of Fairtility LTD but are available from the corresponding author upon reasonable request.

Figure 1.  Automatic measurements of blastocyst morphometrics. (a) A day-5 blastocyst with trophectoderm 
(TE) and inner cell mass (ICM) cells. (b) The same embryo with markings. Blue represents the hand drawn 
segmentation around the outer part of the TE cells, excluding the area occupied by the zona pellucida. Green 
represents the ellipse that best fits around the segmented ICM pixels in the least-squares sense. Red represents 
the diameter of the embryo.
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