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Predicting California bearing ratio 
of HARHA‑treated expansive soils 
using Gaussian process regression
Mahmood Ahmad 1,2*, Mohammad A. Al‑Zubi 3, Ewa Kubińska‑Jabcoń 4, Ali Majdi 5, 
Ramez A. Al‑Mansob 1, Mohanad Muayad Sabri Sabri 6, Enas Ali 7, Jamil Abdulrabb Naji 8, 
Ashraf Y. Elnaggar 9 & Bakht Zamin 10

The California bearing ratio (CBR) is one of the basic subgrade strength characterization properties 
in road pavement design for evaluating the bearing capacity of pavement subgrade materials. In this 
research, a new model based on the Gaussian process regression (GPR) computing technique was 
trained and developed to predict CBR value of hydrated lime‑activated rice husk ash (HARHA) treated 
soil. An experimental database containing 121 data points have been used. The dataset contains 
input parameters namely HARHA—a hybrid geometrical binder, liquid limit, plastic limit, plastic 
index, optimum moisture content, activity and maximum dry density while the output parameter 
for the model is CBR. The performance of the GPR model is assessed using statistical parameters, 
including the coefficient of determination  (R2), mean absolute error (MAE), root mean square error 
(RMSE), Relative Root Mean Square Error (RRMSE), and performance indicator (ρ). The obtained 
results through GPR model yield higher accuracy as compare to recently establish artificial neural 
network (ANN) and gene expression programming (GEP) models in the literature. The analysis of the 
 R2 together with MAE, RMSE, RRMSE, and ρ values for the CBR demonstrates that the GPR achieved 
a better prediction performance in training phase with  (R2 = 0.9999, MAE = 0.0920, RMSE = 0.13907, 
RRMSE = 0.0078 and ρ = 0.00391) succeeded by the ANN model with  (R2 = 0.9998, MAE = 0.0962, 
RMSE = 4.98, RRMSE = 0.20, and ρ = 0.100) and GEP model with  (R2 = 0.9972, MAE = 0.5, RMSE = 4.94, 
RRMSE = 0.202, and ρ = 0.101). Furthermore, the sensitivity analysis result shows that HARHA was the 
key parameter affecting the CBR.

Abbreviations
ANN  Artificial neural network
GPR  Gaussian process regression
CBR  California bearing ratio
COV  Coefficient of variation
OF  Objective function
HARHA  Hydrated lime-activated rice husk ash
LL  Liquid limit
PL  Plastic limit
PI  Plasticity index
OMC  Optimum moisture content
MDD  Maximum dry density
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ML  Machine learning
Max  Maximum
Min  Minimum
CA  Clay activity
R  Correlation coefficient
SD  Standard deviation
R2  Coefficient of determination
MAE  Mean absolute error
RMSE  Root mean square error
RRMSE  Relative root mean square error
ξ  Pearson correlation coefficient
ρ  Performance indicator
ei  Mean of measured values
mi  Mean of predicted values
n  Total number of data
ei  Measured value
mi  Predicted value
xim  Input variable
xom  Output variables
rij  Strength of the relation

The mechanical index of geomaterials must be accurately predicted for robust pavement  design1. The subgrade 
soil’s strength is commonly measured by its California Bearing Ratio (CBR). CBR is a static strength and bearing 
capacity index that can be measured in the laboratory or in situ2,3. The CBR is an important input parameter for 
predicting the stiffness modulus of the subgrade soil, which is an essential pavement design index when cyclic 
loading is  considered4,5. The CBR value is used to indirectly estimate the thickness of subgrade materials in large 
infrastructure projects. Consequently, precise and timely estimation of this parameter is extremely important to 
the design process and construction schedule.

The CBR test is a simple strength test that compares the bearing capacity of a material to that of well-graded 
crushed stone (a high-quality crushed stone material should have a CBR of 100%). It is intended for, but not 
limited to, evaluating the cohesiveness of materials with particle sizes of less than 19 mm (0.75 in). In accord-
ance with current American Association of State Highway and Transportation Officials 2003 requirements, the 
laboratory CBR test entails soil mass penetration utilizing a circular 50 mm plunger applied at a rate of 1.25 mm/
min6 into a compacted soil specimen with the optimum moisture content. The CBR test is an indirect measure 
of soil strength based on the resistance to penetration by a standardized piston moving at a standardized rate 
over a specified distance. CBR values are frequently used for highway, airport, parking lot, and other pavement 
designs based on empirical local or agency-specific methods. Additionally, CBR has been empirically correlated 
with resilient modulus and a number of other engineering soil properties.

Several studies were conducted to assess the performance of various materials, including fly ash, coarse sand, 
river bed material, and stone dust, that could be used to improve soft subgrades in highway  construction7–11. 
For example, fly ash use in soil stabilization decreased the liquid limit and plasticity index and increased  CBR12. 
Similarly, interaction between soil and waste plastic strips which causes the resistance to penetration of the 
plunger resulting into higher CBR  values13.

Developing machine learning (ML) models for CBR prediction may be a viable option in this  context14, as 
obtaining representative CBR values for design purposes is difficult due to insufficient soil investigations and a 
limited budget in determining the CBR value. In contrast, the laboratory CBR test is time-consuming and labo-
rious. Artificial intelligence models can simulate highly nonlinear relationships between numerous input and 
output parameters, resulting in more precise predictions than simple and multiple regression  analysis15–17. Several 
artificial intelligence model techniques have been used in  engineering18–24 and many other  disciplines25–28, includ-
ing CBR value prediction using artificial neural network (ANN)29, and gene and multi expression  programming30. 
As a result, this field is still being researched and investigated.

Gaussian process regression (GPR) has primarily been used in various domains of geotechnical engineering 
e.g.31–41. A critical review of the existing literature, however, indicates that, despite the successful implementa-
tion of GPR in various domains, their application to predict CBR value has not been thoroughly investigated. 
The purpose of this paper is to develop a new model for predicting the CBR value of expansive soil treated with 
hydrated lime-activated rice husk ash using the GPR computing technique. The viability and acceptability of the 
CBR prediction using the GPR computing method are also addressed in this paper. The dataset for this study 
includes seven input parameters for predicting CBR value: hydrated lime-activated rice husk ash (HARHA), liq-
uid limit (LL), plastic limit (PL), plasticity index (PI), optimum moisture content (OMC), clay activity (CA), and 
maximum dry density (MDD). To compare the accuracy of the current model with that of previously developed 
models, several performance indexes were used, including coefficient of determination  (R2), mean absolute error 
(MAE), root mean square error (RMSE), relative root mean square error (RRMSE), and performance indicator 
(ρ), as well as objective function (OF) to determine whether the model is overfitted or not.

The rest of the paper is structured as follows. Section “Materials and methods” presents information about the 
dataset, Pearson’s correlation analysis, and a brief literature review on Gaussian process regression for estimating 
the CBR and the performance measure. Section “Results and discussion” presents the developed model’s results 
and discussion, and Section “Limitations and future works” discusses the limitations and prospects for the future. 
Last Section presents the conclusions of this study.
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Materials and methods
Dataset. In this study, the dataset was obtained from Onyelowe et al.29, which consist of 121 observations 
(see Appendix A, Table A1 in supplementary information file). Researchers have used a different percentage of 
the available data as the training set for different problems. For instance, Ahmad et al.34 used 70% for training 
and remaining 30% was equally divided into testing and validation sets. In this study, training dataset contains 
85 (70%) observations while testing and validation comprises of 18 (15%) observations each. The CBR is a func-
tion of hydrated lime-activated rice husk ash (HARHA), liquid limit (LL), plastic limit (PL), plasticity index (PI), 
optimum moisture content (OMC), clay activity (CA), and maximum dry density (MDD)29. HARHA, a hybrid 
geometrical binder, was made by mixing rice husk with 5% hydrated lime and leaving it for 24 h to activate. 
Hydrated lime activates alkali, and rice husk comes from rice mills. Rice husk is agro-industrial waste. Direct 
combustion produces rice husk ash (RHA)42. Therefore, these input parameters were utilized in this study to 
develop the desired model. The parameters’ maximum (Max), minimum (Min), mean, standard deviation (SD), 
and coefficient of variation (COV) were chosen in such a way that they were consistent throughout training, 
testing, and validation data sets (Table 1). Figure 1 illustrates the cumulative percentage and frequency distribu-
tions for all input and output parameters utilized in the CBR modeling from the aforementioned database. The 
cumulative percentage distribution can be used to determine what proportion of the data falls below or equals a 
given value. For example, if the cumulative percentage at an LL (50.4–58.2%) is 60%, then 60% of the data points 
are less than or equal to 20. The frequency distribution explains how data is spread across several categories or 
intervals. It aids in the identification of the most common or frequent values, as well as any patterns or trends. 
For example, if the frequency of a specific category, such as OMC (17.8–18.4%), is higher than others, it suggests 
that the data is concentrated in that particular region. Furthermore, readers can refer to Onyelowe et al.29 for 
additional information on carrying out the tests.

Pearson’s correlation analysis. To determine the relationships between each pair wise variable, the Pear-
son correlation coefficient (ξ)43 was utilized. Table 2 detailed the relationship of all the variables based on the 
ξ. A Pearson correlation coefficient  > 0.8 indicates a strong association between each pair wise variable, values 
range from 0.3 to 0.8 indicate a medium relationship, and |ξ| < 0.30 indicates a weak  relationship44. The rank 
correlation coefficient (|ξ|) was used to determine the associations between each pair of variables based on the 
distribution of the data. The parameters were determined to have a generally acceptable degree of correlation. 
It is evident from Table 2 that the PI is strongly correlated with CBR (|ξ| = 0.99514), but the OMC is weakly 
correlated with CBR (|ξ| = 0.09768) and the same is reported by Onyelowe et al.29. Certain variables that have a 
considerable amount of deviation have the potential to have an effect on prediction  models45.

Table 1.  Statistical parameters for data sets used for training, testing, and validation.

Parameter Dataset Min Max Mean SD COV

HARHA (%)

Training 0 9.2 4.2341 2.5263 6.3069

Testing 7.6 10.2 9.1889 0.7576 0.5421

Total 0 12 6 3.507373 58.4562

LL (%)

Training 37 66 53.9 8.0219 63.5937

Testing 35.5 42.8 37.6444 1.9555 3.6114

Total 27 66 47.9965 11.5363 24.0355

PL (%)

Training 14.9 21 18.3635 1.7850 3.1489

Testing 14.9 15.9 15.1167 0.2307 0.0503

Total 12.8 21 17.1727 2.4143 14.0587

PI (%)

Training 22 45 35.5365 6,2735 38.8943

Testing 20.4 26.9 22.5278 1.7914 3.0309

Total 14 45 30.8240 9.1479 29.6777

OMC (%)

Training 16 19 18.1088 0.8818 0.7683

Testing 17.84 18.29 18.0844 0.15054 0.0214

Total 16 19 18.024 0.7684 4.2631

CA

Training 1 2 1.5564 0.2623 0.0680

Testing 0.86 1.19 0.9928 0.08035 0.0061

Total 0.60 2 1.3481 0.3982 29.5361

MDD (g/cm3)

Training 1.25 1.964 1.5688 0.1925 0.0366

Testing 1.85 1.982 1.9486 0.03886 0.00143

Total 1.25 1.99 1.68 0.2432 14.4207

CBR (%)

Training 8 34.8 17.7668 7.3806 53.8322

Testing 8.5 38.5 33.4167 6.9018 44.9892

Total 8.00 44.6 23.8414 11.8195 49.4680
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Gaussian processes regression (GPR). According to  Rasmussen46, the assumption that the GPR model 
operates under is that nearby observations should exchange information. Any finite number of the random 
variables in a Gaussian process has a joint multivariate Gaussian distribution. Let a × b stand to represent the 
input and output domains, respectively, from which n pairs (ai, bi) are randomly and uniformly distributed. For 
regression, let b ⊆ ℜ ; then, a Gaussian process on a is distinct by the mean function µ : a → ℜ and a covariance 
function k : a× a → ℜ . The main supposition of GPR is that y is given as b = f (a)+ ζ , where ζ ∼ N

(

0, σ 2
)

 . 
For each input x, there is a random variable f(a) that corresponds to the value of the stochastic function f at that 

Figure 1.  Distribution histograms for inputs (in blue) and outputs (in green).
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location. In this study, it is assumed that the observational error n is normal, independent, and identically dis-
tributed, with a mean of zero µ(a) = 0 , a variance of σ 2 , and f(a) drawn from the Gaussian process on a specified 
k. The following is,

where Kij = k(ai, aj) and I is the identity matrix. As B/A ∼ N
(

0,K + σ 2I
)

 is normal, so is the conditional distribu-
tion of test labels given the training and test data of p(B/B,A,A∗) . Then, one has B ∗ /B,A,A∗ ∼ N

(

µ,
∑

)

 where

where A and A* represent the vectors of the training and test data respectively. The n × n* matrix of covariance, 
which is assessed at all pairs of training and test datasets, is represented by K(A, A*) if there are n training data 
and n* test data. Readers can get more detail information on GPR and different covariance functions from  Kuss47.

Evaluation measures of GPR model. To assess the GPR model’s effectiveness, the evaluation measures 
such as coefficient of determination  (R2), mean absolute error (MAE), root mean square error (RMSE), relative 
root mean square error (RRMSE), and performance indicator (ρ) are used in this study. In addition, the objective 
function (OF) is utilized to determine if the model has been overfitted. The mathematical expressions are given 
in Eqs. (4)–(9) 30,34,48–57.

where ei and mi are the nth measured and predicted output of the ith sample, respectively. ei and mi represents 
the average values of the measured and predicted output, respectively. The total number of datasets is shown 
by n while the training and validation datasets are shown by the subscripts T and V respectively. If a model’s  R2 
values are higher than 0.8 and close to 1, it is considered as being  effective31. The RMSE criterion measures the 
mean squared difference between predicted and actual output, whereas the MAE criterion measures the mean 
magnitude of the error. RRMSE is calculated by dividing RMSE by the measured data’s mean value. To improve 

(1)B = (b1, . . . , bn) ∼ N
(

0,K + σ 2I
)

(2)µ = K(A∗,A)
[

K(A,A)+ σ 2I
]−1

B

(3)
∑

= K(A∗,A∗)− σ 2I − K(A∗,A)
[

K(A,A)+ σ 2I
]−1

K(A,A∗)

(4)RMSE =

√

∑n
i=1 (ei −mi)2

n

(5)MAE =

∑n
i=1 |ei −mi|

n

(6)RRMSE =
1

|e|

√

∑n
i=1 (ei −mi)

2

n

(7)R2 =





�n
i=1 (ei − ei)

�n
i=1 (mi −mi)

�

�n
i=1 (ei − ei)

2
�n

i=1 (mi −mi)
2





2

(8)ρ =
RRMSE

1+ R

(9)OF =

(

nT − nv

n

)

ρT + 2

(nv

n

)

ρv

Table 2.  Pearson’s correlation matrix.

Parameter HARHA (%) LL (%) PL (%) PI (%) OMC (%) CA MDD (g/cm3) CBR (%)

HARHA (%) 1.00000

LL (%) − 0.99724 1.00000

PL (%) − 0.98926 0.99152 1.00000

PI (%) − 0.99652 0.99941 0.98647 1.00000

OMC (%) 0.20139 − 0.14350 − 0.17491 − 0.13480 1.00000

CA − 0.99388 0.99754 0.98458 0.99814 − 0.12039 1.00000

MDD (g/cm3) 0.98577 − 0.98176 − 0.97696 − 0.98026 0.23936 − 0.97417 1.00000

CBR (%) 0.99161 − 0.99425 − 0.98026 − 0.99514 0.09768 − 0.99510 0.96933 1.00000
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the performance of the model, RMSE, RRMSE and MAE should be relatively close to zero. This value cannot 
be 0 in practice, but the smaller it is, the more accurate the model’s performance. Performance indicator (ρ) is 
the function of RRMSE and the coefficient of correlation (R)  value58. The closeness of OF to zero indicates that 
the model is not overfit.

Results and discussion
In order to increase the accuracy and capability of the trained model Furthermore, the parameters are divided 
into three parts based on similar statistical characteristics, such as the mean value and coefficient of variation 
(COV). Model overfitting has been controlled by the mentioned validation set. The Pearson VII universal kernel 
known as PUK kernel function was scrutinized after multiple iteration of trial-and-error method among different 
function. In GPR model, the hyperparameters were fixed according to the best possible results. Hyperparameters 
such as noise, omega and sigma values were iterated through trial-and-error method until the desired results 
were achieved. Noise value was fixed at 0.3 while omega and sigma were fixed at 0.4 each listed in the following 
table. Figure 2 represents the flow chart of the proposed methodology in this study.

To verify the effectiveness of learned models in the field of ML, models need to be assessed. Different evalu-
ation methodologies are used with various types of models. The analysis of the built machine-learning model’s 
predictive impact comes after the development of the machine-learning model for CBR prediction. This study 
verified the GPR model’s CBR prediction by comparing the predicted and actual values. Figure 3 shows that 
there is a strong correlation between the training set’s predicted value and the actual value. Although some of 
the data points in the test set’s and validation set’s predicted value have high errors compared to the actual CBR 
value e.g. sample 9 (see Fig. 3b) and samples 1, 2 and 3 (see Fig. 3c) respectively, overall, the predicted value is 
found accurate. The findings demonstrate how well the GPR model predicts the CBR.

Figure 4, a scatter diagram of the predicted and actual values of the training, test, and validation sets, illus-
trates the effect of fitting. A few points in the test set and validation set have large errors, such as in the test set, 
where the measure value of CBR was about 8.5% and the predicted value was as high as 10.6%; however, the 
small differences in individual data points have no impact on the GPR model. In addition, the CBR value is in the 
range of 8.2–44.5%, and predicted and actual values of the training, test, and validation sets fit well. The  R2 value 
of the training set is 0.9999, the MAE value is 0.0920, the RMSE value is 0.13907, the RRMSE value is 0.0078, the 
ρ value is 0.00391, the  R2 value of the test set 0.9997, the MAE value is 0.2099, the RMSE value is 0.51819, the 
RRMSE value is 0.0155, the ρ value is 0.00775, and the  R2 value of the validation set 0.9996, the MAE value is 
0.0719, the RMSE value is 0.1070, the RRMSE value is 0.0025, the ρ value is 0.00125. Consequently, the  R2, MAE, 
RMSE, RRMSE, and ρ values of the training, test, and validation sets have common characteristics—namely, their 
 R2 value is high, and their MAE, RSME, RRMSE values are low. It demonstrates that the GPR model accurately 
predicts the CBR value and that there is no overfitting.

The GPR model was compared to artificial neural network (ANN) and gene expression programming (GEP) 
models from the literature in this study. Table 3 displays the performance indexes. The summary of statistical 
performance in the training, testing, and validation phases shows that the MAE, RMSE, RRMSE, ρ, and OF 
values of the GPR model are significantly lower while the  R2 value is larger for the CBR value. For example, 
in the validation stage, the analysis of the  R2 together with MAE, RMSE, RRMSE, and ρ values for the CBR 
shows that the GPR model achieved better prediction results with  R2 = 0.9996, MAE = 0.0719, RMSE = 0.1070, 
RRMSE = 0.0025 and ρ = 0.00125 as compared to the ANN model with  R2 = 0.9994, MAE = 0.1649, RMSE = 1.19, 
RRMSE = 0.05, and ρ = 0.028) and GEP model with  R2 = 0.9932, MAE = 0.5, RMSE = 5.49, RRMSE = 0.167 and 
ρ = 0.084 proposed in literature. The results indicate that the proposed model to predict CBR value using GPR 
was more reliable and improved for practical applications.

Sensitivity analysis is used to analyze the individual effect of input factors on CBR value. In this present study, 
the cosine amplitude method was used to determine the sensitivity analysis of the  problem59,60. This method has 
been utilized in numerous  studies61,62. To construct data array (X), data pairs are used, as follows:

(10)X = {x1, x2, x3, . . . , xi , . . . , xn}

Collection of 
laboratory test data

Input and output 
parameters

Application of GPR 
algorithm Results and analysis

Data retrieved from 
literature

Statistical analysis of 
data for input variables

HARHA, LL, PL, PI, 
OMC, CA, and MDD.

CBR

HA LL P
Input

Output

Use of WEKA 
software for running 

the model

Hyperparameter 
optimization

Evaluation of RMSE, 
MAE, R2, RRMSE, ρ
and OF to asses the 
model performance

Sensitivity analysis to 
evaluate the input 

variables contribution 
towards prediction

Figure 2.  Flowchart illustrating the application of GPR to predict the CBR value.
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where xi is a m length vector, a variable in the X array, which may be expressed as:

The co-relation among strength of relation Rij , xi and xj dataset expressed as follows:

where n is the number of values (in this case, 85), and xim and xom are the input and output variables, respectively. 
The strength of the relationship ( rij ) varies from zero to one for each input parameter. The higher the value of 
rij , the stronger the effect of that specific input variable on CBR value. The rij scores for all input parameters are 
shown in Fig. 5. Figure 5 shows that HARHA ( rij = 0.988) has the largest influence in predicting CBR value, 
whereas PI ( rij = 0.847) has the least influence.

(11)X = {xi1, xi2, xi3, . . . , xim}

(12)rij =

∑n
k=1 (xim × xom)

√

∑n
k=1 xim

2
∑n

k=1 xom
2

(a) 

(b) 
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Figure 3.  The accuracy of the GPR model in predicting CBR value in (a) training, (b) testing, and (c) validation 
sets.
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Limitations and future works
It is a common fact that ML studies have always included several limitations and difficulties. One of the limita-
tions of this study is related to the number of data samples used in the analysis, which are 121. The proposed 
model in this research is effective with the expected accuracy if the same input parameters are used in the future. 
In addition, if the same inputs are used but out of the range of our inputs, there is a possibility of an error in the 
analysis. In the future, more experimental data should be collected to improve the generalization capability of 
the proposed model. The prediction of CBR value using sophisticated ML algorithms such as deep learning is 
left as a topic for future study.

Figure 4.  Measured and predicted CBR in the (a) training, (b) testing, and (c) validation sets.

Table 3.  Comparison of statistical metrics for evaluating the performance of the GPR, ANN, and GEP 
models.

Model Data set R2 MAE RMSE RRMSE ρ OF

GPR (this study)

Training 0.9999 0.0920 0.13907 0.0078 0.00391

0.003Testing 0.9997 0.2099 0.51819 0.0155 0.00775

Validation 0.9996 0.0719 0.1070 0.0025 0.00125

ANN29

Training 0.9998 0.0962 4.98 0.20 0.100

0.077Testing 0.9997 0.2198 4.76 0.20 0.104

Validation 0.9994 0.1649 1.19 0.05 0.028

GEP30

Training 0.9972 0.5 4.94 0.202 0.101

0.028Testing 0.9916 0.3 3.69 0.271 0.136

Validation 0.9932 0.5 5.49 0.167 0.084
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Conclusions
In this research study, the GPR modeling technique was used to predict the CBR of the HARHA treated expansive 
soil based on the dataset characteristics. The developed GPR model’s performance was evaluated using statisti-
cal metrics such as  R2, MAE, RMSE, RRMSE, ρ, and OF, and compared to the available ANN and GEP recently 
developed models in the literature. The conclusions of this research can be summarized as follows:

• The new propose model of CBR using GPR achieved a better prediction performance with  (R2 = 0.9999, 
MAE = 0.0920, RMSE = 0.13907, RRMSE = 0.0078, and ρ = 0.00391) succeeded by the ANN model with 
 (R2 = 0.9998, MAE = 0.0962, RMSE = 4.98, RRMSE = 0.20, and ρ = 0.100) and GEP model with  (R2 = 0.9972, 
MAE = 0.5, RMSE = 4.94, RRMSE = 0.202, and ρ = 0.101) in literature. The findings indicate that the GPR 
model predicts the CBR value of the HARHA-treated soil slightly more accurately.

• The new propose GPR model has the highest performance capability as compare to available ANN and GEP 
models developed recently in literature with less variation in the measured and predicted values in terms of 
errors in the training, test and validations sets.

• The proximal value of OF in the GPR model was 0.003 as compare to the available ANN model (0.077) and the 
GEP model (0.028) that were developed recently in literature which concludes that GPR model OF value ~ 0, 
reflects that the model is not overfitted.

• A sensitivity analysis outcome shows that HARHA was the most influential factor in predicting the CBR 
value.

Data availability
All data generated or analyzed during this study are included in its supplementary information file.
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