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A separable temporal convolutional 
networks based deep learning 
technique for discovering antiviral 
medicines
Vishakha Singh * & Sanjay Kumar Singh *

An alarming number of fatalities caused by the COVID-19 pandemic has forced the scientific 
community to accelerate the process of therapeutic drug discovery. In this regard, the collaboration 
between biomedical scientists and experts in artificial intelligence (AI) has led to a number of in silico 
tools being developed for the initial screening of therapeutic molecules. All living organisms produce 
antiviral peptides (AVPs) as a part of their first line of defense against invading viruses. The Deep-
AVPiden model proposed in this paper and its corresponding web app, deployed at https:// deep- avpid 
en. anvil. app, is an effort toward discovering novel AVPs in proteomes of living organisms. Apart from 
Deep-AVPiden, a computationally efficient model called Deep-AVPiden (DS) has also been developed 
using the same underlying network but with point-wise separable convolutions. The Deep-AVPiden 
and Deep-AVPiden (DS) models show an accuracy of 90% and 88%, respectively, and both have a 
precision of 90%. Also, the proposed models were statistically compared using the Student’s t-test. 
On comparing the proposed models with the state-of-the-art classifiers, it was found that they are 
much better than them. To test the proposed model, we identified some AVPs in the natural defense 
proteins of plants, mammals, and fishes and found them to have appreciable sequence similarity with 
some experimentally validated antimicrobial peptides. These AVPs can be chemically synthesized and 
tested for their antiviral activity.

The discovery of novel antimicrobial drugs that kill or inhibit life-threatening pathogens is attracting much atten-
tion due to the incapacity and inefficiency of conventional antibiotics. However, it is pertinent that the new class 
of therapeutics must have high efficacy, broad-spectrum activity, and few or no side effects on human health. In 
this direction, medications can be developed using antimicrobial peptides (AMPs), which form an integral part 
of living organisms’ natural first line of defense. Nowadays, analyzing and modeling AMPs using machine/deep 
learning has caught  momentum1–7. Deep learning-based sequence modeling techniques such as recurrent neural 
networks (RNNs), long-short term memory (LSTM) networks, temporal convolutional networks (TCNs)8,9, etc., 
can be effectively used to develop robust models to classify and discover novel therapeutic peptides like AMPs, 
anti-cancer  peptides10,11, etc., in proteomes of various life-forms. Note that sequence modeling is a technique that 
inputs and outputs sequential data, which can be in the form of text, audio, video, etc. For this purpose, RNN was 
developed as a deep learning architecture for capturing dependencies between the units of a given sequence to 
make predictions. However, it fails to capture long-range dependencies between these units due to the vanishing 
gradient problem. LSTMs were proposed as an improvement over RNNs in that they overcome this problem by 
using a gating mechanism (input, output, and forget gates) to remember the correlation among the units over a 
long range. However, LSTMs require more memory than RNNs to store partial results. Additionally, RNN and 
LSTM-based models work sequentially, so the units of a given sequence (also known as timesteps) cannot be 
processed in parallel. However, such shortcomings are not present in TCNs. The computations performed by 
this deep learning architecture can be easily distributed and parallelized on multi-core processing systems, and 
it also does not consume much memory.

Several models have been built to classify antiviral peptides (AVPs) using these deep learning algorithms. 
Note that AVPs are a sub-class of AMPs that target the host against invading viruses by targeting them or the 
host cells to inhibit viral replication. Some AVPs are virucidal because they either inhibit the viral protein out-
side the host cell or compete for the link-site on the host’s cell  membrane12. In contrast, some others interfere 
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with different stages of the viral life cycle, such as viral gene expression, replication, etc. Interestingly, numerous 
AVPs are present in the proteomes of mammals, plants, fishes, and other living organisms. A family of AVPs 
called cyclotides found in plants prevents a wide array of human viruses such as human immunodeficiency virus 
(HIV)13,  H1N114, and  dengue15 from binding to the host’s cell membrane. The Cecropin-A derived from a moth 
acts against HIV by suppressing its genetic expression. Similarly, a family of antimicrobial peptides (AMPs) 
known as dermaseptins found in the frogs of the Phyllomedusa genus have shown virucidal potential against 
HIV-116. Speaking of AVPs derived from marine organisms, a class of peptides known as clavanins inhibits the 
virulence of herpes simplex virus (HSV), rotavirus, and  adenovirus17.

Some of the deep learning-based tools built to classify AVPs are as follows. The Deep-AVPpred model uses 
convolutional neural networks (CNNs) for the prediction and discovery of  AVPs18, while  DeepAVP19 uses both 
bidirectional-LSTM and CNN for the same.  In20, the authors performed multi-label classification for predicting 
several functional activities exhibited by a peptide (antiviral, anti-HIV, antibacterial, antifungal, etc.) using bi-
LSTM, CNN, and support vector machine (SVM). Lastly, the authors  of21 trained various machine/ deep learning 
architectures like the Transformers, CNNs, bi-LSTM, Random Forests (RFs), and Support Vector Machine (SVM) 
on a set of AVPs and found RF with Word2Vec representations to be the highest-performing model (iACVP) to 
predict anti-coronavirus peptides. Deep learning architectures like CNN fail to capture long-range dependencies 
between the units of an AVP, i.e., the amino acids (AAs). The bi-LSTM-based models evade this drawback but 
not in the case of very long sequences. Also, training and tuning a bi-LSTM model takes considerable time (due 
to its sequential execution and non-parallelizable architecture) and consumes a lot of memory,  too22. To sum up, 
a significant issue deep neural networks face is the computationally expensive mode of training and operation. 
In other words, deep learning models consume a lot of computational resources while getting trained. They are 
large in size, making their training and deployment very difficult in resource-constrained environments.

Apart from the deep learning algorithms, researchers have been using some quantifiable properties of peptides 
(known as their physicochemical, compositional, and structural properties) with machine learning algorithms 
like SVM, random forests (RFs), etc., to build AVP classifiers. The authors  of23 used several hand-engineered 
features derived from peptide sequences, i.e., motifs, amino acid composition, and some physicochemical proper-
ties, to classify AVPs. The AntiVPP 1.0 model uses the RF algorithm that uses compositional and physicochemi-
cal features to predict antiviral peptides. Pang et al.24 proposed the AVPiden model based on RFs to perform a 
two-stage classification. In the first stage, it categorizes peptides as AVPs and non-AVPs, and in the second stage, 
it predicts the potential of AVPs against eight kinds of viruses and six virus families.  In25, the authors employed 
four machine learning algorithms, namely, SVMs, RFs, Instance-based classifier, and K-star, to perform AVP 
classification using physicochemical properties with amino-acid composition, the binary profile of residues, etc. 
The ENNAVIA  model26 uses physicochemical and compositional features on a deep neural network architecture 
for classifying AVPs and non-AVPs. In yet another  study27, authors used six machine learning algorithms for this 
purpose. The PreTP-Stack model is built using ten features and four machine learning  algorithms28. Lastly, in the 
FIRM-AVP  model29, Chowdhury et al. used three machine learning techniques for building an AVP classifier 
and found that the SVM-based model performs the best. The biggest drawback of using machine learning-based 
models is the added burden of crafting, collecting, and refining hand-engineered features that serve as the input. 
Also, the machine learning models lag behind their deep learning counterparts in terms of performance when 
the dataset is large. Another shortcoming of these studies is that most of them do not have dedicated web servers 
to help wet lab researchers discover and classify  AVPs30.

To overcome most of the aforementioned shortcomings, we propose a model based on  TCNs8,9,22 named 
Deep-AVPiden for the classification and discovery of AVPs. The TCNs are abundantly employed for sequence 
modeling since they are faster than bi-LSTM networks and can also easily capture long-range dependencies, 
unlike CNNs. The proposed model is trained to identify AVPs in proteins of various organisms like mammals, 
plants, amphibians, fishes, arthropods, etc. The model’s performance has been compared with the existing state-
of-the-art classifiers like AVPIden, ENNAVIA, iAMP-CA2L, Meta-iAVP, PreTP-Stack, iACVP, and DeepAVP, 
and the results indicate that it performs better than them. Moreover, we also proposed an alternate model using 
depth-wise separable convolutions that drastically reduces the number of training parameters as compared to 
standard convolutions. The model that is trained using this technique is named Deep-AVPiden (DS). A web 
app has been built using both models and deployed at https:// deep- avpid en. anvil. app/. Apart from classifying 
AVPs, this app can also discover AVPs in proteins. To illustrate the working of this app, we found some AVPs in 
several antiviral proteins found in mammals, plants, and fishes. This paper’s major contributions are enumer-
ated as follows. 

1. A novel deep learning model based on TCNs called Deep-AVPiden has been proposed to distinguish between 
AVPs and non-AVPs.

2. An alternate model called Deep-AVPiden (DS), which is a less compute and memory-intensive version of 
Deep-AVPiden, has also been proposed using point-wise separable TCNs. This model can be easily deployed 
on resource-constrained devices for discovering AVPs.

3. A web app based on these models has been built and deployed at https:// deep- avpid en. anvil. app/ with the 
ability to discover AVPs in protein sequences to aid wet-lab researchers.

4. Using the app, 15 AVPs were identified in proteins of plants, mammals, and fishes and proposed for chemical 
synthesis and experimental validation.

5. The proposed models have been compared with the state-of-the-art classifiers and shown to perform better 
than them.

6. The proposed models were statistically analyzed and compared using the Student’s t-test.

https://deep-avpiden.anvil.app/
https://deep-avpiden.anvil.app/
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The rest of the paper is depicted through Fig. 1 and organized as follows. Section “Materials and methods” briefly 
describes the dataset and methods used to build the proposed model, Deep-AVPiden. Section “Proposed model” 
contains a detailed description of our model. Section “Results and discussions” comprises comparing the pro-
posed models with each other and the existing state-of-the-art classifiers. Here, we have also presented the AVPs 
predicted in antiviral proteins of plants, mammals, and fishes. Lastly, in section “Conclusion”, the concluding 
remarks and prospects of future works have been elucidated.

Materials and methods
In this section, we describe the dataset and the sequence modeling technique that was used to build the Deep-
AVPiden model.

Dataset. The proposed models use peptides as data points which are basically alphabetical strings where 
each letter represents a standard amino acid. The AVPs were collected from various sources such as  AVPdb31, 
 HIPdb32, the starPep  database33–35,  DRAMP36, and the  SATPdb37. The non-AVPs were taken from the Swiss-
Prot  database38 and AVPdb. After collecting 10,500 AVPs and 9000 non-AVPs, data cleansing was performed. 
Peptides that were composed of non-standard amino acids (B, J, O, U, X, and Z) and containing less than five 
or more than fifty amino acids were removed. Then we used CD-HIT39–41 program separately on the AVPs and 
non-AVPs with a threshold of 0.9 for filtering out similar sequences from the AVPs and non-AVPs, respectively. 
To eliminate any bias in performance due to the imbalance in the number of instances belonging to each class, 
we randomly removed 699 non-AVPs. The final dataset consisted of 5414 peptides (comprising 2707 AVPs and 
2707 non-AVPs) which were then sub-divided into training (70% of the data points), test (15% of the data 
points), and validation (15% of the data points) sets.

Figure 1.  The layout of the proposed work.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13722  | https://doi.org/10.1038/s41598-023-40922-y

www.nature.com/scientificreports/

Data pre-processing. The data points, represented by alphabetical strings, were tokenized and converted 
into numerical strings using a one-to-one character-to-integer mapping. This was done to convert the input 
into a computer-understandable format. Since the dataset comprised numerical strings of varying lengths, to 
bring uniformity, the strings with lengths in the interval [5,49] were padded with extra zeroes until their lengths 
became equal to 50. This resulting set of numerical strings was trifurcated into training, validation, and test 
sets. Then, the training set was used to generate a word embedding matrix (thoroughly described in section 
“Proposed model”).

Word embeddings. Word embedding techniques convert each word (the numbers representing amino 
acid residues) into a fixed-length vector. One-hot encoding (OHE), and word2vec are the most common meth-
ods used for this purpose. There are two popular word2vec algorithms: the skip-gram and continuous bag of 
words (CBoW), which convert each word (represented by a one-hot vector) into a fixed-length feature vector 
using its context (which refers to the words surrounding a given word in the data points of the training set). 
Thus, semantically similar words are given similar feature vector representations.

Temporal convolutional networks. Temporal Convolutional Networks (TCNs) consist of one or more 
blocks of one-dimensional convolutional (1D-CONV) layers. In these layers, the filter taps may be applied on 
the input units or time steps in a non-consecutive manner. In other words, the dilated convolutions are used, in 
which case it is not necessary that in a given 1D-CONV layer, the filter taps must be applied on consecutive time 
steps. This is controlled by the size of the dilation factor (d), which increases the receptive field (which essentially 
means that the layers can capture dependencies between time steps over a long range).

Temporal convolutional networks are of two types: acausal and causal. In causal TCNs, a CONV layer uses 
only the past time steps (1 to t-1) to calculate the output at a time step t, whereas in acausal TCNs, the past 
and future units are used for this purpose. In this work, causal TCNs have been used to build the models. The 
convolution operation (C(t)) at position t in a dilated causal 1D-CONV layer with a dilation factor of d is given 
by Eq. (1)22.

Here, x is the input to the layer, ∗d is the convolution operation, and f is a 1D filter of size k. We may use skip-
connections in a TCN block, which are known to prevent the problem of vanishing/exploding gradients and can 
even be used to prevent the degradation problem and  overfitting42. Each residual block comprises two 1D-CONV 
layers, and a skip connection is introduced by adding a block’s input with its output. This converts a regular TCN 
block into a residual TCN block whose output (y) is as per the given equation.

Here, F(x) is the output of the last layer of the TCN block, and activation is a non-linear function (e.g., ReLU). 
Skip connections allow the residual block to learn an identity function of the input, which may help stabilize the 
learning process in deep neural networks.

Depth-wise separable convolutions. The concept of depth-wise separable convolutions (DwSCs) came 
into existence due to the rising interest of the research community in building small and efficient models. Before 
the conception of this idea, either the pre-trained models were compressed or the underlying networks were 
made shallow. Thus, as an alternative, DwSCs were introduced  in43 and later successfully used  in44,45 to train 
deep ConvNets. It factorizes a standard convolution operation into two parts, i.e., depth-wise and point-wise 
convolutions, described as follows. 

1. Depth-wise Convolutions: In this stage, a single filter is applied to every input channel separately. So, if in 
a standard convolution operation, we had to apply N filters of size 1 X fk X nc ( fk is the specified filter size 
and nc is the number of channels) on a 2-D matrix of size 1 X M X nc , only one filter of size 1 X fk X 1 would 
be applied on nc channels separately to get an output of size 1 X M ′ X nc.

2. Point-wise Convolutions: A 1 X 1 convolutional layer comprising N filters of size 1 X 1 X nc is applied on 
the output of the depth-wise convolutions. IT=t gives an output of size 1 X M ′ X N.

This kind of factorization reduces the number of training parameters used in the network, which leads to a 
considerable reduction in the number of computations while the model training phase. The resultant model gets 
trained in less time, consumes less space, and can be efficiently trained and deployed on resource-constrained 
platforms, including mobile devices.

Proposed model
As shown in Fig. 2, the Deep-AVPiden model consists of many layers described as follows.

1. Embedding layer: In this work, the skip-gram algorithm has been used to construct a word embedding 
matrix for 20 standard amino acid residues using the data points contained in our training set. This layer 
converts the numerical string into a (50,512) feature matrix (where the first element indicates the size of 

(1)C(t) = (x ∗d f )(t) =

k∑
i=1

f (i).xt−d.(i−1)

(2)y = activation(x + F(x))
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each numerical string, and the other element is the size of the fixed-length feature vector representation of 
an amino acid).

2. Spatial Dropout layer: This layer performs regularization by dropping columns (frames) from the feature 
matrix instead of individual elements. This layer is preferred over the normal dropout layer when the cor-
relation between the frames is high. The Deep-AVPiden model employs a 1D spatial dropout layer after the 
embedding layer( with a dropout rate of 0.5).

3. TCN blocks: This model uses dilated causal TCN architecture. It contains two parallel TCN blocks consisting 
of 1D-CONV layers with one skip connection. The difference between the two blocks lies in the size of the 
filters used in them. These layers employed rectified linear unit (ReLU) as the activation function. We used 
batch normalization layers in between layers to stabilize the learning process. As far as the dilation factor d 
is concerned, it increases in the consecutive layers by a factor of 2 (we have used d= 1, 2, and 4).

4. Global Average Pooling (GAP) layer: A 1D-GAP layer is used after each TCN block. It computes the average 
of the feature map obtained from the TCN blocks.

5. Concatenation layer: It simply combines the output of the two GAP layers for further processing.
6. Dense layer with dropout: A dense layer has been incorporated after the concatenation layer. It contains 

64 units and uses ReLU as its activation function. After this layer, a dropout layer is incorporated to prevent 
overfitting.

7. Output layer: This layer consists of a neuron using the sigmoid function for activation. The output of this 
neuron is a real number lying in the interval [0,1]. A peptide is predicted as an AVP if the output is greater 
than or equal to 0.5.

Apart from training the model using standard convolutions, depth-wise separable convolutions were used for 
building a more efficient model (in terms of computation and storage space). In other words, two models have 
been proposed in which one model comprises residual TCN networks that use standard convolutions. In con-
trast, the other was built by replacing the 1D-CONV layers in the TCN blocks with depth-wise and point-wise 
convolutional layers. These models have been compared and discussed in section “Results and discussions”.

Results and discussions
This section presents the details about the setup used to train the models, followed by their comparison with the 
state-of-the-art models based on the specified performance metrics. Also, a pilot study of the free web app has 
been done and elaborated using some representative protein sequences found in various organisms.

Experimental setup. The proposed models were trained on a compute node having 2.4 GHz Intel-Xeon 
Skylake 6148 CPU processors with RAM of 192 GB and NVIDIA V100 graphical processing units with 16 
GB RAM. We used Python for coding and certain libraries such as Keras with  Tensorflow46 as the backend 
and Keras-TCN  library47. These models were compared using a test set with various state-of-the-art classifiers 
like  DeepAVP19,  AVPIden24, iAMP-CA2L20,  ENNAVIA26, Meta-iAVP27, PreTP-Stack28, and  iACVP21. Note that 
we have compared with only those models that have removed identical and homologous sequences from their 

Figure 2.  The deep-AVPiden architecture.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13722  | https://doi.org/10.1038/s41598-023-40922-y

www.nature.com/scientificreports/

dataset, which is important to prevent any bias in a model’s performance. Furthermore, ENNAVIA and AVPI-
den, only classify sequences with lengths lying in the interval [7,40] and [8,50], respectively. Also, iACVP clas-
sifies sequences having more than 5 AA residues. So, when these models were executed, the test set was curated 
as per their specifications. Also, after obtaining the results of iAMP-CA2L, it was observed that this model 
sometimes does not label the functional type of an AMP (i.e., whether the classified AMP is antibacterial or 
antiviral, etc.). So, to prevent any ambiguity, we removed such instances from the test set while giving the results 
for iAMP-CA2L.

Performance metrics. The models were compared on certain performance metrics like accuracy, preci-
sion, and the area under the receiver operating characteristic curve (AUC-ROC). All of these metrics can be 
expressed in terms of True Positives (TPs, or the number of AVPs that were correctly identified), False Positives 
(FPs, or the number of non-AVPs that were incorrectly identified as AVPs), True Negatives (TNs, or the number 
of non-AVPs that were correctly identified), False Negatives (FNs, or the number of AVPs that were incorrectly 
identified as non-AVPs). It is evident that the Deep-AVPiden model outperforms other models by a significant 
margin.

Performance evaluation and comparison. While building the model, both causal and acausal TCNs 
were considered. However, there was not much difference in their performance, as mentioned in Table 1, and the 
mean accuracy, recall, and AUROC of the model built using the causal convolutions was higher than its acausal 
counterpart. Hence, causal TCNs were used to build the Deep-AVPiden model. The results of performance given 
by various state-of-the-art models, including Deep-AVPiden and Deep-AVPiden (DS), have been presented in 
Table 2. It is evident that both models outperform others by a significant margin with respect to all the perfor-
mance metrics. The confusion matrices for different models have been shown in Fig. 3. Here, it is observable that 
the proposed models give more TPs and TNs and fewer FPs and FNs than others.

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Precision =
TP

TP + FP

(5)Recall (orTrue Positive Rate (TPR)) =
TN

TN + FP

(6)False Positive Rate(FPR) = 1−
TN

FP + TN

(7)AUC − ROC =

∫
TPR. d(FPR)

Table 1.  Comparison between acausal and causal TCNs considered while building the model.

Model Accuracy (%) Precision (%) Recall (%) AUROC (%)

Deep-AVPiden (causal) 89.88± 0.01 90.29 ± 1.74 90.09 ± 1.72 95.99 ± 0.01

Deep-AVPiden (acausal) 89.77± 0.38 90.55 ± 1.32 88.73 ± 1.89 95.89 ± 0.31

Table 2.  Comparison of deep-AVPiden with existing models on test set.

Model Accuracy (%) Precision (%) Recall (%) AUROC (%)

Deep-AVPiden 89.88± 0.00 90.29 ± 1.74 90.09 ± 1.72 95.99 ± 0.01

Deep-AVPiden (DS) 88.47±0.13 88.49 ± 0.40 88.98 ± 0.38 94.90 ± 0.05

iACVP 65.83 77.33 46.59 75.49

AVPIden 59.98 57.20 73.74 68.81

Meta-iAVP 57.63 58.75 58.75 58.29

DeepAVP 53.08 53.94 58.99 52.77

iAMP-CA2L 52.36 88.89 6.23 52.72

PreTP-Stack 52.09 54.73 38.85 52.46

ENNAVIA 51.27 55.79 51.51 48.99
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Apart from this, an insight into the pros and cons of both models is also required. As is clear from Fig. 3, the 
Deep-AVPiden performs better than the Deep-AVPiden (DS) model. To check the statistical significance of the 
difference in the performance of the proposed models, the Student’s t-test has been employed. The null ( H0 ) and 
alternate ( H1 ) hypotheses’ are given in Eqs. (8–9). Table 3 presents the results of this statistical test. Note that, 
in the t-test, if the p-value is lesser than the chosen alpha level (here, 0.05), then it can be claimed that there is a 
difference between the means of the classifiers under comparison.

Since the alpha level is greater than the p-value in the case of all the metrics, it can be said that 
H0(accuracy),H0(precision),H0(recall),H0(AUC) are not true. In other words, the difference in means of all the 
performance metrics used to evaluate both models is statistically significant. There are other desirable attributes 
that need to be mentioned here. As mentioned in Table 4, the size and number of trainable parameters of Deep-
AVPiden are approximately 2.5 times more than that of Deep-AVPiden (DS). Thus, although the latter lags a little 
behind the former in terms of performance, it is easily trainable and deployable on computationally-constrained 
devices. In other words, it consumes less computational resources and storage space. In conclusion, both the 
models have their own merits and hence can be used as per convenience and constraints of the environment in 
which they need to be invoked. E.g., if the server on which we want to deploy the model is a mobile phone, it is 
better to use Deep-AVPiden (DS). In all other cases, the Deep-AVPiden model can be used.

Predicting AVPs using Deep-AVPiden app. A freely accessible web app based on the Deep-AVPiden 
(and Deep-AVPiden (DS)) has been deployed at https:// deep- avpid en. anvil. app. Using it, some AVPs have been 
discovered in the antiviral proteins of various mammals, plants, and fishes. These antiviral proteins belong to 
different families, including ribosome-inactivating protein (RIP), RNA-binding protein (RBP), and Dicer-like 
protein (DCL), among others. The RIPs have enzymatic activities (N-glycosidase, RNase, and DNase) that can 
damage ribosomes and interfere with protein translation. The RBPs, as the name suggests, bind to their target 
RNA and inhibit the translation and replication of RNA viruses. The proteins belonging to the DCL family per-
form RNA-silencing by cleaving double-stranded RNA (dsRNA) region of single-stranded RNAs (ssRNAs)48. 
The plant antiviral proteins belonging to these families, such as pokeweed antiviral protein (PAP), Phytolacca 
insularis antiviral protein (PIP), DCL4, Arabidopsis Pumilio-5 (APUM5), trichosanthin, etc., display antivi-
ral activity against plant viruses such as Potato virus Y (PVY), Potato virus X (PVX), Cucumber mosaic virus 
(CMV), Potato leafroll virus (PLRV), Turnip mosaic virus (TuMV), etc.

The interferons (IFNs) are antiviral glycoproteins that can be classified (based on the structure of receptors on 
the cell surface) into three families: type I, II, and III IFNs. Proteins coded by the IFN-alpha genes have known 
antiviral activities, and they are actively used in the treatment of hepatitis C virus (HCV), hepatitis B virus 
(HBV), and human immunodeficiency virus-1 (HIV-1)  infections49–51. Furthermore, Tripartite motif (TRIM), 

(8)

H0(accuracy) : µaccuracy(Deep− AVPiden) = µaccuracy(Deep− AVPiden(DS))

H0(precision) : µprecision(Deep− AVPiden) = µprecision(Deep− AVPiden(DS))

H0(recall) : µrecall(Deep− AVPiden) = µrecall(Deep− AVPiden(DS))

H0(AUC) : µAUC(Deep− AVPiden) = µAUC(Deep− AVPiden(DS))

(9)

H1(accuracy) : µaccuracy(Deep− AVPiden) �= µaccuracy(Deep− AVPiden(DS))

H1(precision) : µprecision(Deep− AVPiden) �= µprecision(Deep− AVPiden(DS))

H1(recall) : µrecall(Deep− AVPiden) �= µrecall(Deep− AVPiden(DS))

H1(AUC) : µAUC(Deep− AVPiden) �= µAUC(Deep− AVPiden(DS))

Figure 3.  Confusion matrices obtained for various models including Deep-AVPiden on the test set.

https://deep-avpiden.anvil.app
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Table 3.  Comparing Deep-AVPiden and Deep-AVPiden (DS) using t-test.

Observation Deep-AVPiden Deep-AVPiden (DS)

(a) t-test on accuracy (%) of proposed models

Mean 89.879 88.466

Variance 0.002 0.132

Observations 10 10

Hypothesized Mean Difference 0 –

degrees of freedom 9 –

t-statistic 12.208 –

P (T≤ t) one-tail 3.324E-07 –

t-Critical one-tail 1.833 –

P(T≤ t) two-tail 6.648E-07 –

t-Critical two-tail 2.262 –

(b) t-test on precision (%) of proposed models

Mean 90.289 88.494

Variance 1.737 0.403

Observations 10 10

Hypothesized Mean Difference 0 –

Degrees of freedom 13 –

t-Statistic 3.879 –

P(T≤ t) one-tail 0.001 –

t-Critical one-tail 1.771 –

P(T≤ t) two-tail 0.002 –

t-Critical two-tail 2.160 –

(c) t-test on recall (%) of proposed models

Mean 90.098 88.984

Variance 1.719 0.379

Observations 10 10

Hypothesized Mean Difference 0 –

Degrees of freedom 13 –

t-Statistic 2.431 –

P(T≤ t) one-tail 0.015 –

t-Critical one-tail 1.771 –

P(T≤ t) two-tail 0.030 –

t-Critical two-tail 2.160 –

(d) t-test on AUC (%) of proposed models

Mean 95.994 94.901

Variance 0.007 0.054

Observations 10 10

Hypothesized Mean Difference 0 –

Degrees of freedom 11 –

t-Statistic 14.044 –

P(T≤ t) one-tail 1.136E-08 –

t-Critical one-tail 1.796 –

P(T≤ t) two-tail 0.274E-08 –

t-Critical two-tail 2.201 –

Table 4.  Comparison between Deep-AVPiden and Deep-AVPiden (DS) model.

S. no. Deep-AVPiden Deep-AVPiden (DS)

No. of training parameters 1.36 million 0.56 million

Size 15.70 MB 6.68 MB
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ubiquitin-like (Ubl), Peroxiredoxin-1 (PRDX1), and Mx proteins found in fishes use distinct mechanisms to 
inhibit entry, replication, and dissemination of HCV, HIV-1, etc.52–54. Some protein sequences mentioned in 
Table 5 were entered into the deployed web app with the following specifications. 

1. Model: Deep-AVPiden (DS)
2. Probability Score: 0.90
3. Minimum length of desired AVPs : 10
4. Maximum length of desired AVPs : 30

After discovering AVPs in these proteins, the BLAST tool available at http:// www. camp3. bicni rrh. res. in/ ncbiB 
last/55 was employed to confirm whether the discovered AVPs had any sequence similarity with existing experi-
mentally validated AMPs present in public databases. Then, the AVPs with sufficient similarity with the annotated 
AMPs were selected and mentioned in Table 5. Apart from this, the method used for validating these AMPs and 
the similar AA positions with the discovered AVPs are highlighted in Table 6. The alpha-helical representations 

Table 5.  The AVPs discovered in antiviral proteins found in the proteomes of mammals, fish, and plants, with 
probability score ≥ 90% and showing some sequence similarity with the AMPs existing in public databases.

S.no Accession number Protein name Protein length Discovered AVPs

1. AAS77872.1 PAP 313 SDPFETNKCRYHI

2. AAD32679.1 PIP 315 FAPASTWAASPNPI

3. NP_197532.3 DCL4 1702 LSCILNNLELLRSWK

4. AAB31048.1 Trichosanthin 289 FISNLRKALPNERKLYDIPLL

5. NP_001319600.1 APUM5 913 EELVKQLAGQMVSLSLQMYGCR 

6. AAI12003.1 IFN-alpha-1 189 ICSLGCDLPQTHSLAHT

7. ABD52364.1 IFN-alpha-2 187 FCTEPSSAAWNRTL

8. AAI19352.1 IFN-alpha-3 186 FTSKDLSATWNATLLDSF

9. EAW58615.1 IFN-alpha-4 187 VLNCKSICSLGCDLPQ

10. AAM78026.1 IFN-alpha-5 189 CNSVCSLGCDLPQTHGLL

11. ATI15613.1 TRIM-8 568 LCPFCCISHCT

12. KAG1939425.1 Ubl 379 RRSWPEPVIHPEPV

13. AAO37934.1 Mx 626 PENIGEQIKRLIRKFI

14. NP_001187107.1 IFN 162 FLNILNTRQLTELT

15. TSK18011.1 PRDX1 417 FVILEKMLMEICVIFSCV

Table 6.  . The similar annotated peptides found using this tool are mentioned here. Column 5 shows the 
method used to validate these peptides as antimicrobial and/or antiviral (as mentioned in column 6). Lastly, 
column 7 consists of the similar AA positions between the discovered peptides and the ones found by BLAST 
analysis. Here ‘−’ represents dissimilarity between the amino acids present in the given peptides at that 
position.

AVP discovered Similar annotated AMP  Similar AA positions with annotated 
AMPsSequence No. of AAs Sequence No. of AAs Validation method Nature

SDPFETNKCRYHI 13 VNT...QTT 262 X-Ray Diffraction Antiviral SDPFETNKCRYHI

FAPASTWAASPNPI 14 MET...GWF 224 Predicted (based on signature) Antimicrobial -AP-ST-A-SP-P

LSCILNNLELLRSWK 15 NWY...GIA 69 Predicted Antimicrobial L-CIL-N——–

FISNLRKALPNERKLYDIPLL 21 DVS...NMA 247 X-Ray Diffraction Antiviral FISNLRKALPNERKLYDIPLL

EELVKQLAGQMVSLSLQMYGCR 22 DDG...GSC 42 Predicted (based on signature) Antimicrobial —-K-LAGQM———–

ICSLGCDLPQTHSLAHT 17 CDL...SKE 165 Solution NMR Antiviral —–CDLPQTHSL—

FCTEPSSAAWNRTL 14 MAF...NSP 195 Experimentally validated Antiviral F-TE-SSAAW-TL

FTSKDLSATWNATLLDSF 18 CDL...SKE 165 Solution NMR Antiviral F–KD-SA-W-TLLD–

VLNCKSICSLGCDLPQ 16 GSV...TKD 31 Experimentally validated Antiviral VLNC—C-LG—–

CNSVCSLGCDLPQTHGLL 18 CDL...SKE 165 Solution NMR Antiviral ——–CDLPQTH-L-

LCPFCCISHCT 11 QSH...CKF 25 Predicted Antimicrobial LC-FCC—–

RRSWPEPVIHPEPV 14 RRL...KPL 36 Predicted Antimicrobial -R-WP-P—P-P-

PENIGEQIKRLIRKFI 16 ELN...VEP 42 Predicted Antimicrobial -EN-GE-IK——-

FLNILNTRQLTELT 14 ATC...KGT 67 Predicted (based on signature) Antimicrobial ——TRQLT-L-

FVILEKMLMEICVIFSCV 18 MHS...QNY 97 Predicted (based on signature) Antimicrobial F—E–L-E-C—SC-

http://www.camp3.bicnirrh.res.in/ncbiBlast/
http://www.camp3.bicnirrh.res.in/ncbiBlast/
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of these peptides have been shown in Fig. 4 using an online tool available at https:// heliq uest. ipmc. cnrs. fr/56. 
The length of the arrow in the alpha-helical representations is directly proportional to the hydrophobic moment. 
It was found  in57 that if the hydrophobic moment is high, it denotes that the peptide has high penetration effi-
ciency (it can easily kill/ inhibit its target). On a general note, it can be seen that the discovered AVPs have a 
high hydrophobic moment. It is very likely that these AVPs have good antiviral potential, and the same can be 
verified by chemically synthesizing them in laboratories. It can be observed that the length of the discovered 
AVPs are much smaller than their parent proteins. Hence, this tool efficiently identifies the core antiviral region 
of a given protein that is responsible for its antiviral activity. Moreover, we performed CD-HIT with a threshold 
of 0.9 on the AVPs found in each protein separately and tried to visualize their distribution with respect to the 
AVPs present in our training set. For this purpose, the isometric mapping technique has been  used58. The 2D 
visualization of these data points is presented in Fig. 5, where it can be observed that the predicted AVPs and the 

Figure 4.  Alpha-helical representations of AVPs discovered in the plant, mammal, and fish proteins.

Figure 5.  Scatter plots showing the distribution of AVPs predicted in the (a) plant, (b) mammal, and (c) fish 
antiviral proteins, along with the AVPs and non-AVPs in the training set.

https://heliquest.ipmc.cnrs.fr/
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AVPs present in the training set have similar distributions. Hence, the discovered AVPs are purported to show 
good antiviral activity, which can be confirmed by synthesis and experimental validation.

Conclusion
In this work, the Deep-AVPiden model has been proposed for identifying AVPs in several protein sequences to 
accelerate the task of antiviral drug discovery. It is a deep learning model based on TCNs that predicts whether 
a given peptide is antiviral or not. It takes peptides (alphabetical strings) as input, converts them into feature 
matrices, and outputs a probability score for them, which is used to interpret their antiviral potential. In addi-
tion to this, we used depth-wise separable convolutions to build another computationally and space-efficient 
model called Deep-AVPiden (DS), which can be deployed on resource-constrained devices. The Deep-AVPiden 
and Deep-AVPiden (DS) models have an accuracy of 90% and 89%, respectively, which is much better than the 
existing classifiers’ performance.

Furthermore, a web app has been deployed at https:// deep- avpid en. anvil. app/ where users can enter different 
proteins and find AVPs with good antiviral potential. After choosing fifteen antiviral proteins found in various 
mammals, plants, and fishes, our app discovered and presented some AVPs which are purported to have a good 
antiviral potential (subject to experimental validation and analysis). In the future, we would like to use other 
state-of-the-art sequence modeling techniques like transformers to build classification models. Also, designing 
a two-level multi-label classifier for AVPs can be considered. Such a classifier would predict whether a peptide 
is antiviral or not in the first stage and then classify it according to its target virus family in the second stage.

Data availability
The datasets analyzed during the current study will be made available upon reasonable request to the authors 
of this study.

Received: 9 April 2023; Accepted: 18 August 2023

References
 1. Singh, V., Shrivastava, S., Kumar Singh, S., Kumar, A. & Saxena, S. Stable-abppred: A stacked ensemble predictor based on bilstm 

and attention mechanism for accelerated discovery of antibacterial peptides. Brief. Bioinform.https:// doi. org/ 10. 1093/ bib/ bbab4 
39 (2021).

 2. Singh, V., Shrivastava, S., Kumar Singh, S., Kumar, A. & Saxena, S. Accelerating the discovery of antifungal peptides using deep 
temporal convolutional networks. Brief. Bioinform.https:// doi. org/ 10. 1093/ bib/ bbac0 08 (2022).

 3. Veltri, D., Kamath, U. & Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics 34(16), 2740–2747 
(2018).

 4. Sharma, R. et al. Aniamppred: Artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom. Brief. 
Bioinform.https:// doi. org/ 10. 1093/ bib/ bbab2 42 (2021).

 5. Sharma, R. et al. Deep-abppred: Identifying antibacterial peptides in protein sequences using bidirectional lstm with word2vec. 
Brief. Bioinform.https:// doi. org/ 10. 1093/ bib/ bbab0 65 (2021).

 6. Sharma, R. et al. Deep-afppred: Identifying novel antifungal peptides using pretrained embeddings from seq2vec with 1dcnn-
bilstm. Brief. Bioinform.https:// doi. org/ 10. 1093/ bib/ bbab4 22 (2021).

 7. Singh, V., Shrivastava, S., Singh, S. K., Kumar, A. & Saxena, S. Multi-scale temporal convolutional networks and continual learning 
based in silico discovery of alternative antibiotics to combat multi-drug resistance. Expert Syst. Appl. 215, 119295 (2023).

 8. Lea, C., Vidal, R., Reiter, A. & Hager, G. D. Temporal convolutional networks: A unified approach to action segmentation (2016).
 9. Lea, C., Flynn, M. D., Vidal, R., Reiter, A. & Hager, G. D. Temporal convolutional networks for action segmentation and detection 

(2017).
 10. Akbar, S., Hayat, M., Iqbal, M. & Jan, M. A. iacp-gaensc: Evolutionary genetic algorithm based ensemble classification of anticancer 

peptides by utilizing hybrid feature space. Artif. Intell. Med. 79, 62–70 (2017).
 11. Akbar, S., Hayat, M., Tahir, M., Khan, S. & Alarfaj, F. K. cacp-deepgram: Classification of anticancer peptides via deep neural 

network and skip-gram-based word embedding model. Artif. Intell. Med. 131, 102349 (2022).
 12. Vilas Boas, L. C. P., Campos, M. L., Berlanda, R. L. A., de Carvalho Neves, N. & Franco, O. L. Antiviral peptides as promising 

therapeutic drugs. Cell. Mol. Life Sci. 76(18), 3525–3542 (2019).
 13. Ireland, D. C., Wang, C. K., Wilson, J. A., Gustafson, K. R. & Craik, D. J. Cyclotides as natural anti-hiv agents. Pept. Sci. 90(1), 

51–60 (2008).
 14. Sencanski, M. et al. Natural products as promising therapeutics for treatment of influenza disease. Curr. Pharm. Des. 21(38), 

5573–5588 (2015).
 15. Gao, Y., Cui, T. & Lam, Y. Synthesis and disulfide bond connectivity-activity studies of a kalata b1-inspired cyclopeptide against 

dengue ns2b-ns3 protease. Bioorg. Med. Chem. 18(3), 1331–1336 (2010).
 16. Wang, G., Watson, K. M., Peterkofsky, A. & Buckheit, R. W. Jr. Identification of novel human immunodeficiency virus type 1-inhibi-

tory peptides based on the antimicrobial peptide database. Antimicrob. Agents Chemother. 54(3), 1343–1346 (2010).
 17. Carriel-Gomes, M. C. et al. In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and 

rotavirus. Mem. Inst. Oswaldo Cruz 102(4), 469–472 (2007).
 18. Sharma, R. et al. Deep-avppred: Artificial intelligence driven discovery of peptide drugs for viral infections. IEEE J. Biomed. Health 

Inform.https:// doi. org/ 10. 1109/ JBHI. 2021. 31308 25 (2021).
 19. Li, J., Pu, Y., Tang, J., Zou, Q. & Guo, F. Deepavp: A dual-channel deep neural network for identifying variable-length antiviral 

peptides. IEEE J. Biomed. Health Inform. 24(10), 3012–3019. https:// doi. org/ 10. 1109/ JBHI. 2020. 29770 91 (2020).
 20. Xiao, X., Shao, Y. T., Cheng, X., & Stamatovic, B. iAMP-CA2L: A new CNN-BiLSTM-SVM classifier based on cellular automata 

image for identifying antimicrobial peptides and their functional types. Brief. Bioinform. 22(6), bbab209 (2021).
 21. Kurata, H., Tsukiyama, S. & Manavalan, B. iacvp: Markedly enhanced identification of anti-coronavirus peptides using a dataset-

specific word2vec model. Brief. Bioinform. 23(4), bbac265 (2022).
 22. Bai, S., Kolter, J. Z. & Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. 

arXiv preprint arXiv: 1803. 01271 (2018).
 23. Thakur, N., Qureshi, A. & Kumar, M. Avppred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Res. 

40(W1), W199–W204 (2012).

https://deep-avpiden.anvil.app/
https://doi.org/10.1093/bib/bbab439
https://doi.org/10.1093/bib/bbab439
https://doi.org/10.1093/bib/bbac008
https://doi.org/10.1093/bib/bbab242
https://doi.org/10.1093/bib/bbab065
https://doi.org/10.1093/bib/bbab422
https://doi.org/10.1109/JBHI.2021.3130825
https://doi.org/10.1109/JBHI.2020.2977091
http://arxiv.org/abs/1803.01271


12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13722  | https://doi.org/10.1038/s41598-023-40922-y

www.nature.com/scientificreports/

 24. Pang, Y., Yao, L., Jhong, J.-H., Wang, Z. & Lee, T.-Y. Avpiden: A new scheme for identification and functional prediction of antiviral 
peptides based on machine learning approaches. Brief. Bioinform. 22(6), bbab263 (2021).

 25. Qureshi, A., Tandon, H. & Kumar, M. Avp-ic50pred: Multiple machine learning techniques-based prediction of peptide antiviral 
activity in terms of half maximal inhibitory concentration (ic50). Pept. Sci. 104(6), 753–763 (2015).

 26. Timmons, P. B. & Hewage, C. M. Ennavia is a novel method which employs neural networks for antiviral and anti-coronavirus 
activity prediction for therapeutic peptides. Brief. Bioinform. 22(6), bbab258 (2021).

 27. Schaduangrat, N., Nantasenamat, C., Prachayasittikul, V. & Shoombuatong, W. Meta-iavp: A sequence-based meta-predictor for 
improving the prediction of antiviral peptides using effective feature representation. Int. J. Mol. Sci. 20(22), 5743 (2019).

 28. Yan, K. et al. Pretp-stack: Prediction of therapeutic peptides based on the stacked ensemble learning. IEEE/ACM Trans. Comput. 
Biol. Bioinf. 20(2), 1337–1344. https:// doi. org/ 10. 1109/ TCBB. 2022. 31830 18 (2023).

 29. Chowdhury, A. S., Reehl, S. M., Kehn-Hall, K., Bishop, B. & Webb-Robertson, B.-J.M. Better understanding and prediction of 
antiviral peptides through primary and secondary structure feature importance. Sci. Rep. 10(1), 1–8 (2020).

 30. Ali, F., Kumar, H., Alghamdi, W., Kateb, F. A. & Alarfaj, F. K. Recent advances in machine learning-based models for prediction 
of antiviral peptides. Arch. Comput. Methods Eng. 1–12 (2023).

 31. Qureshi, A., Thakur, N., Tandon, H. & Kumar, M. Avpdb: A database of experimentally validated antiviral peptides targeting 
medically important viruses. Nucleic Acids Res. 42(D1), D1147–D1153 (2014).

 32. Qureshi, A., Thakur, N. & Kumar, M. Hipdb: A database of experimentally validated hiv inhibiting peptides. PLoS ONE 8(1), 
e54908 (2013).

 33. Aguilera-Mendoza, L. et al. Overlap and diversity in antimicrobial peptide databases: Compiling a non-redundant set of sequences. 
Bioinformatics 31(15), 2553–2559 (2015).

 34. Aguilera-Mendoza, L. et al. Graph-based data integration from bioactive peptide databases of pharmaceutical interest: Toward an 
organized collection enabling visual network analysis. Bioinformatics 35(22), 4739–4747 (2019).

 35. Aguilera-Mendoza, L. et al. Automatic construction of molecular similarity networks for visual graph mining in chemical space 
of bioactive peptides: An unsupervised learning approach. Sci. Rep. 10(1), 1–23 (2020).

 36. Kang, X. et al. Dramp 2.0, an updated data repository of antimicrobial peptides. Sci. Data 6(1), 1–10 (2019).
 37. Singh, S. et al. Satpdb: A database of structurally annotated therapeutic peptides. Nucleic Acids Res. 44(D1), D1119–D1126 (2016).
 38. Consortium U. Uniprot: A worldwide hub of protein knowledge. Nucleic Acids Res. 47(D1), D506–D515 (2019).
 39. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. Cd-hit: Accelerated for clustering the next-generation sequencing data. Bioinformatics 

28(23), 3150–3152 (2012).
 40. Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinfor-

matics 22(13), 1658–1659 (2006).
 41. Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. Cd-hit suite: A web server for clustering and comparing biological sequences. Bioinfor-

matics 26(5), 680–682 (2010).
 42. He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer 

vision and pattern recognition, 770–778 (2016).
 43. Sifre, L. & Mallat, S. Rigid-motion scattering for image classification (Ph.D. dissertation). Ecole Polytechnique, CMAP (2014).
 44. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015).
 45. Howard, A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv: 1704. 

04861 (2017).
 46. Abadi, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv: 1603. 04467 

(2016).
 47. Remy, P. Temporal convolutional networks for keras. https:// github. com/ phili ppere my/ keras- tcn (2020).
 48. Musidlak, O., Nawrot, R. & Goździcka-Józefiak, A. Which plant proteins are involved in antiviral defense? review on in vivo and 

in vitro activities of selected plant proteins against viruses. Int. J. Mol. Sci. 18(11), 2300 (2017).
 49. Lin, F.-C. & Young, H. A. Interferons: Success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 25(4), 369–376 (2014).
 50. Pinto, L. A. et al. Inhibition of human immunodeficiency virus type 1 replication prior to reverse transcription by influenza virus 

stimulation. J. Virol. 74(10), 4505–4511 (2000).
 51. Gibbert, K., Schlaak, J., Yang, D. & Dittmer, U. Ifn-α subtypes: Distinct biological activities in anti-viral therapy. Br. J. Pharmacol. 

168(5), 1048–1058 (2013).
 52. Patil, G. & Li, S. Tripartite motif proteins: An emerging antiviral protein family. Future Virol. 14(2), 107–122 (2019).
 53. Chen, L. et al. Ubiquitin-like protein modifiers and their potential for antiviral and anti-hcv therapy. Expert Rev. Proteom. 10(3), 

275–287 (2013).
 54. Verhelst, J., Hulpiau, P. & Saelens, X. Mx proteins: Antiviral gatekeepers that restrain the uninvited. Microbiol. Mol. Biol. Rev. 77(4), 

551–566 (2013).
 55. Waghu, F. H., Barai, R. S., Gurung, P. & Idicula-Thomas, S. Campr3: A database on sequences, structures and signatures of anti-

microbial peptides. Nucleic Acids Res. 44(D1), D1094–D1097 (2016).
 56. Gautier, R., Douguet, D., Antonny, B. & Drin, G. Heliquest: A web server to screen sequences with specific α-helical properties. 

Bioinformatics 24(18), 2101–2102 (2008).
 57. Takechi-Haraya, Y. et al. Effect of hydrophobic moment on membrane interaction and cell penetration of apolipoprotein e-derived 

arginine-rich amphipathic α-helical peptides. Sci. Rep. 12(1), 4959 (2022).
 58. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

Author contributions
V.S. conceptualized the idea, executed the idea, and wrote the manuscript. S.K.S. supervised the work, arranged 
the resources, and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to V.S. or S.K.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1109/TCBB.2022.3183018
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1603.04467
https://github.com/philipperemy/keras-tcn
www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13722  | https://doi.org/10.1038/s41598-023-40922-y

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	A separable temporal convolutional networks based deep learning technique for discovering antiviral medicines
	Materials and methods
	Dataset. 
	Data pre-processing. 
	Word embeddings. 
	Temporal convolutional networks. 
	Depth-wise separable convolutions. 

	Proposed model
	Results and discussions
	Experimental setup. 
	Performance metrics. 
	Performance evaluation and comparison. 
	Predicting AVPs using Deep-AVPiden app. 

	Conclusion
	References


